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Abstract: Circulating tumor cells (CTCs) are an indicator of metastatic progression and relapse. Since
non-CTC cells such as red blood cells outnumber CTCs in the blood, the separation and enrichment
of CTCs is key to improving their detection sensitivity. The ATP luminescence assay can measure
intracellular ATP to detect cells quickly but has not yet been used for CTC detection in the blood
because extracellular ATP in the blood, derived from non-CTCs, interferes with the measurement.
Herein, we report on the improvement of the ATP luminescence assay for the detection of CTCs by
separating and concentrating CTCs in the blood using a 3D printed immunomagnetic concentrator
(3DPIC). Because of its high-aspect-ratio structure and resistance to high flow rates, 3DPIC allows
cancer cells in 10 mL to be concentrated 100 times within minutes. This enables the ATP luminescence
assay to detect as low as 10 cells in blood, thereby being about 10 times more sensitive than when
commercial kits are used for CTC concentration. This is the first time that the ATP luminescence
assay was used for the detection of cancer cells in blood. These results demonstrate the feasibility
of 3DPIC as a concentrator to improve the detection limit of the ATP luminescence assay for the
detection of CTCs.

Keywords: 3D printing; circulating tumor cells; immunomagnetic separation; ATP luminescence
assay

1. Introduction

Circulating tumor cells (CTCs) are cancer cells that are present in the bloodstream
after being released from original or metastatic tumors [1]. Since CTCs are found even
in the peripheral blood of patients with early-stage cancer [2], they can be used for the
early diagnosis of cancer as well as for the prediction of chemotherapy efficacy and cancer
relapse [3]. However, these diagnoses based on CTCs are often challenged by the rarity
(1–102 CTCs per 1 mL of blood) as well as the heterogeneity of CTCs [4]. To overcome
these challenges, various CTC isolation methods have been developed such as density
gradient centrifugation [5], microfiltration [6], inertial focusing [7], and immunomagnetic
separation (IMS). Among them, IMS, which relies on antibody (Ab)-conjugated magnetic
nanoparticles (MNPs), is the most widely used because of its relatively better reliability
and reproducibility in isolating CTCs compared to other isolation methods [8]. It can be
used to separate CTCs directly from the blood or indirectly by removing non-CTCs, such
as blood cells, from the blood [9]. The direct separation strategy has the advantage of
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allowing the isolation of high-purity CTCs [10,11] but depends highly on the expression
of CTC markers, which makes it less favored than other efficient methods [12,13]. The
indirect separation strategy has the advantage of allowing the separation of most of the
CTCs present in blood, but yields a low level of CTC purity [14].

Much effort has been focused on the development of microfluidic devices (µFDs)
for in vitro diagnostics because µFDs are known to be highly useful for the enrichment,
isolation, and detection of target cells by allowing continuous fluid manipulation [15,16].
However, conventional µFDs with microchannels (~1 mm) fabricated by photo and/or soft
lithography are not suited to the case of diagnostics dealing with large volumes of samples
such as 10 mL or more [17]. Three-dimensional (3D) printing is an alternative solution for
fabricating microchannels larger than 1 mm and, more recently, 3D printed µFDs have been
used for the isolation of bacteria and animal cells [18,19]. However, no reports have yet
been published that utilize 3D printed µFDs as an effective device for the isolation of CTCs.

The adenosine triphosphate (ATP) luminescence assay is the conventionally employed
method to estimate intracellular ATP, which is the primary energy unit of living cells [20,21].
ATP oxidizes luciferin, and the oxidized luciferin emits light at 580 nm. The light is easily
detected using a luminometer. The sensitivity of a luminometer is high enough (~10–11 M)
to monitor ATP release in cell suspensions and tissue preparations [22]. Because of its high
sensitivity and simplicity, it has been widely used for the detection of various types of
cells [19,23], the measurement of the chemosensitivity of cancer cells, and the estimation of
cell activity [24]. However, it has not been used for the detection of CTCs in blood, because
ATP in blood interferes with CTC detection.

In this study, we report on a sensitive and rapid method to isolate and simultaneously
detect CTCs in blood using a 3D printed immunomagnetic concentrator (3DPIC) and
the ATP luminescence assay, a procedure requiring a total of 30 min, including 20 min
of incubation time (Figure 1). MNPs (average diameter, 50 nm) were conjugated with a
monoclonal antibody (mAb) targeted to epithelial cell adhesion molecule (EpCAM), one
of the CTC biomarkers [25]. Colon and breast cancer cells were first enriched in 3DPIC
through IMS and later enumerated using the ATP luminescence assay. The specificity of
the enriched cells was verified using immunostaining. To demonstrate its feasibility for
isolation and detection of CTCs in blood, either colon or breast cancer cells in 1 mL of blood
were enriched using 3DPIC at 5 mL/min. This allowed the ATP luminescence assay to
detect as little as 10 cells in the blood within several minutes. This is the first time that the
ATP luminescence assay is used for the detection of cancer cells in blood.
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with a mAb (CO17-1A) specific for EpCAM, using a permanent magnet in 3DPIC. Then, the enriched
CTCs are transferred into a LuciPac pen. In the pen, CTCs are lysed, releasing ATP. ATP then oxidizes
luciferin in the presence of oxygen (O2), producing oxidized luciferin (oxyluciferin) with carbon
dioxide (CO2), pyrophosphate (PPi), and adenosine monophosphate (AMP). Finally, oxyluciferin
emits light, and the emitted light is measured by an ATP luminometer. RLU: relative light unit; WBC:
white blood cells; RBC: red blood cells.

2. Materials and Methods
2.1. Cell Culture

The colon cancer cell Caco-2 and breast cancer cell MCF-7 lines were purchased from
the American Type Culture Collection (ATCC) (Manassas, VA, USA). Caco-2 and MCF-
7 cells were cultured in Dulbecco’s Modified Eagle Media (DMEM) (Global life science
solutions, Marlborough, MA, USA) supplemented with 10% (v/v) fetal bovine serum
(FBS) (HyClone Laboratories, Inc., Logan, UT, USA), 100 units/mL of penicillin (Life
Technologies, Carlsbad, CA, USA), and 100 µg/mL of streptomycin (Life Technologies,
Rockville, MD, USA). The cells were maintained at 37 ◦C with 5% CO2 and 95% relative
humidity.

2.2. Conjugation of the Antibody to MNPs

Amine-modified MNPs with an iron oxide (Fe3O4) core (fluidMAG-Amine, 50 nm
in diameter) were purchased from Chemicell Co. (Berlin, Germany). mAb CO17-1A
from transgenic tobacco plants, which targets EpCAM, was provided by the lab of K. Ko
at Chung-Ang University, Korea [26]. Its binding affinity to EpCAM was proved to be
superior to that of the commercial EpCAM antibody (R&D Systems, Minneapolis, MN,
USA) by surface plasmon resonance (SPR) (ProteOn XPR36; Bio-Rad, Hercules, CA, USA)
(Figure S1).

MNPs were sonicated for about 40 s to reduce aggregation. A solution of MNPs
(1 mg/mL, 1010 particles/mL, final conc.) in phosphate-buffered saline (PBS, pH 7.4) was
mixed with glutaraldehyde (2.5%, v/v) in PBS at room temperature (RT) for 1 h using a
rotary incubator as previously reported [27].

2.3. Fabrication of 3DPIC

The 3DPIC (Figure 2a) was designed to have a channel (3.2 mm in diameter) and a
cylindrical hole (20 mm in diameter) using the Student version of Inventor® Professional
(Autodesk Inc., Seoul, Korea) [18]. Its 3D model was sectioned along the z-axis and
converted to a compatible image file for a digital light processing (DLP) 3D printer (IM-96,
Carima Co., Seoul, Korea). Photocurable polymer urethane (CUB035C; Carima Co.) was
exposed to UV light at 405 nm following the pattern of each image file, thus fabricating
3DPIC layer by layer. The printout (Figure 2b) was washed with 70% ethanol to remove
the residual polymer in the channels and then dried at RT for 2 min. It was further exposed
to UV light at 405 nm to further increase its strength. The 3DPIC consists of a channel
with a diameter of 3.2 mm to hold the permanent magnet (diameter, 20 mm), as shown in
Figure 2a,b.
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round channel with a diameter of 3.2 mm and a cylindrical hole holding a permanent magnet (diameter, 20 mm). (c)
Effect of the concentration of mAb on the capturing efficiency of Caco-2 cells by 3DPIC. Two hundred microliters of MNPs
(1010 particles/mL, final conc.) that were previously conjugated with mAb at different concentrations (0.1–20 µg/mL) in
PBS were mixed with Caco-2 cells (104 cells/mL, final conc.) in 10 mL of PBS and incubated at 37 °C on an orbital shaker at
200 rpm for 20 min. Then, the mixture was injected into 3DPIC at 5 mL/min. The captured cells were counted using the ATP
luminescence assay. (d) Capturing efficiency of CTCs (104 cell/mL) in 10 mL of PBS at different flow rates (1–100 mL/min)
with MNPs conjugated with the mAb at 5 µg/mL. Student’s t-test, NS: non-significance, *: p < 0.05, and ***: p < 0.001.
Sample number (n) = 3.

2.4. Enrichment of CTCs in Buffer and Blood Using 3DPIC

Two hundred microliters of mAb-MNPs (1010 particles/mL, final conc.) was mixed
with 10 mL of PBS containing freshly cultured cancer cells (1–104 cells/mL, final conc.)
and incubated at 37 ◦C on an orbital shaker at 200 rpm for 20 min. The mixture was then
transferred to a syringe, and a syringe pump (Harvard Apparatus, Boston, MA, USA) was
then used to circulate the mixture at different flow rates (1–100 mL/min) into 3DPIC while
a permanent magnet (Ø 20 mm × 20 mm, 527 mT) was plugged on 3DPIC (Figure 2b).
Once CTCs–mAb–MNPs complexes were enriched in 3DPIC, the enriched complexes in the
channel were washed two times with about 400 µL of PBS. Finally, the permanent magnet
was removed, and CTCs–mAb–MNPs complexes were collected into tubes through the
outlet port by flowing 100 µL of PBS into 3DPIC (Figure 2a).

Whole blood treated with 0.1% K2 ethylenediaminetetraacetic acid (EDTA) was pur-
chased from Innovative Research, Inc. (Novi, MI, USA). The hematocrit (hct) value was
about 39%. Blood was spiked with cancer cells at different concentrations (1–104 cells/mL,
final conc.). Then, 1 mL of the spiked blood was mixed with 9 mL of PBS containing
Ab–MNPs (1010 particles/mL, final conc.). All the following steps for the enrichment were
similar to those mentioned above.
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2.5. Detection of CTCs Using te ATP Luminescence Assay

After enrichment in 3DPIC, the enriched CTCs were collected and incubated at 95 °C
for 10 min to release ATP. The samples were then transferred into a LuciPac Pen (Kikkoman
Biochemifa Co., Tokyo, Japan) containing luciferase. ATP luminescence intensity was
measured according to the protocol provided by the manufacturer. In detail, the LuciPac
Pen was inserted into the Lumitester PD-30 (Kikkoman Biochemifa Co.), and ATP lumi-
nescence intensity was measured within 30 s. The amount of ATP present in the sample
was quantified by the amount of light emitted during the measurement and is described in
relative light units (RLU).

2.6. Calculation of the Capturing Efficiency

The capturing efficiency was evaluated by comparing the luminescence intensity of the
captured cells with the intensity of the original cells. To calculate the capturing efficiency,
we evaluated the luminescence intensity at various cell concentrations (1–104 cell/mL)
and created a calibration curve. Finally, the cell number of the enriched sample was
determined by interpolating the luminescence intensity obtained by the ATP luminescence
assay with the data on the calibration curve. The capturing efficiency was calculated using
the following formula [19].

Capturing efficiency (%) = Ne/Nt × 100 %

where Nt and Ne are the number of cells in a sample and the number of captured cells in
the sample, respectively.

2.7. Immunostaining of CTCs and Blood Cells

The enriched CTCs in an isolated sample and blood cells in the eluent were carefully
washed with PBS, fixed in 4% paraformaldehyde for 15 min at RT, and permeabilized
with PBS containing 0.15% (v/v) Triton X-100 (Sigma–Aldrich, St. Louis, MO, USA) at
RT for 20 min. They were then blocked with 3% BSA at room temperature (RT) for 1 h.
The samples were incubated overnight with Alexa Fluor 594-conjugated human CD45
antibody (R&D Systems, Inc., Minneapolis, MN, USA) and Alexa Fluor 488-conjugated
mouse EpCAM (Thermo Fisher Scientific) at 4 ◦C. Then, the nuclei of the cells were stained
with 4′,6-diamidino-2-phenylindole (DAPI) (Sigma–Aldrich). Images were taken under an
epi-fluorescence microscope (DeltaVision® Elite, GE Healthcare, Chicago, IL, USA).

2.8. Statistical Data Analysis

Data representation was based on the mean ± standard deviation of three or more
independent experiments. We used Student’s t-test to compare data under various condi-
tions.

3. Results and Discussion
3.1. Effect of mAb Concentration and Flow Rate on the Capturing Efficiency of CTCs by 3DPIC

To find the optimal concentration of mAb for its conjugation with MNPs, the capturing
efficiency of Caco-2 cells by MNPs conjugated with the mAb (CO17-1A) at varying concen-
trations (0.1–20 µg/mL) was measured. At 5 µg/mL of mAb, the capturing efficiency was
about 90%, and no significant increment in capturing efficiency was observed when the
concentration was increased (Figure 2c), showing that 5 µg/mL of mAb was sufficient to
react with 1010 particles/mL of MNPs for the isolation of CTCs.

To find the optimal flow rate for the isolation of CTCs, 10 mL of PBS containing
Caco-2 cells (104 cells/mL, final conc.) and mAb–MNPs (1010 particles/mL, final conc.)
were injected into 3DPIC at various flow rates (1–100 mL/min). The capturing efficiencies
at 1 and 5 mL/min were found to be about 90% (Figure 2d). At flow rates higher than
5 mL/min, the capturing efficiency significantly decreased. Therefore, 5 mL/min of
flow rate was chosen for the isolation of CTCs in 3DPIC. The 3DPIC was comprised
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of a W-shaped microchannel (Figure 2a,b), which previously showed higher capturing
efficiency for bacterial pathogens than a spiral microchannel [18]. Owing to the geometrical
characteristic of the W-shaped microchannel, CTCs–mAb–MNPs complexes were likely
to slow down before the wide curve in the lateral region where the permanent magnet
was located (Figure 1), similar to bacteria–Ab–MNPs complexes [18], thus allowing an
easy capturing into the microchannel even at the high flow rates. In addition, 3DPIC was
made of plastic and able to withstand the pressure generated at high flow rates, such as
5 mL/min [28]. This explains how CTCs could be efficiently captured in 3DPIC even at the
high flow rates (1–5 mL/min).

3.2. Improvement in the ATP Luminescence Assay for the Detection of Cancer Cells by 3DPIC

Once CTCs are enriched by 3DPIC, the LODs of the ATP luminescence assay can be
lowered. Without the use of 3DPIC, the LOD of the ATP luminescence assay for Caco-2 and
MCF-7 in PBS was 10 cells per mL. However, the LOD was lowered to 1 cell per mL when
3DPIC was used to enrich cells from 10 mL of PBS. More remarkably, the bioluminescence
signal at all tested concentrations of cells increased about 10 times when 3DPIC was
used, which is equivalent to a 10-fold enrichment according to the graphs (Figure 3a,c).
This improvement in detection sensitivity by 3DPIC can be explained by high capturing
efficiencies (about 80 to 90%) for all the tested cancer cells in 1 to 104 cells/mL, as shown
in Figure 3b,d. Intracellular ATP can vary depending on the type of cancer cell, and the
application of ATP luminescence assays for the detection of CTC in clinical samples requires
more extensive testing with different types of cancer cells.
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Figure 3. Isolation of cancer cells from PBS by 3DPIC and determination of the number of isolated
cancer cells by the ATP luminescence assay. Number of Caco-2 (a) and MCF-7 (c) cells at different
concentrations (1–104 cells/mL, final conc.) in 10 mL of PBS determined by the ATP luminescence
assay with and without 3DPIC. Capturing efficiency of Caco-2 (b) and MCF-7 (d) cells at different
concentrations (1–104 cells/mL, final conc.) in 10 mL of PBS by 3DPIC. Student’s t-test, *** p < 0.001,
n = 3.

3.3. Comparison between 3DPIC and a Commercial Cell Separation Kit for Cancer Cell Isolation

The improved sensitivity of the ATP luminescence assay by 3DPIC was further evalu-
ated through comparison with a CTC separation kit (EasySEP Human EpCAM-positive
selection cocktail). The LOD of 3DPIC for Caco-2 and MCF-7 cells was 1 cell/mL, which
is one-order of magnitude lower than that of the kit (10 cells/mL), and the R2 of 3DPIC
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(1.00) was higher than that of the kit (0.96) (Figure 4a,c). This clearly proves the better
performance of 3DPIC compared to the kit (Figure 4b,d). The kit was able to process up
to 2 mL of sample, while 3DPIC was able to process up to 100 mL. The larger the sample
volume, the greater the enrichment reached [16,19], which in turn results in a better LOD
of the ATP luminescence analysis. It is known that the average blood volume collected
for any liquid biopsy is 7.5 mL [29–31]. Therefore, 3DPIC could be advantageous for CTC
detection with respect to commercial kits.
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Figure 4. Comparison between 3DPIC and a commercial cell separation kit for cancer cell isolation.
Number (a,c) and capturing efficiency (b,d) of Caco-2 (a,b) and MCF-7 (c,d) cells at different con-
centrations (1–104 cells/mL, final conc.) isolated by the commercial kit and 3DPIC using the ATP
luminescence assay. Student’s t-test, *** p < 0.001, n = 3.

3.4. Spike Test in Blood

Blood contains ATP molecules that increase the background luminescence intensity
during the ATP luminescence assay, even in the absence of CTCs. Because of this, the
detection of CTCs at low concentrations is nearly impossible using the ATP luminescence
assay. Therefore, the capturing of CTCs using mAb–MNPs in blood and their isolation
from other cells should be performed simultaneously. While performing the assay without
washing, the color of the eluent was the same as that of the blood, with an optical intensity
value of 1000 RLU, indicating the presence of blood cells (Figure S2). After the first washing
step, the color of the eluent faded, whereas the optical intensity remained the same, proving
the presence of blood cells in the sample volume. This made us perform a second washing,
during which the eluent became transparent, with a reduction in optical intensity by one
order. After more washings, the eluent became brighter owing to the non-specific binding
of blood cells and its removal from 3DPIC. In addition, the blood cells containing ATP were
removed, thereby reducing the intensity to a non-detectable limit. Hence, to detect CTCs in
blood with the current methodology, it is necessary to wash the blood twice to remove the
residual blood cells.

The intensity increased in proportion to the increase in the concentration of CTCs in
the blood with high capturing efficiency (Figure 5a,b). The LOD of 3DPIC for CTCs in the
blood was 10 cells/mL. The results for the blood samples were not as good as those for
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the PBS samples. This difference might be due to the non-specific binding of blood cells
inside 3DPIC, which increased the intensity in the samples. A similar observation has been
reported. Ten CTCs were detected by enriching 1 mL of blood; therefore, the system can be
used to detect CTCs in liquid biopsies.
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Figure 5. Spike test in blood. (a) Luminescence change for CTCs at different concentrations
(1–104 cells/mL) in blood in 3DPIC. (b) Capturing efficiency at different concentrations of CTCs
(1–104 cells/mL) in 1 mL of blood in 3DPIC. (c) Immunostaining of CTCs (Caco-2 and MCF-7 cells)
and blood cells after capturing and isolation. CTCs were in the isolated sample, and blood cells were
in the eluent. The cells were stained using CD45 (red), EpCAM (green), and DAPI (blue). The scale
bar is 50 µm. Student’s t-test, *** p < 0.001, n = 3.

Enriched cells were immunostained to confirm whether CTCs were present in the
isolated sample. DAPI, which stains the nuclei of cells, EpCAM, a marker of CTC, and
CD45, a marker of blood cells, were used together for immunostaining. In the case of
isolated samples, DAPI and EpCAM staining was positive, whereas CD45 staining was
negative (Figure 5c). In the case of the eluent, DAPI and CD45 staining was positive,
whereas EpCAM staining was negative. This staining clearly confirmed that CTCs with
EpCAM could be selectively captured in the blood flow analysis, which paves way for
selective CTC detection in blood.

4. Conclusions

In this study, we developed the novel 3DPIC with the ATP luminescence assay for the
enrichment and rapid detection of CTCs in blood. Taking advantage of the design flexibility
afforded by 3D printing, a curve channel inside 3DPIC was fabricated, which is difficult
to fabricate using conventional fabrication methods for µFDs, such as soft lithography.
The curved channel reduced the velocity of the sample, increasing the capturing efficiency.
The 3DPIC based on continuous flow can handle a large volume of sample compared
to a commercial kit based on conventional batch processes, which improves the LOD of
3DPIC by more than one order compared to the kit. Various types of CTCs can be enriched
and detected with 3DPIC within 30 min, up to 10 cell/mL of CTCs in blood. The ATP
luminescence assay, which cannot be applied to blood samples due to the presence of extra
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ATP in blood, was combined with IMS to selectively capture only CTCs in blood to measure
ATPs only from CTCs. Our results demonstrate that 3DPIC with the ATP luminescence
assay could be applied in diagnostic fields such as liquid biopsy analysis requiring target
isolation and rapid detection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bios11080278/s1, Figure S1: Kinetic analysis of antigen–antibody interaction on a sensor chip
using surface plasmon resonance (SPR). SPR analysis was used to confirm the binding activity of mAb
CO17-1A, anti-EpCAM mAb to an epithelial cell adhesion molecule (EpCAM-Fc). To confirm the
antigen–antibody binding activity of mAb CO17-1A purified from transgenic Arabidopsis plants, the
surface of a GLC sensor chip was coated with EpCAM fused to human IgG Fc fragment (EpCAM-Fc)
molecules. Anti-EpCAM mAb (600 nM) and mAb CO17-1A (600 nM) were applied to the sensor chip
at a flow rate of 80 µL/min at 25 ◦C, and the response curves shown in the figure were consequently
obtained. Figure S2: Effect of the washing step on luminescence intensity. The blood was injected
into 3DPIC and washed with PBS. Eluents were collected after each washing step, and the intensity
was measured using the ATP luminescence assay. Student t-test was used. ***: p < 0.001; sample
number (n) = 3.
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