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Abstract 

The physicians’ biographical pages are essential in providing information about physicians’ specialties. However, 

physicians may not have biographical pages or the current pages are not comprehensive. We hypothesize that 

physicians’ specialty information can be mined from Electronic Medical Records (EMRs) of their patients. We 

proposed an automated physician specialty populating (PSP) system that analyzes physician-ascertained diagnoses 

in EMRs, aggregates them to an appropriate granularity based on the current biographical pages, and populates 

the biographical pages accordingly. In this study, we applied the system using EMR data from Mayo Clinic and 

evaluated the system using the current biographical pages regarding various ranking strategies. Preliminary results 

demonstrated that using EMR data is a scalable and systematic way to populate physicians’ biographical pages.   

Introduction 

With the wide usage of information technology in healthcare, physicians’ biographical pages have become the most 

commonly accessed institutionally oriented web pages. An internal study conducted by the Mayo Clinic User 

Experience (UX) team indicated that biographical information facilitates decision-making of key audiences, 

including current and prospective patients, referring physicians, research collaborators, students, job seekers, and 

grant-funding agencies. The study also identified the specific types of biographical information needed to support 

decision-making by different audiences. 

Enriching physicians’ biographical pages is critical in healthcare delivery as it can align “people, processes, data and 

technologies to optimize information, collaboration, expertise, and experience” according to Healthcare Information 

& Management Systems Society (HIMSS)1. Especially in the era of Electronic Medical Records (EMRs) and big 

data, data-driven decision making has been widely adopted in the healthcare domain. Lobach et al., have conducted 

experiments to show strong evidences of using both clinical decision support systems (CDSSs) and knowledge 

management systems (KMSs) to facilitate the process of healthcare management2.  Facing a large amount of under-

utilized data stored in hospital systems, Chawla and Davis proposed a patient individualized framework to improve 

personalized healthcare3. Similarly, Dixon et al., developed a cloud based distributed framework for knowledge 

management and clinical decision support4. Furthermore, by utilizing the combination of local mining and global 

learning approach, Nie et al., is able to bridge the vocabulary gap between health consumers and healthcare 

knowledge5. In addition, some other researches incorporate with semantic web technology to support decision 

making, play as an active role in managing healthcare knowledge6-8.  

There are some expert recommendation systems to impetus healthcare delivery. For example, Jiang and Xu 

proposed a doctor recommendation model which includes a quality analysis component9.  Fang and Zhai targeted on 

the problem of expert finding by adopting probabilistic models with the focus on building ranking oriented match 

making between candidate profiles and topic groups10. Balog et al., applied a language modeling framework to 

achieve expert finding11. These studies focus on intelligent interfaces for consumers at the point of care seeking not 

about how to populate the content of biographical pages. 

Hence, there is an urgent need to have physicians’ biographical pages populated with useful content at the point of 

needs for diverse information seekers. However, biographical pages are usually filled up manually and displayed in 

various types of design, standards, content, and functionality. Furthermore, take Mayo Clinic as an example, 

although there are 88.7% staff physicians and scientists having biographical pages across three campuses (Arizona, 

Florida and Minnesota), only 72.7% of them have their interests field populated with their interests and specialties. 

Many healthcare organizations do not maintain a comprehensive list of specialties of their physicians. One major 

reason is the lack of time for physicians to create and update their biographical pages. Additionally, biographical 
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pages are not well-integrated with other contents from other resources, indicating a missing opportunity in 

facilitating decision making.  

In this paper, we proposed an automated physician specialty populating (PSP) system. Our hypothesis is that the 

diagnosis information in EMRs represents the specialties of the corresponding physicians and it can be utilized to 

populate physicians’ biographical pages. The paper is organized as follows: we first introduce methodology and 

workflow of our system. Then we describe experiments and present the results. Finally, current issues and possible 

ways to make improvement as future directions are discussed. 

Methods 

Our PSP system is composed of multiple components as shown in Figure 1. The system starts with the component of 

EMRs parsing and normalization, which performs as a preprocessing step on unstructured EMRs so that only keep 

diagnosis sections for physicians. The significant diagnoses detection component takes outputs from the previous 

step to filter out non-significant diagnoses and keep those with high frequencies for each specific physician. The 

semantic granularity checking component reviews high-ranked diagnoses for each physician and maps them to 

SNOMED-CT. Meanwhile, this component also takes the existing biographical pages as gold standard and annotates 

them with SNOMED-CT in order to check whether EMR diagnoses could be mapped to gold standard terms from a 

semantic hierarchical perspective to finalize the granularity. In the rest of this section, we provide detailed strategies, 

methods and algorithms for each component. 

 

Figure 1. Workflow of the proposed physician specialty populating (PSP) system 

EMR Parsing and Normalization 

This component retrieves clinical notes and only uses physician-ascertained diagnoses under the diagnosis section. 

Along with diagnoses, we also prepare specific patient ID, practice setting, provider ID and provider type. For the 

purpose of normalization, we tokenize sentences of diagnoses and process them through MetaMap12 to get relevant 

UMLS concepts, preferred names and concept unique identifiers (CUIs)13. To better improve the accuracy of 

specialty populating, we put a restriction on selecting CUIs by checking their semantic types. As shown in Table 1, 

we only focus on CUIs with semantic type patf, dsyn, mobd, neop, comd, emod, hlca, lbpr, diap, and topp, which are 

specific to diseases and procedures.  

In addition, to represent diagnoses in ontology, we conduct a further annotation about converting CUIs to 

SNOMED-CT codes14, 15 by using UMLS Metathesaurus file in Rich Release Format (RRF)13, 16. Particularly, to 

address the mismatching issue between CUIs and SNOMED-CT codes, we not only find mapping codes directly in 

Metathesaurus RRF file, but also check the concepts/preferred names and make an algorithm to optimize the 

decision-making in a heuristic way. Basically, we first conduct a mapping between CUIs and SNOMED-CT codes. 

If there is only one matching, we directly use the outcome. But if there are more than one matched codes, it means 

there exists a possibility of mismatch. To make this step accurately done, we check Metathesaurus RRF file with 

concept/preferred names to retrieve SNOMED-CT codes directly from there. As a result, outputs generated from this 

preprocessing component are a list of physicians with several SNOMED-CT codes along with patients’ information, 

practice settings and providers’ details. 

Table 1. Qualified semantic types 

UMLS Semantic Type Type Unique Identify (TUI) Abbreviation 

Pathologic Function T046 patf 

Disease or Syndrome T047 dsyn 

Mental or Behavioral Dysfunction T048 mobd 
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Neoplastic Process T191 neop 

Cell or Molecular Dysfunction T049 comd 

Experimental Model of Disease T050 emod 

Health Care Activity T058 hlca 

Laboratory Procedure T059 lbpr 

Diagnostic Procedure T060 diap 

Therapeutic or Preventive Procedure T061 topp 

 

Significant Diagnoses Detection 

This component is responsible for selecting top diagnoses for each physician. To achieve this goal, we respectively 

apply three algorithms on SNOMED-CT codes for all physicians: 1) term frequency (TF); 2) term frequency-inverse 

document frequency (TF-IDF) 17; 3) a hybrid algorithm using TF and TF-IDF. TF based algorithm simply picks the 

top K frequent SNOMED-CT codes and considers them as the most significant representatives. The TF-IDF aims to 

weight how important a term is to a document within a number of documents. In this study, we treat each physician 

as a document, and consider all SNOMED-CT codes as terms. Therefore, by using TF-IDF, we are able to find more 

important SNOMED-CT codes related to each physician and consider them as significant ones. The process of TF-

IDF can be summarized as: 

𝑡𝑓(𝑐, 𝑝) =  
𝑛𝑐,𝑝

∑ 𝑛𝑖,𝑝𝑖

                                   (𝐸𝑞 1) 

       

𝑖𝑑𝑓(𝑐, 𝑃) = 𝑙𝑜𝑔
𝑃

|{𝑝 ∈ 𝑃 ∶ 𝑐 ∈ 𝑝}|
       (𝐸𝑞 2) 

 

𝑡𝑓𝑖𝑑𝑓(𝑐, 𝑝, 𝑃) = 𝑡𝑓(𝑐, 𝑝) ∙ 𝑖𝑑𝑓(𝑐, 𝑃 )   (𝐸𝑞 3) 

where 𝑡𝑓(𝑐, 𝑝) is weighted term frequency for each SNOMED-CT code c in each physician p, 𝑛𝑐,𝑝 stands for the 

number of occurrences of the considered code c for physician p,  𝑖𝑑𝑓(𝑐, 𝑃) represents inverse document frequency 

for code c in the whole physician collection P, and 𝑡𝑓𝑖𝑑𝑓(𝑐, 𝑝, 𝑃) is calculated by the product of 𝑡𝑓(𝑐, 𝑝) and 

𝑖𝑑𝑓(𝑐, 𝑃). Based on the weight measured by TF-IDF, we choose the top K SNOMED-CT codes for each physician 

and rank them in a descending order as the output of this component. 

We also combine TF and TF-IDF approaches and select the top A terms based on TF and the top B terms based on 

TF-IDF. In our implementation, we choose A and B equally. 

Semantic Granularity Checking 

Diagnoses in clinical notes are always described in a specific way. However, patients may have limited medical 

knowledge where specific terms may not have the right granularity for patients. In this step, we identify the 

appropriate granularity based on the current biographical pages. 

Specifically, as the current biographical pages are manually written by physicians about their high level specialties 

and general interests, it can be served as a gold standard to determine the appropriate granularity and evaluate the 

ranking algorithms. Here, we map unstructured terms contained in biographical pages to SNOMED-CT codes with 

the annotation approach described in the EMR Parsing and Normalization component.  

Then we use information content18 to check hierarchical granularity of each concept in ontology. Information content 

in ontology illustrates how informative one node is based on its annotation frequencies and how many descendants it 

holds. Specifically for SNOMED-CT, we only consider two nodes as ancestors and descendants relationship if they 

are connected with “is-a” relationship. The measurement of SNOMED-CT annotation starts with a probability 

measure of each SNOMED-CT term t. Let 𝑆𝑡 be the collection of SNOMED-CT terms that are either t or its 
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descendants and u be the element in 𝑆𝑡 . Let O (t, c) be the occurrence of t annotations given a collection c. The 

information probability of t in c, denoted as p (t, c), is defined as Equation 4 shown19. 

𝑝 (𝑡, 𝑐) =  
𝑂(𝑡, 𝑐)

∑ 𝑂(𝑢, 𝑐)𝑢∈𝑆𝑡

      (𝐸𝑞 4) 

Figure 2 gives an example to illustrate how information content is calculated. In this graph, as bottom level nodes, 

concept 7200100 occurs 126 times, concept 9813009 occurs 4 times and concept 37119500 occurs 33 times. Based 

on “is-a” link, frequencies appear on bottom level can be propagated to their direct parent nodes, which makes 

frequency of concept 281244004 become 126, and frequency of concept 281243005 become 33 + 4 = 37. Similarly, 

as the top level in this example, concept 281242000 holds a total frequency as 126 + 37 = 163. It is obvious that the 

frequency and probability of each concept increases as we move up the graph to the root, and the probability of root 

concept will be 1. Therefore, we can quantify the hierarchical relationship based on information probability, and 

granularity is able to be determined according to the probability threshold we set. 

 

Figure 2. An example of information content measurement in SNOMED-CT 

Considering both SNOMED-CT hierarchy and information content, we propose an algorithm to semantically check 

granularity as shown in Algorithm 1. For each diagnosis SNOMED code, we first check if gold standard has the 

exactly same code. If not, we check whether gold standard has ancestors of such concept within the depth of 𝜃. 

Otherwise, we compare information probability of the specific node with a granularity threshold 𝜑. If information 

content meets the criteria, even though there is no match in gold standard, we still consider such node as a concept 

with high granularity. 

 

Algorithm 1. Semantic Granularity Checking 

Input:  Map A (physician, List of SNOMED codes), List B of SNOMED codes in physician’s biography, level 

threshold 𝜃, granularity threshold 𝜑 

Output: Map C (physician, List of Promoted SNOMED codes)  

1. FOR each physician p in A 

2.      FOR each SNOMED code c 

3.           IF B has the exact same code as c 

4.                add c to List T 

5.           ELSE IF B contains c’s ancestor with k levels (1<k< 𝜃) 

6.                    add c to List T 

7.           ELSE IF information probability ip> 𝜑 

8.                    add c to List T 
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9.  add (p, T) to C  

10. RETURN C                     

 

Experimental Results 

This proposed system was implemented with Eclipse Standard/SDK version Luna 4.4.020. The interfaces to access 

MetaMap, UMLS and SNOMED-CT were coded in Java programming language. To facilitate the processing speed 

on large amount of clinical notes, we also deployed the PSP system on the Open Grid Scheduler (OGS)21 framework 

running on 64 bit Linux CentOS 6.8 servers hosted by Mayo Clinic, which is a scheduler to run distributed tasks on 

clusters. 

The clinical notes we processed were collected during the year of 2010 to 2015 provided by Mayo Clinic Minnesota 

campus. Table 2 gives detailed statistics of the data. To accurately find specialties for each physician, we processed 

a subset of clinical notes to keep problems of all patients which first diagnosed by each physician, which ends up 

with the same amount of patients but lower number of providers and clinical notes. Among these clinical notes, we 

parsed all problem lists contained in diagnosis section and stored them along with patients’ and providers’ 

information. One point needs to be noticed is that, although there are 8,078 providers showed up on EMRs from 

Mayo Clinic Minnesota campus, since Mayo Clinic only set up biographical pages for doctors who serve as primary 

or secondary appointment, therefore, not all of those providers have clinical biographies. As shown in Table 3, from 

Mayo Clinic Arizona, Florida and Minnesota campuses, there are 2,967 physicians currently have clinical 

biographies, and 2,431 out of 2,967 (81.9%) physicians have their interests fields populated on clinical biographies, 

which we considered as gold standard. In addition, among these 2,431 physicians, 718 physicians can be found from 

EMRs of Minnesota campus. As a comparison, we also populated physicians’ specialties by analyzing patients’ 

claim data, which describes patients’ billing information submitted by physicians and hospitals. We retrieved 2010-

2015 billing data from all three campuses of Mayo Clinic with 3,002 physicians and found that only 658 out of 718 

physicians from Minnesota campus have both EMRs and relevant claim data. As a case study, the experiments were 

conducted based on those 658 physicians. 

For those 658 physicians, we extracted the top 100 significant SNOMED-CT codes based on the three algorithms. 

We also used EMRs, claim data, and the combination of EMRs and claim data to evaluate the performance. Then we 

applied the granularity checking algorithm to map each SNOMED code to an appropriate level. Specifically, we set 

parameter 𝜃 as 6, and threshold 𝜑 as the average of the information probability of annotated SNOMED-CT codes. In 

general, nine different experimental groups are formed as: 1) TF-IDF with EMRs; 2) TF-IDF with claim data; 3) TF-

IDF with EMRs and claim data; 4) TF with EMRs; 5) TF with claim data; 6) TF with EMRs and claim data; 7) 

Hybrid with EMRs; 8) Hybrid with claim data; 9) Hybrid with EMRs and claim data. 

Table 2. Statistics of Mayo Clinic 2010-2015 EMRs 

Cohorts Number of Patients Number of Providers Number of Clinical Notes 

EMRs 789,966 8,249 23,979,937 

Subset of EMRs 789,966 8,078 16,094,797 

 

Table 3. Statistics of current physicians’ clinical biographies from Mayo Clinic three campuses 

Data Number of 

Physicians with Bio 

Number of 

Physicians with 

Interests in Bio 

Number of Physicians 

with Mayo Clinic 

Minnesota EMR 

Number of Physicians 

with Mayo Clinic 

Minnesota EMR and 

Claim Data 

Current Bio 

Pages 

2,967 2,431 718 658 

 

The total number of unique SNOMED-CT codes is 999, 1,038, 1,244, 355, 330, 319, 1,564, 1,216, and 1,245 for 

experimental group 1 to group 9, respectively. In addition, we grouped physicians by their practice settings and 
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counted the number of SNOMED-CT codes for each category with different experimental groups. As shown in 

Figure 3, one physician may have one or more practice settings, and we listed the top 10 practice settings with the 

descending order of population of physicians in x axis with the number of physicians in parentheses. Cardiology had 

more physicians, and Nephrology had more SNOMED-CT codes than other settings. The combination of EMRs and 

claim data always produced the most number of SNOMED-CT codes while running on claim data always led to the 

least number of codes.  

In Figure 4, we elaborated the precision (rounded to two decimal places) of SNOMED-CT codes that covered by the 

gold standard for these 10 practice settings for nine different experimental groups. The claim data yields low 

precision. However, the selection of different approaches to acquire high precision varies across different practice 

settings. Additionally, the current biographic pages do not seem to represent the practice of the physicians as codes 

mined from EMR are mostly missed from their current pages.  For example, a physician has Cardiac transplantation 

and Mechanical circulatory support listed in their biographic page. However, we found more practical procedures 

including Aortic valve stenosis and Mitral stenosis in his clinical notes. This may reflect the gap between what 

physicians think their specialties/research and what they are actually doing in routine practice. The PSP system is 

able to quantify such gap for physicians and enrich their biographical pages with their clinical specialties. 

 

Figure 3. Count of SNOMED-CT codes for the top 10 practice settings with 9 experimental configurations 

We conducted a comparison among 9 experimental groups in terms of their performance. As shown in Table 4, 

overall precision/recall/F-measure results for 658 physicians were given. We found that the use of TF-IDF algorithm 

with EMRs produced the highest precision as 0.49, the use of TF-IDF algorithm with EMRs and claim data 

contributed to the highest recall as 0.67, and the use of hybrid algorithm with EMRs yielded highest F-measure as 

0.51. It showed that EMRs is able to provide more significant specialties than claim data with either TF-IDF or 

hybrid algorithm, while using frequency algorithm was not good enough to generate as informative contents as the 

others. However, for claim data, no matter what kind of algorithms we applied, it always performed with low 

precision/recall/F-measure, it indicated that claim data did not cover a fine granularity of specialties and cannot 

reflect physicians’ practices very well. Moreover, the combination of EMRs and claim data did not have a better 

performance than using EMRs. It is because EMRs contain more useful information than what claim data holds, and 

when we mixed them together, the ranking of terms was changed, and less informative term may have a higher 

frequency, which makes important terms become invisible. 

Although we got the highest F-measure by using hybrid algorithm with EMRs, 0.51 is not satisfactory score. The 

reason is that gold standard we referred to did not have a comprehensive description of practices while most 

diagnose sections EMRs provide are about clinical practices and procedures. In other words, F-measure score with 

0.51 actually quantified such gap between clinical practices and real specialties. Ideally, with more practices 

involved in biographical pages, higher F-measure score will be achieved.  
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Table 4. Overall precision/recall/F-measure for 658 physicians with nine groups (highest value in bold) 

Methods EMRs Claim Data EMRs + Claim Data 

TF-IDF 0.49/0.52/0.5 0.21/0.08/0.12 0.4/0.67/0.5 

TF 0.45/0.5/0.47 0.21/0.07/0.11 0.42/0.54/0.47 

Hybrid 0.45/0.6/0.51 0.22/0.07/0.11 0.42/0.63/0.5 

 

 

Figure 4. Precision for the top 10 practice settings with 9 experimental configurations 

Discussion 

Our proposed physician specialty populating (PSP) system is able to automatically populate potential specialty 

candidates for physicians from EMRs. The motivation of making this system is based on observations that most 

physicians fill their biographical pages manually with no standardization, which makes it difficult to deliver 

healthcare knowledge to consumers and providers. In addition, physicians’ biographical pages may not be up to 

date. The proposed PSP system has the potential to enrich the current biographical pages and keep it up to date by 

leveraging EMR. 

Normalizations for both EMRs and existing biographical pages are initial processes of the proposed system. Note 

that here, we took existing biographical pages as gold standard, the coverage of 60.4% may make the granularity 

checking suboptimal.   

There is a debate of whether using TF or TF-IDF to find significant SNOMED-CT codes for physicians from EMRs. 

Usually, frequency of SNOMED-CT codes tells us which specialties are commonly applied by each physician and 

TF-IDF can indicate which specialties are especially unique for each physician. From patients’ point of view, 

frequency is an essential key since it tells them which specialties physicians are frequently performing. TF-IDF also 

provides specialties information with not only relative high frequency but also uniqueness for each physician. Such 

ranking scheme will rank more specific specialties to a specific physician higher. However, using TF-IDF might 

miss some common practices that with high frequencies but most physicians can do. In this study, we gave the same 

weight to each approach aiming to get benefit from both approaches. Although the hybrid approach yielded the best 

F-measure, there is still some room for improvement. In the future, we will use a heuristic approach to find the 

optimal balance point in combining the two approaches. Meanwhile, we will also send outputs to physicians at 

Mayo Clinic to get their feedback to adjust the weight. By doing so, we aim to make better balance between 

consumers’ needs and physicians’ requirements. 

One challenge we faced is how to decide the right granularity. We always wanted to give coarse granularities with 

more general terms for the convenience of search. However, terms with fine granularities may also be useful to 

provide specific division of specialties. Therefore, in this study, we picked the granularity based on the average of 

the information content as the threshold to balance the granularity.  Note that, the PSP system tends to populate what 
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physicians do in the practice. From the experiments, we found that claim data cannot reflect physicians’ specialties 

very well which may be due to the institutional and financial constraints. Hence, it provides evidences to the current 

situation of health systems that there exists a divergence between structured claim data and unstructured EMRs. 

How to use both datasets to understand the status and activities of healthcare is another interesting topic to 

investigate on. 

Conclusion 

We have investigated on the use of EMR data to populate physicians’ biographical pages. The proposed PSP system 

provides a scalable way to automatically populate physicians’ biographical pages. We plan to collaborate with 

physicians and refine system settings. In addition to populating physicians’ clinical specialties, the same approach 

will be utilized to discover their research expertise by analyzing keywords appeared in their research articles and 

grant proposals. 
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