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Continuous Learning in Model-Informed 
Precision Dosing: A Case Study in Pediatric 
Dosing of Vancomycin
Jasmine H. Hughes1,*, Dominic M. H. Tong1, Sarah Scarpace Lucas2, Jonathan D. Faldasz1, Srijib Goswami1 
and Ron J. Keizer2

Model-informed precision dosing (MIPD) leverages pharmacokinetic (PK) models to tailor dosing to an individual 
patient’s needs, improving attainment of therapeutic drug exposure targets and thus potentially improving drug 
efficacy or reducing adverse events. However, selection of an appropriate model for supporting clinical decision 
making is not trivial. Error or bias in dose selection may arise if the selected model was developed in a population 
not fully representative of the intended MIPD population. One previously proposed approach is continuous learning, 
in which an initial model is used in MIPD and then updated as additional data becomes available. In this case study 
of pediatric vancomycin MIPD, the potential benefits of the continuous learning approach are investigated. Five 
previously published models were evaluated and found to perform adequately in a data set of 273 pediatric patients 
in the intensive care unit. Additionally, two predefined simple PK models were fitted on separate populations of 
50–350 patients in an approach mimicking clinical implementation of automated continuous learning. With these 
continuous learning models, prediction error using population PK parameters could be reduced by 2–13% compared 
with previously published models. Sample sizes of at least 200 patients were found suitable for capturing the 
interindividual variability in vancomycin at this institution, with limited benefits of larger data sets. Although comprised 
mostly of trough samples, these sparsely sampled routine clinical data allowed for reasonable estimation of simulated 
area under the curve (AUC). Together, these findings lay the foundations for a continuous learning MIPD approach.

Pharmacokinetic (PK) models have been brought to the point 
of care, aided by development and deployment of software tools 
that allow clinicians to estimate their patients’ PK parameters and 
simulate dosing regimens.1–3 Preliminary studies suggest that this 
model-informed precision dosing (MIPD) facilitates attainment 
of therapeutic targets, reduces drug-induced adverse events, and 
improves clinical outcomes.4–6 However, MIPD requires a model 

that adequately describes patient PKs for the drug of interest in 
the intended population, or that at least adapts appropriately to 
newly collected drug concentration data. Naive application of a 
previously published model could introduce bias or imprecision 
in dose selection. Developing a new model or validating existing 
models for each new patient population requires a sufficiently 
large prior data set collected from a sufficiently diverse group of 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Precision dosing is expected to improve patient outcomes, 
however, models developed in one patient population may 
perform poorly when translated to a new patient population. 
Continuous learning has been proposed as a strategy to improve 
model-informed precision dosing (MIPD) by tailoring a model 
to the intended use population as more data become available.
WHAT QUESTION DID THIS STUDY ADDRESS?
 This study assessed the potential benefits of implementing 
continuous learning and investigated the minimum amount of 
additional data required to produce a tailored model in a pedi-
atric vancomycin intensive care population.

WHAT DOES THIS STUDY ADD TO OUR KNOW- 
LEDGE?
 This work shows that even simple prespecified models tai-
lored to an organization match or outperform the predictive 
performance of external models, and that, for pediatric vanco-
mycin, the benefits of increasingly large data sets over 200 pa-
tients is minimal.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Rather than creating increasingly complex or niche mod-
els from large and multi-institutional data sets, MIPD models 
could be tailored to the intended population using an auto-
mated continuous learning approach.
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patients and ideally from multiple institutions, and is time-con-
suming.1,18 These efforts could delay implementation of MIPD in 
a particular clinical site, which comes with its own risks of drug 
overexposure or underexposure.

We have previously proposed a “continuous learning” approach7 
that iteratively refines a PK model to the MIPD population. This 
approach begins with selecting an initial model, either a “fit-for-
purpose” model taken from the literature or developed from exist-
ing retrospective data, then implementing this model at the point 
of care. As clinical data become available through this routine clin-
ical use, this model is then updated to better describe the MIPD 
population. Application of this continuous learning approach re-
quires answering several unknowns. First, it is unclear how much 
improvement in prediction accuracy and bias can be attained by 
tailoring a model to a specific institution’s patient population. 
Second, it is not known how much additional clinical data is re-
quired to create a sufficiently predictive “continuous learning” 
model that outperforms models developed in external populations.

Here, we present a case study of the continuous learning ap-
proach in the application of MIPD to vancomycin dosing at a 
pediatric intensive care unit of a large urban research hospital. 
Vancomycin presents an important application of MIPD; it is 
listed by the World Health Organization (WHO) as an essential 
medicine,8 there is considerable interindividual variability (IIV) 
in vancomycin PK, and rapid attainment of therapeutic exposure 
levels is associated with improved clinical outcomes, whereas over-
exposure is associated with nephrotoxicity.9–11 In this retrospective 
case study, we investigate the performance benefit of continuous 
learning models with simple, predefined model structures. Simple 
models such as these would allow more automated model develop-
ment at smaller, non-research institutions that may not routinely 
collect broad panels of biomarkers, and that may not have access 
to trained pharmacometricians. We compare the performance of 
these continuous learning models with five previously published 
pediatric vancomycin PK models, selected to represent the “stan-
dard of care” in MIPD. We examine how continuous learning 
model predictive performance improves with increasing sample 
size, and confirm that data collected through routine clinical care 

allows for adequate description of the full shape of the PK curve. 
Together, these experiments aim to validate the continuous learning 
approach, a critical first step toward implementing an automated 
or semi-automated continuous learning model prospectively.

METHODS
Study approval
A waiver for informed consent was granted by the University of 
California, San Francisco (UCSF)’s Institutional Review Board (ap-
proval #17-23274) because this retrospective review of deidentified data 
was assessed to involve no more than minimal risk to the subjects.

Patient data collection
Data for model fitting and model evaluation were collected retrospec-
tively from routine clinical care of pediatric patients treated with intrave-
nous vancomycin using the InsightRX precision dosing platform at the 
intensive care unit (ICU) of UCSF Benioff Children’s Hospital between 
March 2018 and May 2020. These data described vancomycin dose ad-
ministration times, dose amounts and infusion rates; the collection times 
and measured values of serum creatinine (SCR) levels collected during 
or within a week prior to treatment with vancomycin; the collection 
times and measured quantities of vancomycin serum levels; patient age; 
total body weight; height; and sex. Patients between the ages of 51 days 
and 21 years and who had at least one vancomycin serum level recorded 
were included for analysis. Drug levels drawn during or within 15 min-
utes after infusion were excluded from analysis (n  =  15). Patients for 
whom data appeared to be mistakenly entered (e.g., implausible patient 
weights) were removed from analysis (n = 4). Patients for whom medica-
tion administration times or quantities were ambiguous were removed 
from analysis (n = 4). The infusion duration was missing for one dose for 
one patient, and was imputed as being of the same duration as all other 
medication administrations during that treatment course. The final data 
set comprised of 673 individual patients, 11,403 doses, and 2,839 drug 
levels.

Population pharmacokinetic model training
Patient records were randomly assigned into an evaluation population 
(n = 323) and a model training population (n = 350). From this model 
training population, patient records were further randomly sampled to 
create one data set of 200 patients, one data set of 100 patients, and 5 data 
sets of 50 patients each (Figure 1). Randomization was performed with 
replacement such that each of these data sets contained each individual 

Figure 1  Diagram depicting creation of evaluation and model training data sets. Patients were randomly assigned to either the evaluation 
data set or the model training data set. Patients in the model training data set were then further randomly sampled to create additional 
subsampled data sets of 200, 100, or 50 patients. Sampling was performed such that each patient was included in each subsampled data 
set no more than once, but such that one patient could be included in more than one of the subsampled data sets.
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patient a maximum of one time, but such that one patient could be in-
cluded in any number of these data sets.

Two linear population pharmacokinetic (PopPK) models were pre-
defined using prior knowledge of vancomycin PKs to define an expected 
model structure and covariate model. The first PopPK model was a 
one-compartment model (M1), parametrized with CL and V, and the 
second PopPK model was a two-compartment model (M2), parametrized 
with CL, V, V2, and Q. PK parameters were scaled allometrically accord-
ing to total body weight (WT; kg). There is broad agreement within the 
literature regarding covariates predictive of pediatric vancomycin PKs, 
with published models typically reporting creatinine clearance, SCR, 
postmenstrual age, postnatal age, and/or weight as statistically signifi-
cantly improving model specification. Because vancomycin is primarily 
cleared renally, creatinine clearance and SCR were considered as covari-
ates. SCR was more commonly included as a covariate in pediatric van-
comycin studies12–15 vs. CR clearance,16 and therefore SCR (mg/dl) was 
selected as a covariate acting on clearance. A variety of covariate mod-
els have been reported for SCR in pediatric vancomycin PK, including 
a power model12,13 and an exponential model.14,15 A power model was 
implemented for ease of interpretation. Because a relatively high propor-
tion of patients (30.9%) in this study were under the age of 1 year, a mat-
uration factor based on postmenstrual age (weeks) was included in the 
clearance term using previously published covariate values.17 Because this 
factor approaches 1 in older children, age (in years) was also included as 
a covariate using a power model. All covariates were allowed to vary over 
time. AGE and postmenstrual age were calculated at the time of each 
dose, vancomycin level, or other observation. All SCR and weight mea-
surements collected during the treatment course were included. During 
ordinary differential equation integration, time-varying covariates were 
handled with next-observation carried backward. Based on these ex-
pected relationships, the following covariate models were used:

Model structure for explaining variability was also based on a review 
of typical practices for describing vancomycin PKs. IIV was included 
on CL and V for M1, and on CL, V, V2, and Q for M2. Correlation 
between �CL and �V  was included for both models. A combined pro-
portional and additive error model was used for both models. Other 
sources of variability, such as intrapatient variability, were not included 
in surveyed literature models, and were therefore not included in these 
predefined models.

NONMEM version 7.4.3 (GloboMax LLC, Hanover, MD) was then 
used to estimate the model parameters for these two predefined models 
using each of the eight subsampled data sets described in Figure 1, re-
sulting in 16 trained models. Following successful minimization, the co-
variance step was performed to assess the precision of the estimates. No 
further adjustments were made to model structure or covariate structure.

Population pharmacokinetic model evaluation
Model predictive performance was evaluated in the evaluation pop-
ulation data set. Here, predictive performance was defined as the 

ability of the tool to predict the next vancomycin level for the patient 
given all the data available prior to that level. These calculations were 
performed using the prospective evaluation (proseval) command in 
Perl-speaks-NONMEM.18,19

A literature review was conducted to identify PopPK models describ-
ing vancomycin PK in pediatric patients, and five appropriate models were 
identified, summarized in Table 1. The predictive performance of these 
models was evaluated in the evaluation population data set using the same 
method described above. The Le model13 was used for MIPD of the pa-
tients included in this study; of the pediatric vancomycin models available 
at the time of the initial pilot MIPD period at this institution, it was the 
model developed in the largest patient population.

Area under the curve estimation and simulation
Simulations were performed in NONMEM using the Kloprogge 
model.12 “True” area under the PK curve (AUC) was calculated for 
simulated patients, and drug concentrations were extracted with 
sampling schemes matching those in the original evaluation data set. 
The continuous learning models and the literature models were then 
each used to estimate the AUC over a 24-hour interval at the time of 
each simulated drug concentration using the estimated individual PK 
parameters.

Statistics and error metrics
The difference between predicted values and measured values were de-
scribed using root mean square error (RMSE) and mean percent error 
(MPE). To better understand the variability in these metrics, RMSE 
and MPE were calculated for 5,000 bootstrapped samples of 300 of 
the 323 patients in the model validation data set (Figure 1). The aver-
age, 2.5th percentile, and 97.5th percentile was determined for these 
bootstrapped samples, and overlap of the 2.5th−97.5th interval be-
tween models was compared to assess statistical significance. Analysis 
of data files generated by NONMEM and Perl-speaks-NONMEM 
was performed in R version 3.6.2.20 Nonparametric tests, such as the 
Wilcoxon rank sum test, were used to compare distributions that were 
not normally distributed.

RESULTS
Patients and data collection
Patient characteristics for the model training and evaluation data 
sets are shown in Table 2. The model fitting population com-
prised of 350 patients and 1,549 vancomycin levels (average: 4.4 
per patient) and the evaluation population comprised of 323 pa-
tients and 1,290 vancomycin levels (average: 4.0 per patient). Very 
few samples (~ 1%) were peak samples, defined here as collected 
within 2 hours after the end of infusion (Figure S1). No statis-
tically significant differences between the evaluation population 
were found for the covariates listed (Wilcoxon rank sum hypoth-
esis test P > 0.1).

Model training
The predefined one-compartment and two-compartment 
models were each trained on the eight subsampled data sets de-
scribed in Figure 1. Parameter estimates for the resulting eight 
one-compartment models and eight two-compartment models 
are summarized in Tables 3 and 4, respectively. The number 
of patients in the data set used to fit the model is indicated in 
the name of each model. For example, M1-100 is the one-com-
partment model trained on 100 patients. For both model struc-
tures, there was reasonably good agreement and relatively low 
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standard error in the parameters for the models developed on 
200 patients and 350 patients. Although all 16 models mini-
mized successfully, the covariance step could not be completed 
for 3 of the 5 one-compartment models developed on 50 patients 
(M1-50(A), M1-50(D), and for M1-50(E)) and for 3 of the 5 
two-compartment models developed on 50 patients (M2-50(A), 
M2-50(B), and M2-50(C)). The models fit on the 100-patient 
and 50-patient data sets differed more substantially from the 
models developed on the larger data sets. This variability was 
particularly pronounced for the two-compartment model, for 
which six thetas and four etas were estimated, compared to four 
thetas and two etas for the one-compartment model.

Model evaluation
The predictive capacity of these 16 simple models and of 5 models 
taken from the literature were evaluated on a holdout data set of 
323 patients, and error was assessed using RMSE (Figure 2a,b) 
and MPE (Figure 2c,d). For each patient, the first vancomycin 
level was predicted using population estimates (Figure 2a,c). 

Subsequent levels were predicted prospectively, using the first n−1 
levels to estimate the individual’s PK parameters, and then using 
these parameters to predict the nth level (Figure 2b,d). Statistical 
significance was determined by overlap of the 2.5th–97.5th per-
centiles of bootstrapped samples (Figure S2).

Four of the previously published models selected for evalua-
tion produced similarly precise predictions, with population 
prediction RMSE values between 6.0 and 6.3 mg/L (Figure 2a). 
The Lamarre model produced statistically significantly less pre-
cise predictions a priori. Four of these literature models showed 
a persistent bias toward predicting higher levels than observed 
for population estimates (MPE ranging from −7.4% to −30%), 
whereas the Colin model a priori predictions were, on average, 
lower than the observed levels (MPE: 8.0%; Figure 2c). Of these 
five models, the Kloprogge model, which was developed in a 
comparatively densely sampled population of 616 pediatric pa-
tients, showed the lowest error and bias in population estimates 
for the patients in this study. Differences among the five literature 
models shrank for predictions of subsequent levels, with RMSE 

Table 1  Literature models describing pediatric vancomycin pharmacokinetics selected for evaluation and comparison

Properties Units Avedissian Colin Kloprogge Lamarre Le

Citation Avedissian et al. 
(2017)

Colin et al. (2019) Kloprogge et al. 
(2019)

Lamarre, Lebel and 
Ducharme (2000)

Le et al. (2014)

Model structure 1 compartment, 
linear

2-compartment, 
linear

2-compartment, 
linear

2-compartment, linear 1-compartment, 
linear

Development 
population

Pediatric, ICU Pooled data from 
14 pediatric and 

adult studies

Pediatric Pediatric Pediatric

Patients n 250 2,554 616 78 138

Vancomycin levels n 658 8,300 4,137 256 712

Age Years

Median (range) 9.8 (0.46–101) (0.003–21.2) 7 (0.01–18) 6.1

Interquartile range 3.2–14.0 (2.2–12.2)

Mean (SD) 5.1

Weight kg

Median (range) 30 (0.42–160) 0.742–95 25 (0.93–74) 22.2

Interquartile range 15.0–50.0 (13.2–37.9)

Mean (SD) 19

SCR mg/dl

Median (range) (0.15–9.75) (0.057–10.1) 0.37

Interquartile range (0.30–0.50)

Mean (SD) 0.44 0.54 (0.28)

Data handling Excluded patients 
(n = 3) with SCR 

above the following 
age-based 

thresholds at the 
start of vancomycin 

therapy: 
<2 years, 0.5 mg/

dL; 
2–12 years, 1 mg/

dL; 
12 + years, 
1.3 mg/dL

Missing values for 
height or SCR were 
imputed with the 
median value for 

that study, or from 
an age-matched 
national study in 
that population.

Excluded patients 
with samples 

> 48 hours after 
a dose. Assumed 
samples collected 
within 1.5 hours 
after the start 

of infusion were 
collected prior to 

drug administration 
instead.

Assumed troughs were 
collected 15 minutes 

prior to start of infusion 
and peak samples were 
collected 1 hour after.

Patients were 
included only 
if they had at 

least one peak 
sample and one 
trough sample, 

and n ≥ 3 
samples overall.

SCR, serum creatinine; ICU, intensive care unit; SD, standard deviation.
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ranging between 4.5 and 4.8  mg/L and MPE ranging between 
−1.8% and 4.3%.

The one-compartment continuous learning model developed on 
350 patients (M1-350) showed a 3–13% reduction in RMSE com-
pared with the literature models for the population estimate of the 
first vancomycin level (RMSE: 5.8 mg/L), however, bias was larger 
than that of 3 of the literature models (19%). The one-compartment 
model developed on 200 patients (M1-200) performed very similarly 
(RMSE: 5.9 mg/L, MPE: 18%). The one-compartment model de-
veloped on 100 patients (M1-100) showed a considerable increase 
in bias (29%), although RMSE for this model was still similar to the 
RMSE calculated for the models from the literature. Consistent with 
the high variability between model parameters for the five 50-patient 
models (Table 3), the predictive performance of the 50-patient mod-
els showed considerable variability in error and high bias (RMSE: 
5.9–6.4 mg/L; MPE: −21 to −39%). All one-compartment models, 
regardless of the size of the data set used to train the models, showed 
similar error and bias for a posteriori prediction of levels (RMSE: 4.6 
to 4.7 mg/L; MPE: −1.3% to 2.9%).

The 2-compartment model developed on 350 patients (M2-350) 
also produced a 3–13% reduction in RMSE compared with the liter-
ature models, and prediction bias was slightly but not significantly less 
than that of M1-350 (−17% vs. −19%). As seen with the one-com-
partment model, reducing the training population sample size to 200 
patients resulted in very little change in predictive capability. The 
50-patient data sets showed considerable variability in error and bias 
(RMSE: 5.9–7.1 mg/L; MPE: −9.2%–47%). All two-compartment 
models performed similarly for prediction of levels after the first 
(RMSE: 4.4–4.6 mg/L; MPE: −4.1–1.3%).

AUC estimation
Vancomycin dosing guidelines emphasize the ratio of AUC over 
24  hours to minimum inhibitory concentration as the primary 
PK/pharmacodynamic predictor of vancomycin activity. For 
optimal AUC-guided MIPD, consideration must be given not 

only to the ability of a model to predict a trough level, but also 
to its ability to describe the full shape of a PK curve. Because the 
data available in this study were collected during routine clinical 
care, and because peak samples are not routinely collected at this 
institution (Figure S1), we were concerned that the continuous 
learning models, especially those implementing one-compart-
ment kinetics, would not be able to capture the full PK curve. 
Misspecification of the PK curve would result in erroneous and/
or biased AUC estimates. The gold standard for estimating AUC 
is noncompartmental analysis, however, this approach requires 
densely sampled serum concentrations. Instead, simulated “true” 
AUC estimates were compared with AUC estimates produced by 
each of the literature models and the continuous learning mod-
els (Figure 3). The Kloprogge model was selected for creating 
the simulated data set and simulated “true” AUC values because 
it was (i) a two-compartment model, and vancomycin PK is most 
commonly found to be described by two compartments, (ii) de-
veloped in a more densely sampled data set than the other models 
under consideration (6.7 samples per patient; Table 1), and (iii) 
described the patients in this population well (Figure 2). For 
clarity, the models developed in 50 patients have been excluded, 
because their predictive performance and the precision of their 
parameter estimates was not acceptable (Figure 2, Tables 3, 4). 
Statistical significance of differences was assessed by comparing 
overlap of the 2.5th–97.5th percentiles of the RMSE and MPE of 
bootstrapped AUC estimates (detailed in Figure S3).

The literature models estimated AUC with RMSE ranging from 
172–209 mg-h/L (Figure 3a) and MPE ranging from −34.5% to 
−15.3% (Figure 3b). There was no clear improvement in AUC es-
timation between the one-compartment models (Avedissian and 
Le) and the two-compartment models (Colin, Kloprogge, and 
Le). The two-compartment continuous learning models estimated 
AUC with significantly lower error (RMSE: 182–187  mg/L) 
compared to the one-compartment continuous learning models 
(RMSE: 197–204  mg/L), and with significantly lower bias than 
the one-compartment continuous learning models (MPE: 0.4–
−0.7% vs. 7.8–11%). There were no appreciable benefits in devel-
oping models on larger data sets. The Colin model produced the 
most precise estimates of AUC, although was not statistically sig-
nificantly different from two two-compartment continuous learn-
ing models (M2-350 and M2-100), which showed significantly less 
bias.

DISCUSSION
The benefits of MIPD hinge on models that are sufficiently pre-
dictive of patient PKs. The research presented here supports the 
continuous learning approach, finding that literature models 
vetted for their applicability to a particular patient population 
performed acceptably well, but that prediction precision and bias 
could be improved by tailoring models to the hospital’s patient 
population.

Development of PopPK models is a lengthy, iterative process 
that requires considerable expertise and training.18,21 In this study, 
simple predefined models developed in the same patient popula-
tion for which they were intended to be used were found to out-
perform or match the predictive capacity of previously published 

Table 2  Summary of data used for model training and model 
evaluation

Parameter Units
Model training 

population
Model evaluation 

population

Patients n 350 323

Vancomycin levels n 1,549 1,290

Doses n 6,154 5,249

Levels per patient me-
dian, (range)

n 2 (1–38) 2 (1–49)

Peak samples n (%) 16 (1.0%) 15 (1.2%)

Level value, median 
(range)

mg/L 11 (1–56) 11 (0–60)

Percent male % 60.6 57.0

Age, median (range) years 3.5 (0.2–20.5) 3.85 (0.2–20.2)

Weight, median (range) kg 12.25 
(2.1–110.6)

15.1 (2.7–160.7)

SCR at treatment start, 
median (range)

years 0.3 (0.1–9.4) 0.3 (0.1–9)

SCR, creatinine.
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models that were developed according to a more conventional and 
time-consuming process. It should be noted that the literature on 
vancomycin PK is relatively rich,14,22,23 and the prespecified model 
structure was therefore well-informed. MIPD of less well-described 
drugs may be better enabled by the use of alternative strategies, 
such as reducing the weight of the model priors during patient PK 
parameter estimation.7 For some drugs, there is poor consensus in 
the literature regarding which covariates are statistically significant 
predictors of PKs. For these applications, continuous learning may 
need to be expanded to include a systematic covariate selection 
process. Still, there are a number of other drugs well-positioned for 
MIPD that could benefit from the continuous learning strategy 
presented here.24,25

There appears to be limited gains in predictive performance 
from fitting a continuous learning model on > 200 patients, with 
the models fit on 350 patients and 200 patients performing sim-
ilarly in prediction error and bias. Consistent with this finding, 
the models from the literature trained on at least 200 patients 
(Avedissian: 250, Colin: 2,554, and Kloprogge: 616) generally 
showed better predictive performance than those of models fit on 
fewer than 200 patients (Lamarre: 78, and Le: 138). The estimates 
for model parameters for the 350-patient models and the 200-pa-
tient models showed relatively good agreement, although the pre-
cision of the estimates improved with additional data. Although 
predictive performance benefits were slight, users may feel more 
confident implementing models with narrower confidence in-
tervals around the population parameters. The model validation 
performed here provides evidence that fitting models on large data 
sets collected across multiple facilities (e.g., Colin model) does not 
necessarily translate to models that are more transferable to new 
patient populations. This model validation study also did not find 
evidence that more niche models are necessarily better for MIPD; 
whereas the Avedissian model was developed specifically to de-
scribe pediatric patients in the ICU such as those patients included 
in this study, it did not outperform the Kloprogge model, which 
was developed to describe a more general pediatric patient popu-
lation. These findings may not transfer readily to other drugs in a 
clinical MIPD setting. For example, drugs with higher IIV than 
vancomycin may require larger data sets for continuous learning 
model fitting. Drugs with more complex model structures or more 
complex covariate structures would also likely require larger pa-
tient data sets. It is also possible that other institutions may have 
more or less IIV.

Differences between model predictive performance for the mod-
els evaluated here were more pronounced for predictions made 
using population estimates compared with predictions made after 
vancomycin levels were available. Accurate population estimate 
predictions are a crucial component of MIPD. Prior work suggests 
that reaching PK targets within the first 24–48  hours of vanco-
mycin therapy is associated with improved clinical outcomes9,10,26 
and has been recommended as part of the updated guidelines for 
vancomycin therapy.23 Compared with the application of models 
developed external to an institution, the continuous learning ap-
proach may allow for better estimation of how the “average” pa-
tient treated at that institution will respond prior to the availability 
of therapeutic drug monitoring levels. These improvements in Ta
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PopPK predictions could facilitate earlier attainment of exposure 
targets.

One potential limitation in training models using data collected 
over the course of clinical care is that the samples collected are pre-
dominantly trough samples, limiting examples from which a model 
may learn how to describe peak concentrations. This capability is 
particularly important for drugs like vancomycin, for which the 
AUC is the primary consideration for guiding dosing decisions.23 
However, in simulated patients, the continuous learning mod-
els performed on par with or better than the literature models at 

estimating the true AUC for these simulated patients. The more 
biased AUC estimates produced by the Kloprogge model was 
unanticipated, but may arise from the individual PK parameter 
estimates being based on less informative observations (i.e., pre-
dominantly trough samples) relative to the data that informed the 
model priors. It should be noted that these AUC estimates are not 
predicted AUCs but estimated using all data available for each sim-
ulated patient. Still, together, these data show that models trained 
using the continuous learning approach on data collected during 
routine clinical care adequately estimate AUC. Furthermore, 

Figure 2  Root mean squared error (RMSE) and mean percent error (MPE) for the population estimate for the first vancomycin level and for 
the prospective prediction using MAP Bayesian estimation of patient parameters for subsequent levels. Bars indicate the average value 
of bootstrapped samples, and error bars indicate the 2.5th and 97.5th percentile of bootstrapped samples. The six models for which the 
covariance step could not be estimated (see Tables 3, 4) have been excluded, for clarity.
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AUC-guided MIPD strategies allow for less reliance on trough 
sampling and more random sampling, which may further improve 
the data available for continuous learning approaches.

In this paper, we validated the ability of the continuous learning 
approach to improve upon the MIPD standard of care (i.e., mod-
els taken from the literature), both in terms of model predictive 
capacity and ability to estimate AUC. We also studied minimum 
data requirements before acceptably predictive continuous learn-
ing models could be produced. However, there remain important 
continuous learning implementation questions. From a regulatory 
perspective, prospective continuous learning implementation must 
satisfy applicable regulatory standards.27 From a technical perspec-
tive, prospective implementation of continuous learning will also 
require implementation of controls to prevent overfitting or model 
drift.28–30 Although some approaches have been proposed for 
managing these concerns in a healthcare context, additional work 
will be required to extend and validate these methods for nonlinear 
mixed effects models. From a clinical perspective, the reasons for 
why, how, and when continuous learning models change over time 
must be explainable and communicated clearly to the clinicians 
using MIPD at the point of care.31

It will be interesting to examine further what the sources of vari-
ability better explained by a continuous learning institution-tai-
lored model might be. These sources could include obesity rates 
or other comorbidities present in the population treated at this 
institution, typical comedications administered at this institution, 
or sampling practice and assay error magnitudes in this institution. 
The continuous learning framework presented here could also be 
extended to investigate the impact of pharmacogenomics on PKs 
and pharmacodynamics in a variety of drugs. As genetic testing be-
comes a more routine component of patient care, single-nucleotide 

polymorphism or other genetic information could be added to ex-
isting PK models through the continuous learning process. It will 
be important to investigate the potential benefits of continuous 
learning using a more sophisticated model development process 
that would evaluate covariate model structures in more detail; still 
it is promising that such simple models as examined here perform 
well. The work described here provides an early case study of the 
continuous learning approach in pediatric vancomycin MIPD, and 
the applicability of these findings to other drugs and patient popu-
lations will be exciting future directions.
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Figure 3  Estimation of area under the curve (AUC) for simulated concentration-time curves. (a) Root mean squared error (RMSE) and (b) 
mean percent error (MPE) for AUC estimates for the literature models, one-compartment (M1) and two-compartment (M2) continuous learning 
models for data simulated using the Kloprogge model. Bars indicate the average value of bootstrapped samples and error bars indicate the 
2.5th and 97.5th percentile of bootstrapped samples. AUC calculation error is expressed relative to the simulated “true” AUC.
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