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Abstract

Cell-based strategies for the treatment of ischemic diseases are at the forefront of tissue

engineering and regenerative medicine. Cell therapies purportedly can play a key role in the

neovascularization of ischemic tissue; however, low survival and poor cell engraftment with

the host vasculature following implantation limits their potential to treat ischemic diseases.

To overcome these limitations, we previously developed a growth factor sequestering hyal-

uronic acid (HyA)-based hydrogel that enhanced transplanted mouse cardiosphere-derived

cell survival and formation of vasculature that anastomosed with host vessels. In this work,

we examined the mechanism by which HyA hydrogels presenting transforming growth fac-

tor beta-1 (TGF-β1) promoted proliferation of more clinically relevant human cardiosphere-

derived cells (hCDC), and their formation of vascular-like networks in vitro. We observed

hCDC proliferation and enhanced formation of vascular-like networks occurred in the pres-

ence of TGF-β1. Furthermore, production of nitric oxide (NO), VEGF, and a host of angio-

genic factors were increased in the presence of TGF-β1. This response was dependent on

the co-activity of CD105 (Endoglin) with the TGF-βR2 receptor, demonstrating its role in the

process of angiogenic differentiation and vascular organization of hCDC. These results

demonstrated that hCDC form vascular-like networks in vitro, and that the induction of vas-

cular networks by hCDC within growth factor sequestering HyA hydrogels was mediated by

TGF-β1/CD105 signaling.

Introduction

Cell therapies hold great promise for the treatment of a range of pathological conditions.[1–3]

However, poor cell survival following transplantation has limited the effectiveness of cell thera-

pies, and delayed their clinical translation. This issue is related to the harsh environments into
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which stem cells are typically delivered. In particular, ischemia leads to poor cell survival and

engraftment within the diseased tissue.

Biomaterial systems have been proposed as a means by which to promote angiogenesis[4–

6] and enhance the survival of transplanted stem cells to treat ischemia[7–9]. By recapitulating

key aspects of the extracellular matrix (ECM) such as mechanical properties, ligand interac-

tions, and cell-mediated degradation/remodeling, biomaterial systems can enhance retention

and survival of transplanted cells, in addition to protecting the cells from the harsh ischemic

microenvironment including radical oxygen species (ROS).[10] These biomaterials systems

fall broadly into two categories, either natural, or synthetic. Major components of the native

ECM have been to the fore in this regard, particularly collagen,[11–13] and hyaluronic acid

(HyA).[14–16] Other biopolymers such as fibrin[17], alginate[18] and chitosan[19] have also

been studied, along with Matrigel™[20], a heterogeneous ECM derived from mouse sarcoma

cells, and platelet-lysate.[21] However, batch-to-batch variation, along with a lack of control

over a range of matrix parameters such as mechanical properties and degradation, has limited

the enthusiasm for these natural biopolymers. In contrast, synthetic and semi-synthetic mate-

rials are reproducible and scalable, amenable to chemical modification and can be precisely

tuned for specific properties.[22,23] Examples of synthetic materials include the self-assem-

bling RADA16 peptide[24] and NIPAAM-based polymers[25], which have been tested in pre-

clinical models of ischemia and enhanced cell retention. However, synthetic materials lack

inherent bioactivity and therefore typically underperform compared to semisynthetic matrices

(sECM), where natural biopolymers are modified to impart instructive bioactivity. Of all the

sECMs being developed, those employing HyA appear to have the most potential.[26] HyA

matrices promote the survival of a range of stem cells including MSCs,[27,28] neural progeni-

tor cells(NPCs)[29] and hCDC.[30,31] In the context of angiogenesis, adipose-derived stem

cells (ADSCs) in a functionalized HyA matrix promoted angiogenesis in an ischemic model,

resulting in reduced tissue fibrosis.[32] HyA matrices have also enhanced wound healing by

promoting vascularization using transplanted endothelial progenitors.[33]

Here we propose matrix-assisted cell transplantation (MACT) using a semi-synthetic acry-

late-modified HyA hydrogel as a means to promote cell survival and engraftment, and subse-

quent angiogenesis and tissue regeneration. We employed a HyA hydrogel decorated with a

bsp-RGD(15) peptide sequence for cell adhesion,[34–36] high molecular weight heparin to

sequester growth factors,[37] and an MMP-cleavable peptide crosslinker to allow for cell-

mediated matrix-remodeling.[38,39] This HyA system allows for independent control over

key parameters such as adhesion ligand density, growth factor sequestration and presentation,

mechanical properties, and degradation rates, in contrast with biological materials that do not

allow for such specifically tunable systems. Previously we demonstrated that these HyA matri-

ces directed the formation of vascular networks by encapsulated mouse Sca1+/CD45- cardiac

progenitor cells when TGF-β1 was exogenously sequestered within the matrix.[34,38]

In this study, we used these growth factor sequestering HyA matrices to interrogate the role

of TGF-β1 signaling, via CD105 (Endoglin) in vascular differentiation and network formation

using a more clinically relevant population of human cardiosphere derived cells (hCDC). In

contrast with the anti-angiogenic effects of TGF-βR1, signaling through TGF-βR2 and the

CD105 co-receptor plays an important role in endothelial cell proliferation and migration. It

has been shown that CD105 enhances angiogenesis by increasing signaling through ALK1 and

reducing signaling through ALK5.[40] The CD105 receptor is highly expressed in hCDC,

[41,42] and has been shown necessary to stimulate pro-angiogenic paracrine support by

murine CDCs.[43] Therefore we investigated whether CD105 coordinates with the TGF-βR2

receptor and TGF-β1 presented to hCDC in our HyA hydrogels to drive vascular network for-

mation in vitro.

Vascular network formation within growth factor sequestering hyaluronic acid hydrogels

PLOS ONE | https://doi.org/10.1371/journal.pone.0194679 March 22, 2018 2 / 17

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0194679


Results

Gel formation and cell encapsulation

Gelation of growth factor-presenting HyA hydrogels occurred through Micheal-type addition

of bis-cysteine MMP-cleavable peptides to HyA macromers, AcHyA and AcHyA-bsp-RGD

(15), and soluble thiolated heparin (Fig 1A). The hCDC survived this encapsulation process

with no significant sign of cell death in any of the groups assessed after 24 hours (Fig 2). The

presence of TGF-β1 in the matrix greatly enhanced the spreading of hCDC compared to HyA

matrices without TGF-β1, as observed with actin staining. (Fig 3A and 3B). This effect was

abrogated by pre-incubation of the hCDC with antibody blocking CD105, emphasizing the

role of TGF-β1/CD105 interactions (Fig 3C). Quantification of cell spreading (Fig 3D)

revealed a significant difference in cell area between the HyA hydrogel group (511 ± 89 μm2),

and the HyA + TGF-β1 group (1129 ± 188 μm2), and those where TGF-β1/CD105 activity was

repressed by blocking antibody (623 ± 70 μm2).

Cell proliferation with HyA hydrogels

The metabolic activity, representative of proliferation, of hCDC following incorporation of

TGF-β1 in the HyA system is shown in Fig 4A. After 14 days, there was an increase in cell

number in TGF-β1 containing HyA hydrogels compared with either of the other groups. The

HyA matrix without TGF-β1 showed the least increase in proliferation activity over 14 days,

with blocking TGF-β1 activity by CD105 antibody reducing metabolic activity compared with

Fig 1. Schematic of encapsulation of human cardiosphere-derived cells (hCDC) within growth factor-sequestering hydrogels. Hydrogel formation occurs though

Michael-type addition of cysteine-terminated MMP peptides to the functionalized hyaluronic acid macromers (AcHyA), which crosslinks the hydrogel. This reaction

occurs in the presence of thiolated heparin, TGF-β1 and human hCDC, which allows for cell encapsulation within the hydrogel, and additionally the grafting of heparin

to the hydrogel, which then binds TGF-B1 via its natural heparin binding domain. Gel is stained blue for clarity.

https://doi.org/10.1371/journal.pone.0194679.g001
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the TGF-β1 alone treatment. Linear regression revealed that each group had a significantly dif-

ferent slope of increasing metabolic activity over the 14 day period, with the greatest slope in

the TGF-β1 treated group (0.153 ± 0.01) compared with the untreated group (0.122 ± 0.01),

and the TGF-β1/CD105 antibody blocking group (0.097 ± 0.01)

A similar effect was observed in terms of DNA content of the hydrogels. Groups were com-

pared at 1 and 14 days following encapsulation. On day one, there was no difference in the

DNA content of any of the groups regardless of the presence of TGF-β1 or blocking CD105

activity (Fig 4B). However, by 14 days, there was a significant increase in DNA content in all

of the groups, compared to day 1. The greatest increase was observed following treatment with

TGF-β1, and DNA content of this group was significantly greater than the other two groups at

14 days. There was no significant difference between the pre-treatment with CD105 antibody

and HyA hydrogel group without TGF-β1 groups.

Fig 2. Survival of hCDC 24 hours after encapsulation in HyA hydrogels. Live/Dead staining of matrices (A) HyA, (B) HyA-TGF-β1 and (C) HyA-TGF-β1/CD105 Ab

blocking. Scale Bar = 100 μm.

https://doi.org/10.1371/journal.pone.0194679.g002

Fig 3. Spreading of hCDC to HyA matrices after 3 days. Actin stain of hCDC encapsulated in (A) HyA, (B) HyA-TGF-β1 and (C) HyA-TGF-β1/CD105 Ab blocking.

(D) Quantification of cell area shows that TGF-β1 significantly enhances the spreading of hCDC, but that this effect can be abrogated by pre-incubation with CD105

antibody. Data represents mean ± SD (n = 3). Analysis performed using one-way ANOVA, p< 0.05. � denotes statistical significance. Scale Bar = 100 μm.

https://doi.org/10.1371/journal.pone.0194679.g003
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TGF-β1 –induced endothelial differentiation of encapsulated hCDC

There was a significant difference in CD31 expression between groups after 14 days in culture.

A vast interconnected network of CD31 expressing cells formed throughout the HyA hydrogel

when TGF-β1 was present (Fig 5A). In contrast, only sparse networks were observed in hydro-

gels without TGF-β1 and those pre-incubated with CD105 antibody prior to their encapsula-

tion within a TGF-β1 containing HyA hydrogel (Fig 5B and 5C). Quantification of the length

of CD31 positive structures within each group demonstrated a clear difference (Fig 5D), with

the HyA-TGF-β1 group having a much greater average length of CD31+ structures

(9870 ± 320 μm). In comparison, the HyA group (1320 ± 730μm) or the HyA-TGF-β1/

CD105-blocking group (1060 ± 150 μm) had greatly reduced length of CD31+ structures.

The presence of TGF-β1 enhanced the production and subsequent sequestration of endoge-

nously synthesized VEGF within the matrix. Fig 6A shows that there was a significant increase

in the levels of sequestered VEGF with the inclusion of TGF-β1 within the matrix (3070 ± 130

pg/mL) compared with the other groups. In fact, in comparison with either HyA matrix with-

out the presence of TGF-β1 (1220 ± 430 pg/mL) or the hCDC treated with TGF-β1, but pre-

incubated with CD105 blocking antibody (1410 ± 280 pg/mL) there was approximately a

three-fold increase in VEGF levels. Increased levels of nitric oxide (NO) were also detected in

the presence of TGF-β1 (Fig 6B). Over 14 days, the levels of NO increased in the HyA-TGF-β1

group, compared with the other groups. Particularly from days 8–14, the levels of NO

increased dramatically in the HyA-TGF-β1 group (12.37 ± 1.25 μM to 26.34 ± 2.92 μM), com-

pared with the others where a minimal increase was detected. The HyA group (8.06 ± 3.5 μM

Fig 4. hCDC metabolic activity and proliferation over 14 days. (A) Proliferation curves (showing 95% CI) of hCDC encapsulated within HyA matrix demonstrates an

increase due to TGF-β1. (B) DNA content of HyA matrices from 1 to 14 days shows a significant effect of TGF-β1, which is negated by pre-incubation with CD105

antibody. Data represents mean ± SD (n = 3). Analysis performed using one-way ANOVA, p< 0.05. � denotes statistical significance compared with other groups at 14

days, # denotes statistical significance versus same group at 14 days.

https://doi.org/10.1371/journal.pone.0194679.g004
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to 13.79 ± 0.54 μM) and the HyA-TGF-β1/CD105-blocking group (8.59 ± 3.72 μM to

11.22 ± 3.49 μM) were broadly similar during this time period.

Fig 5. Vascular network formation in HyA matrix. Expression of CD31 after 14 days of encapsulation of hCDC in (A) HyA (B) HyA-TGF-β1 and (C) HyA-TGF-β1/

CD105 Ab. (D) Quantification of the length of CD31+ structures reveals a significant effect of TGF-β1 on the formation of CD31+ networks. Data represents mean ± SD

(n = 3). Analysis performed using one-way ANOVA, p< 0.05. � denotes statistical significance. Scale Bar = 100 μm.

https://doi.org/10.1371/journal.pone.0194679.g005

Fig 6. VEGF and NO expression in hCDC. (A) TGF-β1 enhances the production of VEGF by hCDC within HyA matrices, an effect which can be reduced by blocking

the CD105 receptor. (B) Cumulative expression of NO over 14 days in hCDC encapsulated in HyA matrices reveals the effect of TGF-β1 on NO production. Data

represents mean ± SD (n = 3). Analysis performed using one-way ANOVA, p< 0.05. � denotes statistical significance.

https://doi.org/10.1371/journal.pone.0194679.g006
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Paracrine mechanism of endothelial differentiation and network formation

To demonstrate the effect of TGF-β1/CD105 activity on the expression of angiogenic factors,

angiogenesis-related factors that were endogenously synthesized by the hCDC and sequestered

within the HyA hydrogel were compared as a heatmap dendrogram of z-scores (Fig 7A). A

striking difference was observed between the HyA-TGF-β1 matrices and the other two groups

(Fig 7A), with the blocking of CD105 activity dramatically changing the expression profile

where clustering was observed in the expression of a number of pro-angiogenic factors. For

example, known pro-angiogenic factors such as VEGF, HGF, EGF, IL-8, bFGF, Angiogenin

and Angeopoetin-1 were upregulated with the addition of TGF- β1 to the matrix. There was

also an increase in PDGF-AA, PDGF-AB/BB, and some matrix remodeling factors such as

MMP-9 and TIMP-4. In contrast, these factors are mostly downregulated in either the non-

TGF-β1 treated group or the TGF-β1/CD105 blocking antibody group. Hierarchical clustering

revealed that the HyA group and the HyA-TGF-β1/CD105 Ab blocking group were most simi-

lar, while the TGF-β1 treated group was different when compared to the aforementioned

groups.

To observe the effect of either TGF-β1 or of blocking its activity through the CD105 recep-

tor, the relative expression of each factor was normalized to the non-TGF-β1 treated group. A

cut-off of up or down-regulation of +2 or -2 was applied, and the relative expression of all the

proteins meeting these criteria plotted in Fig 7B. Factors which were highly upregulated in the

presence of TGF-β1 include CXCL16, EGF, HGF, IGF-BP1/3, IL-8, TIMP-1 and VEGF. The

endogenous angiogenesis inhibitor Endostatin was downregulated in the presence of TGF-β1,

Fig 7. Angiogenic paracrine secretions of hCDC sequestered in HyA matrices at 14 days. (A) Heatmap dendrogram of z-score expression of a range of angiogenesis-

related factors. (B) Relative protein expression of angiogenic factors that are up- or down-regulated in the HyA-TGF-β1 group compared to that group with blocked

CD105 receptor. The incorporation of TGF-β1 within the HyA matrices stimulates the secretion of a range of pro-angiogenic factors within HyA matrices, and many of

these factors are negatively regulated by blocking the CD105 receptor on hCDC.

https://doi.org/10.1371/journal.pone.0194679.g007
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while the presence of the CD105 blocking antibody negated this effect of TGF-β1 on Endosta-

tin. VEGF expression was also downregulated in the presence of the CD105 blocking antibody,

in comparison with the non-TGF-β1 treated group, and particularly the TGF-β1 group where

it was significantly upregulated.

Discussion

Vascularization is not only a key process for the survival of transplanted cells, but also as a

potential treatment for ischemic tissues. Our recent work has focused on the development of

semi-synthetic HyA-based hydrogel systems for enhanced survival of transplanted angiogenic

cells. HyA is an ideal candidate material for matrix assisted cell transplantation given its capac-

ity for modification and biofunctionalization. We have identified hydrogel parameters, in

terms of growth factor concentration and sequestration[37] and matrix degradation,[38] to

promote the formation of vascular networks. In this study, we examined the mechanism by

which TGF-β1-stimulated vascular differentiation and network formation of hCDC within

these HyA hydrogels.

Vascular network formation of hCDC within our HyA matrices was dependent on TGF-β1

signaling through the CD105 receptor. The short-term survival of hCDC within the HyA

hydrogels was independent of the presence of TGF-β1. However, the adhesion and spreading

of hCDC was dependent on the activity of TGF-β1, which was negated by pre-incubation of

hCDC with a CD105 blocking antibody. Similar observations were made for metabolic activity

and proliferation, where TGF-β1 activity was required for optimal behavior, suggesting TGF-

β1 signaling through the CD105 receptor was a necessity. We suggest these observations are

due to both the reduction in TGF-β1 signaling through the CD105 receptor, and the interac-

tion between the CD105 receptor and αV and α5 integrins involved in cell adhesion.[44]

Pre-clinical studies involving transplantation of hCDCs have classically reported enhanced

vascularization in the infarcted myocardium.[45,46] Hence, in situ differentiation to endothe-

lial cells and the formation of vascular networks within HyA matrices were key aims of this

study. HyA matrices containing hCDC were stained for the endothelial cell surface marker

CD31, to examine both the relative level of endothelial cell differentiation, and the formation

of vascular networks. In the presence of TGF-β1, dense and complex networks of CD31+ cells

formed, whereas sparse cell dispersions were formed without TGF-β1 or where CD105 was

blocked.

The expression of NO and VEGF were modulated by TGF-β1-CD105 signaling. Nitric

oxide (NO), a product of endothelial nitric oxide synthase (eNOS) is an important mediator in

terms of angiogenesis and vascular tone,[47,48] and increased eNOS activity has been shown

to increase angiogenesis.[49] Furthermore, eNOS activity is a characteristic of endothelial

cells, and thus increased levels of NO are indicative of endothelial cell activity. The hCDC

encapsulated within TGF-β1 containing matrices exhibited enhanced NO and VEGF produc-

tion compared with all other groups. VEGF is a key driver of angiogenesis, proliferation and

migration of endothelial cells,[50,51] and thus increased VEGF levels are consistent with the

formation of CD31+ networks in the TGF-β1 containing matrices. Furthermore, studies link

NO and VEGF expression, with various reports indicating a direct relationship between the

two.[52,53] Thus, the consistency we observe in terms of NO and VEGF expression between

groups, where higher levels of NO are in line with higher VEGF expression and vice-versa is in

line with previous observations.

To better understand how CD105/TGF-β1 signaling shifted hCDC to an angiogenic pheno-

type, we explored the angiogenic proteins endogenously secreted by encapsulated hCDC and

sequestered within the HyA matrix. In the TGF-β1 containing HyA matrices, there was a

Vascular network formation within growth factor sequestering hyaluronic acid hydrogels
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significant upregulation of a range of pro-angiogenic factors, particularly factors typically

associated with angiogenesis such as Angiogenin, Angiopoietin-1, EGF, HGF, IL-8 and

VEGF. A number of these factors have previously been shown to be expressed by hCDC in

2D culture, where the paracrine secretions of hCDC were shown to be superior to a number

of other stem cell populations.[54] In other 3D systems, the expression of angiogenic factors

such as Angiogenin, IGF-1, IL-6, SDF-1α and VEGF has previously been reported.[55,56]

An increase in TIMP-1 and MMP-8 expression also indicates the involvement and regula-

tion of MMPs in the processes of endothelial cell differentiation of hCDC and subsequent

vascular formation, while the upregulation of insulin-like growth factor (IGF)-binding pro-

teins, particularly IGF-BP3, indicates a potential role for IGF. Interestingly, endostatin, an

endogenous angiogenesis inhibitor, was downregulated by hCDC encapsulated in TGF-β1

containing HyA matrices, which indicates that the hCDC have shifted to an angiogenic phe-

notype. One limitation to our observations is that the expression was analyzed at 14 days,

while angiogenesis is a temporal process involving a number of phases, with phases driven

by different factors. Thus, future studies need to focus on detailed temporal analysis of the

key factors involved in this process. However, what this work proves is that TGF-β1 stimu-

lates an increase in a range of pro-angiogenic factors secreted by hCDC, which can be

negated by the use of a CD105 blocking antibody. Thus, the role of TGF-β1 signaling

through CD105 is clear with regard to the stimulation of the increased production and

secretion of a range of pro-angiogenic factors by hCDC.

HyA is a polysaccharide which has been widely used in the field of regenerative medicine,

owing to its ease of modification, bioactivity and biodegradation.[57] Specifically, HyA has

been routinely used as the base polymer to design sECM for cell encapsulation.[15,28,58–60]

HyA has also been associated with inflammation and angiogenesis in a number of disease

states, notably cancer.[61,62] These effects have been correlated with molecular weight, with

lower molecular weight HyA being pro-inflammatory and pro-angiogenic and higher molecu-

lar weight HyA having the opposite effects. Specifically, degradation products of 3–16 disac-

charides have been shown to have pro-angiogenic effects in vitro and in vivo.[63,64] However,

in the context of our HyA system, we observed no signs that 500 kDa HyA in its crosslinked

form supports the differentiation of hCDC to an angiogenic phenotype without the addition of

TGF-β1.

In relation to the mechanism of angiogenesis, CD105 has been implicated in controlling the

effect of TGF-β1, by countering its inhibitory effect on proliferation, migration and tube for-

mation in endothelial cells.[65] The use of CD105 blocking antibodies has previously been

shown to suppress the growth of endothelial cells in vitro, with the addition of TGF-β1 syner-

gistically suppressing cell proliferation.[66] Thus, by blocking CD105, the inhibitory effects of

TGF-β1, rather than stimulatory effects, on endothelial cells prevail. In a different context, we

see a similar effect, in that blocking CD105 impedes a range of pro-angiogenic effects of TGF-

β1 when exposed to hCDC in our 3D HyA matrix. These results indicate that the induction of

an angiogenic hCDC phenotype by TGF-β1 containing HyA matrices is dependent on signal-

ing through the CD105 receptor (Fig 8). In fact, TGF-β1 signaling via the CD105 receptor has

been shown to shown to play a role in endothelial cell proliferation and activin receptor-like

kinase 1 (ALK1) signaling.[40,67] TGF-β1 signaling through the CD105 receptor has been

shown to activate Smad1 and Smad5, leading to enhanced proliferation, migration and organi-

zation of endothelial cells.[68,69] CD105 knockout mice fail to survive beyond 10.5 days pos-

coitum, failing to form mature blood vessels in the yolk sac.[70] Furthermore, deformities in

cardiac development are also detected in CD105 knockout mice.[70] Collectively these data

indicate a critical role for CD105 and TGF-β1 signaling in promoting vascular network forma-

tion by hCDC in HyA hydrogels. Interestingly, CD105 expression is also increased in hypoxic

Vascular network formation within growth factor sequestering hyaluronic acid hydrogels
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conditions.[71] Thus, our system may mimic and/or augment signaling needed during ische-

mia (to induce angiogenesis and also prevent death of transplanted cells), which will be desir-

able for in vivo applications.

Fig 8. Schematic depicting the mechanism of vascular differentiation and network formation by encapsulated hCDC. Presentation of heparin-sequestered TGF-β1

to the TGF-βR2 and the CD105 co-receptor activates the ALK 1 and SMAD 1/5 pathways, resulting in increased angiogenic activity of encapsulated hCDC.

https://doi.org/10.1371/journal.pone.0194679.g008
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Conclusions

Semi-synthetic HyA hydrogels facilitate the differentiation of hCDC into endothelial cells, and

the formation of CD31-expressing networks. This occurs through the presentation of TGF-β1

and signaling through CD105. TGF-β1 signaling via the CD105 receptor controls a myriad of

cell functions leading up to vascular network formation, including cell spreading and prolifer-

ation, production of key angiogenic factors, and endothelial differentiation. The combination

of hCDC and TGF-β1-presenting growth factor sequestering HyA matrix has potential as an

injectable therapeutic for treating ischemic injury.

Methods

Materials

Hyaluronic acid (HyA, sodium salt, 500 kDa) was purchased from Lifecore Biomedical

(Chaska, MN). Adipic dihydrazide (ADH), 1-ethyl-3-[3-(dimethylamino)propyl] carbodii-

mide (EDC), sodium hydroxide (NaOH), hydrochloric acid (HCl), tris(2-carboxyethyl)phos-

phine (TCEP), triethanolamine-buffer (TEOA; 0.3 M, pH 8) and 1-hydroxybenzotriazole

(HOBt) were purchased from Aldrich (Milwaukee, WI). Dimethyl sulfoxide (DMSO), N-Acry-

loxysuccinimide (NAS) and, acetone ethanol were obtained from Fisher Scientific (Waltham,

MA). Dialysis membranes (10000 MWCO, SpectraPor Biotech CE) were purchased from

Spectrum Laboratories (Rancho Dominguez, CA). Paraformaldehyde (16% in H2O) was

obtained from Electron Microscopy Sciences (Hartfield, PA). High molecular weight heparin

(HMWH) was obtained from Santa Cruz Biotechnology, Inc (Dallas, Texas). The MMP-

degradable crosslinker peptide (CQPQGLAKC), and bsp-RGD(15) adhesion peptide

(CGGNGEPRGDTYRAY) were synthesized by United BioSystem Inc (Herndon, VA). All

chemicals were used as received. All cell culture reagents and 1× Dulbecco’s phosphate buff-

ered saline (DPBS), rhodamine labelled phalloidin were purchased from Invitrogen (Carlsbad,

CA).

Synthesis of AcHyA hydrogel

HyA based hydrogels were synthesized using previously reported methods.[34] Briefly, HyA

derivative carrying hydrazide groups (HyAADH) was synthesized using previously described

methods[72], and acryloxysuccinimide (700 mg) was subsequently reacted with the HyAADH

solution (300mg, 100 mL DI water) to generate acrylate groups on the HyA (AcHyA)[34–36].

Then, AcHyA-RGD derivative was synthesized by reacting CGGNGEPRGDTYRAY (bsp-

RGD(15)) (10mg) with AcHyA solution (25mg, 10mL DI water) at room temperature. Sepa-

rately, thiolated-heparin was synthesized by reacting heparin (50mg, 10mL DI water) with the

excess of cysteamine in the presence of EDC and HOBt at pH 6.8. AcHyA (4mg),

AcHyA-RGD (6 mg), and heparin-SH (0.03 wt%) were dissolved in 0.3 mL of TEOA buffer,

then HyA hydrogels were fabricated by in situ crosslinking of the HyA precursors with bis-cys-

teine containing MMP-13 cleavable peptide (3mg, 50 μL TEOA buffer).

Human CDC isolation and characterization

hCDC were generated from endomyocardial biopsies, as per previous reports.[41,73] Biopsies

were obtained from patients by informed written consent, and all procedures were approved

by the UCSF Intsitutional Review Board (10–01233). Routinely, hCDC were cultured on

Fibronectin-coated plates in Iscove’s Modified Dulbecco’s Medium(IMDM) basal media con-

taining 20% Fetal bovine serum (FBS), 1% L-Glutamine, 0.1 mmol/L 2-mercaptoethanol and

1% Penicillin-Streptomycin. Flow cytometry was used to characterize the hCDC, which were
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shown to express surface markers, CD31 (16%), CD34 (5%), CD90 (12%), CD105 (96%) and

c-kit (5%). The hCDC were negative for CD45.

Cell culture and encapsulation within hydrogel

Confluent hCDC were released using TrypLE and encapsulated in the hydrogels at the density

of 5x106 cells/mL as described in our previous report.[34] Three groups were assessed in this

study: cells encapsulated in the presence of TGF-β1 (40 nM), cells encapsulated in the absence

of TGF- β1, and cells encapsulated with TGF-β1 (40 nM) but pre-incubated with a

CD105-blocking antibody prior to encapsulation. Cells were used from passage 2–7 in all

experiments.

Cell survival

Cell viability was assessed 24 hrs after encapsulation by a Live/Dead staining kit. Briefly, cell/

hydrogel constructs were washed with PBS and incubated with Calcein/Propidium iodide, and

visualized using a Prairie two photon/confocal microscope (Prairie Technologies, Middleton,

WI).

Cell spreading

Cell adhesion and spreading in the hydrogel was assessed at day 3. Samples were fixed using

4% (v/v) paraformaldehyde for 30 min and permeabilized with 0.1% Triton X-100 for 5 min.

Following a PBS wash, cell/hydrogel constructs were incubated with F-actin stain (details), fol-

lowed by a DAPI stain. Cell/hydrogel constructs were visualized using a Prairie two photon/

confocal microscope (Prairie Technologies, Middleton, WI).

Cell metabolic activity and proliferation

Metabolic activity was assessed at pre-determined timepoints by incubating the cell/hydrogel

constructs with a 10% Alamar Blue (details) solution and analyzing according to the manufac-

turers instructions.

Cell proliferation was assessed at day 14 and compared with samples at day 1. At the appro-

priate timepoint, cell/hydrogel constructs were washed with PBS and treated with hyaluroni-

dase (3000 U/ml). The released cells were analysed for cell proliferation using the CyQUANT

cell proliferation assay (Thermo Fisher Scientific,).

Immunocytochemistry

For immunocytochemistry, hydrogel samples were fixed using 4% (v/v) paraformaldehyde for

30 min and permeabilized with 0.1% Triton X-100 for 5 min. After blocking with 3% BSA for

1 hr, hydrogel samples were incubated overnight at 4˚C with a 1:200 dilution of primary anti-

body (rabbit anti-CD31 IgG). After washing the cells with PBS, hydrogel samples were incu-

bated with a 1:200 dilution of goat anti-rabbit AlexaFluor Texas red IgG (Invitrogen,

Molecular Probes) for 2 hr at RT. Prior to imaging, cell nuclei were DAPI stained for 5 min at

room temperature. Cell-gel constructs were visualized using a Prairie two photon/confocal

microscope (Prairie Technologies, Middleton, WI).

Analysis of VEGF165 production from encapsulated hCDC

Cell/hydrogel constructs were cultured in 600 μL cell culture media. At 14 days, the surround-

ing culture media and gels were collected and digested in hyaluronidase (3000 unit/mL). Sub-

sequently, supernatants were collected after centrifugation (3000 rpm, 5 min) of the degraded
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hydrogels. The mass of MMPs and VEGF165 secreted by the entrained cells in collected super-

natant was determined using sandwich ELISA kits (RayBiotech, Inc., Norcross GA).

Analysis of NO production from encapsulated hCDC

At pre-determined timepoints, media was collected from the hCDC samples and analysed for

its NO content via the Griess assay (Promega).

Human angiogenesis protein profiler array

The expression of a range of angiogenesis-related proteins synthesized by encapsulated hCDC

in each group was compared using an angiogenesis protein array (Proteome Profiler Human

Angiogenesis Array Kit, R&D Systems, Minneapolis, MN), following the manufacturer’s

instructions. The array membrane was visualized by a chemiluminiscence substrate under

Bio-Rad ChemiDoc XRS System. The relative expression of the angiogenesis proteins pro-

duced by the CDCs in each of the hydrogels was measured by subtracting background and

normalizing to positive controls, then comparing the pixel density of each chemiluminescence

image.

The free online tool ClustVis was used to perform z-score transformations and to create

heatmaps and dendrograms.[74]
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