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ABSTRACT: In this contribution, we present the implementation of a second-order complete active space−self-consistent field
(CASSCF) algorithm in conjunction with the Cholesky decomposition of the two-electron repulsion integrals. The algorithm, called
norm-extended optimization, guarantees convergence of the optimization, but it involves the full Hessian and is therefore
computationally expensive. Coupling the second-order procedure with the Cholesky decomposition leads to a significant reduction
in the computational cost, reduced memory requirements, and an improved parallel performance. As a result, CASSCF calculations
of larger molecular systems become possible as a routine task. The performance of the new implementation is illustrated by means of
benchmark calculations on molecules of increasing size, with up to about 3000 basis functions and 14 active orbitals.

1. INTRODUCTION

The complete active space−self-consistent field (CASSCF)
method1−3 is a powerful tool to achieve a qualitatively correct
description of strongly correlated systems. Thanks to its
intrinsic multireference nature, it can be used to compute the
structure and molecular properties of a large manifold of
interesting systems that are poorly described with standard
single-reference methods. These include many open-shell
systems, molecules with stretched bonds, and therefore
reactivity, excited states, and others. It can also provide a
starting point for subsequent high-level correlated treatments,
such as internally contracted multireference-configuration
interaction4,5 (CI) and coupled cluster,6−13 multireference
perturbation theory such as CASPT214,15 and NEVPT2,16−18

or even quantum Monte Carlo methods.19,20 Unfortunately,
the method suffers from three major complications that restrict
its applicability. First, it is not a black box method, as it
requires the user to select the active space for the calculation.
While there are a few strategies to aid the selection,21−23

achieving good results relies still on the user’s chemical
intuition and understanding of the system. Second, the
CASSCF wave function’s optimization problem is notoriously
hard to converge. Third, the method is computationally very
demanding.

The computational cost of a CASSCF calculation stems
from two concurring factors. The most prominent one is that
the method requires one to solve a full CI (FCI) problem in
the active space. Due to the combinatorial scaling of FCI, the
investigation of large active spaces is not possible using
standard direct CI techniques. Approximations to the FCI
wave function can be used to overcome this otherwise
overwhelming barrier, the most common example being the
use of a density-matrix renormalization group24 (DMRG).
However, many interesting systems can be successfully
described with a relatively small active space (up to 12−14
electrons in as many orbitals). If a careful choice of the active
space that allows one to capture the static correlation of the
wave function with a limited number of active orbitals is
possible, the cost of the CI part is either negligible (for active
spaces with less than 10 orbitals) or manageable with
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traditional implementations. In such cases, the cost of the
calculation is dominated by the operations involving the
manipulation of the electron repulsion integrals (ERIs).
Convergence problems can be mitigated, if not completely

solved, by using an optimization algorithm with guaranteed
convergence to the closest local minimum. Methods based on
a restricted step second-order optimization offer such a
guarantee and are, therefore, a very attractive option. However,
because they involve the evaluation of the energy Hessian with
respect to the variational parameters, i.e., orbital rotations and
CI expansion coefficients, they are in general more expensive
than their first-order counterparts and require cumbersome
and involved implementations. Nevertheless, second-order
CASSCF implementations have been successfully achieved
and are based on two main algorithms. The first algorithm,
originally proposed by Werner and Meyer25 and further refined
by Werner, Knowles, and others,26,27 is based on the definition
of a model energy function which is infinite order in orbital
rotations and that is optimized. The coupling between CI and
orbital optimization is introduced up to second order, ensuring
thus quadratic convergence. This algorithm shows excellent
convergence properties and overall performances. A similar
strategy has been followed by Sun et al.,28 and the resulting
algorithm, which is based on an integral-direct implementation
and can use DMRG as a CASSCF solver, exhibits impressive
performances. A second choice is to use a more traditional
trust-region second-order method, such as the Levenberg−
Marquardt method.29 Augmented with an adaptive choice of
the trust radius, as proposed by Fletcher (we refer to the global
strategy as FLM), it is possible to prove that the FLM method
always converges to the closest local minimum and that the
rate of convergence is quadratic. A very efficient implementa-
tion of the FLM method, known as the norm-extended
optimization (NEO) algorithm, has been proposed by Jensen
and co-workers.30,31 In this contribution, we follow the latter
strategy, which we have previously implemented in the
CFOUR32,33 suite of programs.
A second-order CASSCF implementation requires one to

work with ERIs transformed in the molecular orbital (MO)
basis with at least two indices spanning the full rank of MOs.
The transformation of the ERIs from the atomic orbitals
(AOs) to the MO basis is expensive, requiring MN( )b

4

floating point operations, where M is the number of internal
and active orbitals and Nb the number of basis functions.
Furthermore, it is not easily implemented in an efficient way.
This is due to the fact that the ERIs matrix is usually too large
to fit in memory, especially in the MO basis, which implies that
the transformation involves slow disk I/O. Furthermore, the
AO ERIs are computed (and stored) in an order that depends
on the shell structure of the basis set for the specific system. As
a consequence, the integrals are read (or recomputed, in
integral-direct implementations) in a system-dependent order,
which makes the use of efficient BLAS routines34,35 and, more
in general, vectorization, particularly challenging.
To address the computational cost involved with the

manipulation of the ERIs, it is possible to adopt a low-rank
approximation of the ERIs, such as density fitting36−44 (DF) or
Cholesky decomposition45−51 (CD). Both techniques have
been successfully applied in many contexts of quantum
chemistry,52−61 including CASSCF.62−64 The CD technique
is particularly attractive, as it allows a rigorous, a priori control
of the approximation error. Furthermore, it offers a compact
representation of the ERIs that is well-suited for vectorized,

efficient implementations, as the Cholesky-decomposed ERIs,
can be often kept in memory with standard computer hardware
and are easily manipulated using highly optimized level 3
BLAS routines. Furthermore, all of the ERIs manipulation can
be written as the sum of independent operations on a given
Cholesky vector and are therefore very easy to parallelize.
Other approaches that aim at large-scale applications are
present in literature; see for instance refs 65 and 66, where a
first-order implementation on graphical processing units is
shown, and the computational cost in the orbital part is
mitigated by exploiting the sparsity of the two-electron
integrals.
In this contribution, we present an implementation of NEO

CASSCF in the CFOUR suite of programs32,33 based on the
CD of the ERIs. The implementation is tested on several
molecular systems of increasing size, for active spaces that go
from small (CAS(6,6)) to large (CAS(14,14)) and using up to
about 3000 basis functions. This work is organized as follows.
In Section 2, the derivation of the NEO CASSCF method is
reviewed. The implementation of the algorithm is discussed in
Section 3 with a special focus on the Cholesky implementation.
In Section 4, benchmark calculations are presented for the
purpose of showing the performance of the algorithm in the
optimization of medium-to-large systems. Finally, concluding
remarks and some perspectives on future developments are
given in Section 5.

2. NORM-EXTENDED OPTIMIZATION CASSCF
In this section, we recapitulate the main aspects of NEO
CASSCF. First, the parametrization of the wave function is
discussed in Section 2.1. Then, the NEO algorithm is briefly
summarized in Section 2.2. Further details regarding the
optimization algorithm can be found in ref 30 or in a previous
work by two of us.67

2.1. Parametrization of the CASSCF Wave Function.
The starting point for the following discussion is given by a set
of molecular orbitals (MOs) φ{ } =p p

N
1

b , where Nb is the number

of basis functions. In CASSCF, the MOs are subdivided into
three classes according to their allowed occupation number in
a Slater determinantnamely, internal, which are always
doubly occupied; active, which are subjected to no restriction;
and external, which are always empty. To distinguish an orbital
among such classes, the following labels are used: i, j, k refer to
inactive, u, v, x to active, a, b, c to external, and p, q, r to generic
orbitals. Indices that run over the determinantal space are
labeled with capital letters I, J.
A convenient parametrization for the wave function, first

proposed by Jensen and Jørgensen,30 is

|Ψ⟩ = | ⟩ + |̂ ⟩
| ⟩ + |̂ ⟩

κ− ̂ P
P

c
c

e
0
0 (1)

Here, | ⟩ = ∑ |Φ ⟩c0 I
N

I I
(0) (0)det is the current approximation to the

wave function, or current expansion point (CEP). |c⟩ is the
correction vector that collects the CI variational parameters, cI,

∑| ⟩ = |Φ ⟩cc
I

N

I I

det

(2)

and P̂ = 1 − |0⟩⟨0| is the operator that projects |c⟩ in the
orthogonal complement of |0⟩, thus keeping any redundant
vector parallel to the CEP.
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Orbital variations are described through a unitary trans-
formation, φ̅ = φU, that is conveniently parametrized by using
an exponential map

∑ ∑κ κ κ= ̂ = ̂ − ̂ = ̂κ−

> >

−U E E Ee ; ( )
p q

pq pq qp
p q

pq pq
(3)

where ̂ = ∑ ̂ ̂σ σ σ
†E a apq p q is the spin-traced singlet excitation

operator. The variational parameters are given by the elements
of the antisymmetric matrix, κ. Since only rotations between
different orbitals classes produce a variation in the energy, the
expression for κ̂ can be simplified as follows:

∑ ∑ ∑ ∑ ∑ ∑κ κ κ κ̂ = ̂ + ̂ + ̂− − −E E E
i

N

u

N

iu iu
i

N

a

N

ia ia
a

N

u

N

au au

int act int ext ext act

(4)

Hence, κ is considered as a vector whose dimension is given by
all nonredundant orbitals rotations; i.e., Nrot = NintNact +
NintNext + NactNext.
2.2. Optimization of the CASSCF Wave Function.

Equation 1 is used to define a variational expression for the
electronic energy that reads

κ = ⟨ | + ⟨ | ̂ ̂ | ⟩ + |̂ ⟩
+ ⟨ | |̂ ⟩

κ κ̂ − ̂P P
P

c
c c

c c
( , )

( 0 )e e ( 0 )
1 (5)

In eq 5, ̂ is the nonrelativistic Hamiltonian operator written
in second quantization

∑ ∑̂ = ̂ + | ̂ +h E pq rs e E
1
2

( )
pq

pq pq
pqrs

pqrs nuc
(6)

where

δ̂ = ̂ ̂ − ̂e E E Epqrs pq rs rq ps (7)

hpq are one-electron integrals, (pq|rs) are two-electron integrals
written in Mulliken’s notation, and Enuc is the nuclear repulsion
term. A second-order algorithm can be developed by defining a
quadratic model for the energy; therefore, we expand eq 5 in
power series up to second order. To this end, it is useful to
define a generic parameter point, x = (c, κ), and the reference
one, x0 = (c(0), 0) such that

≈ ≐ + − + − −† †Ex x g x x x x G x x( ) ( ) ( )
1
2

( ) ( )0 0 0 0

(8)

In eq 8, E0 is the reference energy, that is ⟨ | ̂ | ⟩0 0 , while g and
G are respectively the electronic gradient and Hessian
evaluated at the CEP. Analytical expression for such quantities
can be obtained by direct differentiation of eq 5 and by
exploiting the Baker−Campbell−Hausdorff (BCH) formula.
The gradient is given as

= ∂
∂

= ⟨Φ | ̂ ̂ | ⟩g
c

P2 0I
c

I
I

(9)

κ
= ∂

∂
= ⟨ |[ ̂ ̂ ]| ⟩−g E0 , 0pq

o

pq
pq

(10)

and the Hessian

κ

κ κ

= ∂
∂ ∂

= ⟨Φ | ̂ ̂ − |̂Φ ⟩

= ∂
∂ ∂

= ⟨Φ | [̂ ̂ ̂ ]| ⟩

= ∂
∂ ∂

= + ̂ ⟨ |[ ̂ [ ̂ ̂ ]]| ⟩

−

− −

G
c c

P E P

G
c

P E

G P E E

2 ( )

2 , 0

1
2

(1 ) 0 , , 0

I J
cc

I J
I J

I pq
co

I pq
I pq

pq rs
oo

pq rs
pq rs pq rs

,

2

0

,

2

,

2

,

(11)

The minimization of the quadratic model directly leads to the
Newton−Raphson (NR) equations. However, the radius of
convergence of NR is small, and the Hessian can be non-
positive-definite at the beginning of the optimization leading to
incorrect search directions. To overcome this issue, a more
robust strategy consists of using a trust-region optimization
algorithm, e.g., the Levenberg−Marquardt (LM) method,29

where the minimization is performed in a reduced domain
such that the Hessian has the correct signature. The LM
equations can be seen as diagonally shifted NR ones, where the
shifting parameter controls the step length to be within a
predefined trust radius, Rt. The norm-extended optimization
algorithm30,68 is an elegant way to recast the LM minimization
problem into an eigenvalue−eigenvector one:

α λ=L y y( ) (12)

where L(α) is the gradient-scaled augmented Hessian matrix,

α α= + +† †L G x g g x( ) ( )0 0 (13)

It can be shown that for ground-state optimization the optimal
direction is given by the first eigenvector of L(α). Once y is
given, the NEO step can be computed as

α
α

α= +x x Py( )
1

( )0 (14)

Here, P is the matrix representation of the projector operator
P̂. The step length is controlled by the parameter α and can be
obtained by solving the equation

α − = Rx x( ) 0 t (15)

Eventually, the trust radius is changed adaptively during the
optimization procedure according to Fletcher’s algorithm.29 If
the energy increases, the step is discarded, and the trust radius
is decreased. Otherwise, Rt is either increased or left untouched
on the basis of the value of the ratio between the predicted
variation of the energy and the actual one. The combined
strategyNEO plus Fletcher’s updateleads to an algorithm
that always converges to the closest local minimum for well-
behaved wave functions.

3. IMPLEMENTATION
In this section, the implementation of the NEO algorithm
within the CFOUR32,33 suite of programs is discussed. In
Section 3.1, we present working expressions for the gradient
and for the linear transformations that describe the action of
the augmented Hessian matrix on a trial vector. In Section 3.2,
the Cholesky decomposition of the two-electron integrals is
introduced. Details regarding a cost-effective implementation
that exploits the Cholesky vectors are given for a specific
example.

3.1. Direct NEO Equations. The NEO algorithm can be
thought of as a two-level procedure. In the first levelthe
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macroiterationsthe parameter hypersurface is scanned by
updating the CEP and the MOs. In the second levelthe
microiterationsa specific NEO eigenvalue−eigenvector
problem is iteratively solved with the intention of getting the
optimal step direction. At each macroiteration an AOs to MO
transformation is performed. Then, the orbital and CI gradient
are assembled, and the electronic energy is calculated. The
CASSCF energy can be written as

∑ ∑γ= + Γ | + +E F uv xy E E
1
2

( )
uv

uv uv
I

uvxy
uvxy i0 nuc

(16)

where γuv and Γuvxy are the one- and two-body reduced density
matrices, respectively, which can be computed as the
expectation value of the excitation operators

γ = ⟨ | ̂ | ⟩ Γ = ⟨ | ̂ | ⟩E e0 0 , 0 0uv uv uvxy uvxy (17)

Fpq
I are the elements of the inactive Fock matrix

∑= + [ | − | ]F h pq ii pi qi2( ) ( )pq
I

pq
i (18)

and Ei is the energy contribution that stems from the inactive
electrons and is called inactive energy,

∑= +E h F( )i
i

ii ii
I

(19)

Manipulation of eq 10 leads to an antisymmetric expression for
the orbital gradient

= −g F F2( )pq pq qp (20)

In eq 20 we have introduced the generalized Fock matrix,
whose elements can be written in terms of the inactive Fock
matrix, active Fock matrix, and Q matrix. The last two are
defined as follows:

∑ γ= | − |F pq uv pu qv( )
1
2

( )pq
A

uv
uv

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (21)

∑= Γ |Q pv xy( )up
vxy

uvxy
(22)

As eq 9 states, the CI gradient can be evaluated as the action of
the Hamiltonian operator on |0⟩

∑ ∑= ⟨Φ | ̂ + | ̂ | ⟩

+ −

g F E uv xy e

c E E

2
1
2

( ) 0

( )

I I
uv

uv
I

uv
uvxy

uvxy

I i
(0)

0 (23)

where the last term is a vector parallel to the CEP that stems
from the presence of the projector operator in the wave
function definition.
The iterative solution of the NEO eigenvalue−eigenvector

problem (microiterations) requires setting up expressions for
the matrix−vector product between the augmented Hessian
and a trial vector:

= +L L
L L

v
v

L v
L v

L v
L v

cc co

oc oo

c

o

cc c

oc c

co o

oo o

i
k
jjjj

y
{
zzzz
i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

(24)

The present implementation makes use of the split-Davidson
algorithm,68 where configurations-only, vconf = (vc, 0), and
orbitals-only, vorb = (0, vo), vectors are added in the Krylov-like
subspace. This procedure allows one to adaptively add to the

subspace either vconf or vorb, depending on the part that exhibits
the largest residual. Here we report the expressions for the
direct product

∑

∑ ∑

α= ⟨Φ | ̂ | ⟩ − + −

× +

L v E v

c v g g v c

v2( ) ( 1)
J

I J J I c I

I
J

J J I
J

J J

, 0

(0) (0)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (25)

∑ ∑α= + −L v g g c v2 ( 2)
I

pq I I pq
T

pq
I

I J,
(0)

(26)

∑ ∑α= ⟨ | ∼ |Φ ⟩ + −L v c g v2 0 ( 2)
pq

I pq pq I I
pq

pq rs,
(0)

(27)

∑ ∑= ⟨ |[ ̂ ∼ ]| ⟩ + −−L v E g v g v0 , 0
1
2

( )
rs

pq rs rs pq
s

sp qs sq ps,

(28)

where |vc⟩ = ∑IvI|ΦI⟩, and κ∼ = [ ̂ ̂ ], is the one-index
transformed Hamiltonian operator. In eq 26, we have
introduced the transition gradient gpq

T , that is, a gradient
computed with symmetrized transition density matrices. The
first term of eq 28 is a gradient-like contribution computed
with one-index transformed one- and two-electron integrals. It
can be effectively computed by means of the transformed
inactive Fock matrix, active Fock matrix, and Q matrix whose
expressions are given below

∑ ∑ ∑̃ = − + [ | − |

− | ]

F F v F v pq ir pr qi

pi qr v

( ) 4( ) ( )

( )

pq
I

r
pr
I

qr rq
I

pr
r i

ir (29)

∑

∑ ∑ γ

̃ = −

+ | − | − |

F F v F v

pq ur pr uq pu qr v

( )

2( )
1
2

( )
1
2

( )

pq
A

r
pr
A

qr rq
A

pr

r uv
uv ur

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ
(30)

∑

∑ ∑

̃ =

+ {Γ | + [Γ + Γ ] | }

Q Q v

pr xy px ry v( ) ( )

up
r

ur pr

r vxy
uvxy uxvy uxyv vr

(31)

Explicit expressions for eq 28 are given in the Supporting
Information.
The transformed matrices have to be computed at each step

of the microiterations, and together with the AO to MO
transformation constitute the bottleneck of the algorithm when
the chosen active space is small. A summary of the NEO
algorithm is given in Figure 1.

3.2. NEO Equations with Cholesky Vectors. The ERI
matrix is symmetric and positive-semidefinite; therefore, it can
be decomposed according to the Cholesky decomposition:

∑| ≃pq rs L L( )
K

N

pq
K

rs
K

ch

(32)

We compute the CD of the integrals using the partial pivoting
algorithm proposed by Koch et al.47 (a much more efficient
CD algorithm has been recently proposed; see for instance ref
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51), which has been implemented inside the Mainz integral
package69 (MINT) in CFOUR.32,33 The procedure stops
whenever the residual of the diagonal is below a user defined
threshold. Using the Cauchy−Schwarz inequality, it can be
shown that the error on the reconstructed integrals is always
lower than or equal to the threshold, so it can be controlled
systematically. In eq 32, Nch is the number of Cholesky vectors
generated; the higher the decomposition threshold the lower
the number of Cholesky vectors.
The Cholesky representation of the integrals has been

substituted in all equations, namely, the Fock matrices, the
transformed Fock matrices, and the active ERI matrix. In order
to illustrate the implementation of the evaluation of the
aforementioned quantities, we discuss in detail the calculation
of the transformed Q matrix. Implemented expressions for the
transformed Fock matrices can be found in the Supporting
Information. Inserting eq 32 into eq 31, we get

∑

∑ ∑ ∑

̃ =

+ {Γ + [Γ + Γ ] }

Q Q v

L L L L v

up
r

ur pr

K

N

r vxy
uvxy pr

K
xy
K

uxvy uxyv px
K

ry
K

vr

ch

(33)

The first term of eq 33 can be straightforwardly computed
from the Q matrix. The second term is evaluated by first
assembling, for each Cholesky vector, the intermediate
quantities

∑= ΓT Luv
K

xy
uvxy xy

K

(34)

and

∑=S v Lvp
K

r
vr rp

K

(35)

such that

∑ ∑ ∑Γ =L L v T S .
r vxy

uvxy pr
K

xy
K

vr
v

uv
K

vp
K

(36)

Regarding the last term, we notice that ∑ v Lr vr ry
K is the fully

active part of the intermediate SK of eq 35. Hence, we define

∑= ΓV Sux
K

vy
uxvy vy

K

(37)

and

∑ ∑Γ = Γ =S S V( )
vy

uxyv vy
K

vy
xuvy vy

K T
ux

(38)

where in eq 38 we exploited the symmetry of the two-body
reduced density matrix. Gathering together eqs 36, 37, and 38,
we can rewrite eq 31 as

∑ ∑̃ = + [ + ]Q Q v T S X L( ) ( )up
r

ur pr
K

N
K K

up
K K

up

ch

(39)

where Xux
K = Vux

K + Vxu
K . A detailed discussion of the

computational cost and scaling of the present algorithm,
together with a critical comparison with other existing
CASSCF codes, can be found in Appendix A.

4. BENCHMARKS
In this section we present benchmark calculations to illustrate
the performance of the CD-CASSCF implementation. In all of
the calculations, convergence is achieved when the root-mean-
square norm of both the orbital and CI gradient is below 10−7.
The threshold for the Cholesky decomposition has been set to
10−4.

4.1. Importance of a Good Starting Guess. When using
a traditional second-order method, such as the one described
in the present work, a good starting guess for the molecular
orbitals is beneficial for reducing the number of macro-
iterations. Also, the quality of the orbitals can affect the
number of microiterations required to solve the NEO
eigenvalue−eigenvector problem (see eq 24), whose con-
vergence can sometimes be slow. The poor convergence of
standard second-order methods has been thoroughly inves-
tigated by Werner and co-workers,25,26 and it is due to the
combination of two facts. As the energy is parametrized in
terms of orbital rotations, which are defined as the exponential
of a skew-symmetric matrix, a second-order approximation
cannot faithfully reproduce the periodicity of rotations.
Furthermore, the active space is bound to contain almost
doubly occupied and almost empty orbitals. If a HF guess is
used, the rotations that mix these orbitals with internal and
external ones, respectively, will be associated with very small
gradients and small Hessian eigenvalues. This in turn translates
into a poor convergence radius of a second-order expansion,
which makes the use of a trust-radius algorithm paramount.
This motivated Werner, Meyer, and Knowles to use a higher
order expansion for their MCSCF algorithm, which allows
them to achieve an extremely robust and fast convergence. To
better illustrate the importance of a good starting guess when
using a traditional second-order algorithm and to further
describe the behavior of the optimization procedure when a
poor one is used, we analyze the convergence of our
implementation using the serotonin molecule as an example
and Pople’s 6-31G basis set.70 For this example, we use the
conventional implementation (without CD). We compare
three different starting points. As a production reference, we
employ the unrestricted-natural-orbitals (UNOs) criterion of
Pulay and Hamilton.71 This strategy has been recently cross-
validated against other active space selection methods,23 and it
has been shown to produce almost the same active space as the
AVAS-,22 FOD-,72 and DMRG-based strategies.21,73 To
compute the UNO, we first look for triplet instabilities in
the RHF wave function by computing the lowest eigenvalues of
the corresponding instability Hessian.74 If one or more
negative eigenvalues are present, we perturb the MOs along

Figure 1. Macro-/microiterations scheme for the NEO algorithm.
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the direction given by the associated eigenvectors, and we run
an UHF calculation. Finally we compute the UNO from the
averaged charge density matrix and choose as active orbitals
the ones with occupation numbers between 0.01 and 1.99.
According to this protocol, the active space for the serotonin
consists in 8 electrons and 8 orbitals. A second starting point is
obtained from a RHF reference by manually selecting the π/π*
orbitals. Lastly, we choose the four highest occupied and four
lowest unoccupied canonical RHF orbitals. In Figure 2, we

report the convergence profile (energy difference with respect
to the converged solution as a function of the number of
macroiterations) for the three aforementioned starting points.
We also report the overall number of microiterations (summed
over the number of macroiterations).
All three calculations converged to the same state. The

calculation using the RHF π/π* orbitals converged relatively
quickly, but the presence of small eigenvalues in the MO
rotation at the beginning of the calculations requires two
additional iterations with respect to the calculation starting
from the UNO, during which small steps are taken and the
gradient remains relatively unchanged. As expected, the last
choice presents the worst convergence trend, with the first
eight iterations being spent looking for the quadratic region.
This can be easily understood. To achieve convergence, the
orbitals have to be swapped, which corresponds to a large
orbital rotation. Due to the small convergence radius of a
second-order expansion, this requires in turn a large number of
steps. We illustrate this fact in Figure 3, where we represented
the lowest energy MO at various steps of the optimization (the
corresponding iterate is reported to the left of the MO
picture). We note that in the first steps the orbital changes its
shapethe rotation with a π inactive orbital is gradually
magnified during the optimization.
This example shows that a good starting guess and a careful

selection of the active orbitals are paramount to achieve a
smooth and fast convergence. Nevertheless, it also shows that
the NEO algorithm is robust and is able to achieve
convergence even when starting from a particularly bad
reference.

4.2. Benchmark Calculations. The starting benchmark
set used to test the CD-CASSCF code is composed of 21
aromatic molecules. The geometries were taken from ref 77;
the set was used also by Kreplin et al. to test their MCSCF
solver.27,78 We augmented the benchmark set with 5 larger
molecules whose geometries were optimized at the B3LYP/6-
31G(d)70,79 level of theory using the Gaussian 16 suite of
programs.80 All of the new structures can be found in the
Supporting Information; a pictorial representation of the
molecules is given in Figures 4 and 5. All calculations were
done using Dunning’s cc-pVTZ81 basis set using spherical
harmonics.
As a starting analysis, we compared the storage requirement

of a CD-based CASSCF calculation with a conventional one.
The exact CD of the ERI matrix would generate Nb(Nb + 1)/2
Cholesky vectors. We define a compression rate

=
+

f
N N

N
( 1)/2b b

ch (40)

to measure the effectiveness of the truncated CD in reducing
the dimension of the computational problem. We report in
Table 1, for seven selected molecules from the benchmark set,
the number of basis functions (Nb), the disk space needed to
store the two-electron integrals, and the compression rate.
As expected, the storage requirements for the CD vectors are

significantly lower than for the standard two-electron integrals.
It is worth remarking that, even for the largest system of this
reduced set, the Cholesky vectors can easily be kept in memory
even on a standard desktop computer. This is one of the main

Figure 2. Convergence profile for the CASSCF optimization of the
serotonin molecule with 8 electrons in an 8 orbitals active space and
6-31G basis set. In blue (RHFa), the active orbitals were selected as
the four lowest and four highest canonical RHF; in orange (RHF), as
the π/π* canonical RHF; and in green (UNO) as the unrestricted
natural orbitals. Next to the three curves, the total number of
microiterations is reported. In all three cases the converged CASSCF
energy is −569.279 597 357 hartrees.

Figure 3. Snapshots of the lowest energy active orbital taken at
various CASSCF macroiterations. Reported are only iterations where
a qualitative change on the orbital’s shape is visible. The starting guess
for the orbitals was given by the canonical RHF ones, without any
manual choice. The orbitals were visualized using the IboView
software.75,76
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advantages of using a reduced order approximation of the
ERIs, as it allows one to perform full in-core calculations,
avoiding thus slow disk I/O operations. In Figure 6, we plotted
the compression rate for the whole benchmark set with respect
to the number of basis functions. According to our results, we
deduce a linear scaling of f with respect to the system’s size.
Therefore, we can obtain an even more compact representa-
tion of the integrals and, thus, a greater efficiency of the CD,
with larger systems.
The previously selected molecules were also used to

compare the accuracy of the CD-CASSCF energy with respect

to the one obtained with the standard algorithm. The chosen
decomposition threshold (10−4) allows us to obtain a high
compression rate while retaining an overall good accuracy. In
Table 2, we report the active space (CAS) and the converged

CASSCF energy obtained with both the Cholesky and
standard implementations for the selected molecules. As it
can be seen from the table, the two results are in agreement to
at least the fourth decimal digit, with the largest deviation
being about 50 μEh. We note that it has been documented in
the literature that the errors in CD energies are systematic such
that CD benefits from error cancellation, thus further
increasing the accuracy of energy differences.62,82

To test the performances of the CD-CASSCF algorithm, we
run calculations on the whole benchmark set that involved
active spaces up to CAS(14,14) and as many as 2962 basis
functions. For each system, all of the orbitals, including the
core ones, are fully variationally optimized. All of the
calculations presented here were performed on a single cluster
node equipped with 4 Intel Xeon Gold 6140 M CPUs, running
at 2.30 GHz. The lower triangular part of the Cholesky vectors
were kept in memory. Shared-memory parallelization is
exploited in all of the calculations, sharing the work among
28 cores. We point out here that we do not expect the
implementation to be fully scalable, the limiting factor being
the full CI code. This is due to the fact that the sequential code
is highly cache-optimized, which causes an overload of the
cache, and consequent loss of efficiency, when more cores of
the same processor share cache access. Nevertheless, even a
straightforward OpenMP parallelization of the main loops is
beneficial. In Table 3 we report, for each molecule, the active
space (CAS), the number of basis functions, the number of

Figure 4. New aromatic molecules used to test the CD-CASSCF
algorithm together with their active spaces.

Figure 5. Structure of the chlorophyll molecule.

Table 1. Systems Used to Compare the Different Storage
Requirement of the Standard and CD Implementations in
CFOURa

size (GB)

molecule Nb f CD STD

catechol 324 24.88 0.9 18.3
naphthalene 412 31.98 1.8 43.1
nicotine 556 43.46 4.4 139.7
tryptophan 618 47.75 6.1 170.6
pyridoxamine 528 41.00 3.8 108.8
2Me4HSdiox 446 34.10 2.3 61.8
indole 368 28.37 1.3 30.4

aFor each molecule, we report the number of basis functions (Nb), the
compression factor ( f) defined in eq 40, and the size in gigabytes of
the Cholesky vectors (CDs) and two-electron integrals (STD).

Figure 6. Compression rate trend with respect to the number of basis
functions. The points are fitted using standard linear regression.

Table 2. Comparison between the Converged CASSCF
Energy of the Cholesky and Standard Implementationa

molecule CAS CD energy STD energy

catechol 6,6 −380.624 556 05 −380.624 560 70
naphthalene 10,10 −383.592 108 03 −383.592 112 05
nicotine 6,6 −495.948 509 96 −495.948 509 88
tryptophan 8,8 −682.501 156 65 −682.501 137 25
pyridoxamine 6,6 −568.806 086 69 −568.806 101 53
2Me4HSdiox 6,6 −855.034 927 82 −855.034 975 73
indole 8,8 −361.673 841 72 −361.673 848 10

aEnergy values are given in hartrees.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00327
J. Chem. Theory Comput. 2021, 17, 6819−6831

6825

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00327?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00327?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


macroiterations required to converge, and the total CPU wall
time in minutes.

For all of the systems, we used as MO guess the UNO. If
more than one instability is found, we compute the UNO from
the averaged one-body charge density matrix of the various
unrestricted solutions, the only exception being the chlorophyll
molecule where we compute the UNO following a single
instability (out of three)the one with the highest negative
eigenvalue in absolute value. This choice is in principle
suboptimal, but unfortunately, when we performed the
computation with a smaller basis set (cc-pVDZ), we found
that the optimal active space prescribed by the UNO strategy,
a CAS(22,22), was out of the reach of a traditional full CI
implementation. To obtain a feasible active space, we reduced
the occupation thresholds used to select the active orbitals
from 0.01−1.99 to 0.05−1.95, which resulted in a CAS(12,12).
We verified that, with this choice, the cc-pVDZ calculation
with the UNO obtained following a single instability converged
to the same minimum and exhibited the same convergence
pattern as the one using the UNO obtained following all of the
instabilities.
All of the calculations for which the full active space built

using the UNO procedure was computationally affordable, i.e.,
all but the one on chlorophyll, converged in at most 5
iterations, which demonstrates not only the robustness of the
NEO algorithm and the overall efficiency of the implementa-
tion but also the remarkable quality of the UNO guess.
Unfortunately, the active space suggested by the procedure for

chlorophyll was out of reach of a traditional full CI solver. As a
consequence, we had to reduce it to a more manageable
CAS(12,12). The non-optimality of such a choice is reflected
in the larger number of iterations required to converge the
wave function. Nevertheless, the overall calculation could be
completed in little more than 12 h.
To further illustrate the behavior of the algorithm, we can

divide the work into three main tasksthe AO to MO
transformation, the optimization of the MOs (MO opt.), and
the optimization of the CI coefficients (CI opt.). The MO
optimization includes the calculation of the orbital gradient (eq
20), which in turn requires one to assemble the various Fock
matrices (eqs 18, 21, and 22), the calculation of the diagonal of
the MO Hessian (which is used as the preconditioner in the
Davidson diagonalization), and the evaluation of the direct eqs
27 and 28 for each microiterations. On the other hand, the CI
optimization consists of computing the reduced density
matrices, assembling the CI gradient (eq 23), and evaluating
eqs 26 and 25 at each microiteration. Table 4 shows the

percentage time to perform these three operations with respect
to the total time of the last macroiteration, which is usually the
one that requires the largest number of microiterations to
converge the NEO problem (microit. in Table 4).
The CD extremely facilitates the integrals transformation,

shifting the bottleneck to the MO optimization part. For the
systems considered, in particular, most of the time is spent in
computing the transformed Fock matrices, an operation that is
required to assemble the NEO Hessian-orbital trial vector
product (eqs 27, 28). We also note that, for larger active
spaces, such as in biphenyl, the cost associated with the CI part
starts to become non-negligible and rapidly becomes the
bottleneck as shown for anthracene. Here, the most expensive
operations are the direct-CI steps needed to compute the CI
gradient and the CI part of the NEO augmented Hessian-
configuration trial vector products, together with the
assembling of the reduced density matrices. As it can be
seen, these operations take about 80% of the total time.

5. CONCLUSIONS
We have presented the implementation of a second-order
CASSCF optimization algorithm that exploits the Cholesky

Table 3. Benchmarks Set Resultsa

molecule CAS Nb it. time (min)

adrenaline 6,6 572 4 1.04
anthracene 14,14 560 5 8.27
azulene 10,10 412 5 0.57
biphenyl 12,12 500 4 0.93
catechol 6,6 324 4 0.11
dopamine 6,6 484 4 0.63
fluorene 12,12 530 4 0.95
indole 8,8 368 5 0.31
l-dopamine 6,6 574 4 1.08
naphthalene 10,10 412 4 0.34
niacin 6,6 340 4 0.14
niacinamide 6,6 354 4 0.17
nicotine 6,6 556 4 0.85
nor-adrenaline 6,6 514 4 0.74
picolinic acid 6,6 340 4 0.16
pyridine 6,6 250 4 0.05
pyridoxal 8,8 486 5 0.88
pyridoxamine 6,6 528 5 1.21
pyridoxin 6,6 514 4 0.86
resveratrol 14,14 678 5 11.43
serotonin 8,8 558 4 0.95
tryptophan 8,8 618 5 2.08
2Me2HSdiox 4,4 474 5 0.76
2Me4HSdiox 6,6 446 5 0.61
coumarin dye 12,12 872 5 4.55
chlorophyll 12,12 2962 12 735.01

aFor each molecule, the active space (CAS), the number of basis
functions (Nb), the number of macroiterations (it.), and the total
CPU wall time (time) in minutes are presented. 2Me2HSdiox is the
abbreviation for 5,7-dimethyl-2H,3H-thieno[3,4-b][1,4]dioxine.

Table 4. Percentage Time of the Three Leading Operations
with Respect to the Total Time of the Last Macroiteration
(Time)a

molecule
AO to MO

(%)
MO opt.
(%)

CI opt.
(%) microit.

time
(s)

adrenaline 8.76 90.63 0.04 20 29.0
biphenyl 5.06 71.07 22.0 12 21.4
naphthalene 7.83 82.41 7.67 13 6.6
tryptophan 5.75 93.54 0.14 24 42.2
anthracene 0.98 14.35 81.65 11 194.9

aAO to MO refers to the atomic orbitals to molecular orbitals
transformation of the Cholesky vectors, MO opt. is the time spent in
the MO optimization and includes operations such as calculation of
the orbital gradient, evaluation of the NEO augmented Hessian−
orbital trial vector products. CI opt. refers to the CI optimization and
include the following operations: calculation of the CI gradient,
calculation of the reduced density matrices, and evaluation of the
NEO augmented Hessian-configuration trial vector products. microit.
is the number of microiterations required to solve the NEO
eigenvalue−eigenvector problem.
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decomposition of the two-electron integrals. The algorithm is
based on a trust-region method, which requires one to solve
diagonally shifted Newton−Raphson equations known as
Levenberg−Marquard equations. Also, it adaptively modifies
the trust radius during the optimization according to the value
of the energy with the result that the overall algorithm always
converges to the closest minimum for regular enough
functions. The coupling between orbitals and CI coefficients
is naturally included in the off-diagonal blocks of the Hessian
matrix, making this algorithm naturally second order in all
parameters. The implementation is based on the norm-
extended optimization formalism, where the LM equations
are recast into an eigenvalue problem, where the first
eigenvector provides the optimal direction for ground-state
minimization problems.
To reduce the computational cost associated with orbital

optimization, which is dominating for not-too-large active
spaces, we implemented the NEO algorithm using the
Cholesky decomposition of the two-electron integrals matrix.
The NEO equations were rewritten in terms of the Cholesky
vectors, taking particular care in recasting all of the equations
in a way that allowed us to implement them efficiently thanks
to an extensive use of level 3 BLAS routines. The
implementation exploits a fully direct algorithm where the
Hessian matrix is never explicitly calculated. Furthermore,
since the Cholesky vectors are independent among the others,
the code has been parallelized with shared-memory OpenMP
directives.
The resulting algorithm was tested on various aromatic

systems. We used a triple-ζ basis set with up to 2962 functions
and active spaces up to CAS(14,14). All calculations converged
swiftly and required limited computer time. Thanks to the
effective compression of the two-electron integrals matrix
operated by the CD, fully in-core calculations are possible for
most systems, eliminating thus the bottleneck of slow disk I/O.
While several further improvements and optimizations are
possible, for instance, to improve the convergence of the
microiterations, the benchmark calculations reported in this
contribution show that a rigorous second-order algorithm can
be used in large-scale applications at a reasonable computa-
tional cost. Future work will focus on both algorithmic
improvements and extensions of the methodology. In
particular, a first-order procedure such as super CI83,84 could
be used in the preliminary phase of a calculation to achieve an
initial intermediate convergence goal, thus providing a very
good starting point for the quadratically convergent
optimization. We also plan to extend the second-order
procedure to the simultaneous optimization of several
electronic states and to the calculation of analytical gradients,
by implementing differentiated Cholesky vectors.63,85

■ APPENDIX A: COMPUTATIONAL COST AND
SCALING OF THE CD-NEO STRATEGY AND
COMPARISON WITH DIFFERENT
IMPLEMENTATIONS

In this appendix, we discuss in detail the computational cost of
the various operations required to perform a NEO-CASSCF
calculation using the CD of the two-electron integrals (CD-
NEO) and briefly compare it to other CASSCF optimization
strategies. We focus the discussion on the cost of orbital-
related operations and therefore neglect the cost of the various

direct CI steps. The latter become dominant for large active
spaces and are of little importance for small ones.
Second-order methods require two-electron integrals in the

MO basis with up to two virtual indices. This requires, in
general, to perform +N N N(( ) )int act b

4
floating point

operations and is the main bottleneck in CASSCF calculations
not dominated by the CI part. In our implementation, the MO
transformed integrals are obtained by fully transforming each
Cholesky vector to the MO basis, at a cost of

≈N N N( ) ( )ch b
3

b
4 . This is formally still the rate-determining

step in our algorithm; however, it can be performed very
efficiently using level 3 BLAS routines and is trivially
parallelized. Note that we never assemble the two-electron
integrals explicitly, except for the ones with four active indices
that are needed for the CI problem. The evaluation of the
orbital gradients requires one to assemble the inactive and
active Fock matrices and the Q matrix. Reporting only the
leading terms, this requires one to perform N N N( )b

2
int ch ,

N N N( )b
2

act ch , and N N( )act
4

ch floating point operations,
respectively. Again, all of these operations can be performed
using level 2 and level 3 BLAS routines and are easily
parallelized. All of the operations described so far need to be
performed at each macroiteration. Assembling the NEO step
requires the solution to the NEO eigenvalue (eq 12). This is
done using an iterative procedure and, in particular, Davidson
diagonalization. The calculation of the required matrix-vector
products requires one to assemble one-index transformed Fock
and Q matrices, as described in section 3. The leading terms in
computational cost for such operations are N N N( )b

2
act ch and

N N N( )b
2

int ch , and therefore the computation of a matrix−
vector product is cheaper than the transformation of the two-
electron integrals. Once again, the various operations can be
performed using efficient BLAS routines and are easily
parallelized.
The memory requirements of the CD-NEO strategy are in

principle very limited, with a few N( )b
2 arrays being required

to assemble various intermediatesit should be noted that
such intermediates are duplicated for parallel execution,
therefore increasing the memory requirements of the run
proportionally to the number of cores used for the calculation.
However, the overall algorithm achieves significant speed ups if
the Cholesky vectors can be held in core, which requires
NchNb(Nb + 1)/2 words of memory. If such an amount of
memory is not available, the Cholesky vectors can be read in
batches and then distributed among the available cores for
computation. This, however, introduces a significant I/O
bottleneck that can not only slow the calculation but also
reduce the parallelization efficiency, even though modern
hardware equipped with solid-state disks mitigates the loss of
performance. Nevertheless, calculations on medium- to large-
sized molecules can be performed usually by holding the
Cholesky vectors in core. The biggest calculation reported in
section 4, where about 3000 basis functions were used,
required about 600GB of memory, which is a large, yet
manageable, amount of RAM. Calculations for smaller systems,
with up to 1000 basis functions, can be easily performed in
core even on modest hardware.
It is interesting to compare here the computational cost of

the CD-NEO strategy with a different second-order algorithm,
the Werner−Meyer−Knowles (WMK) algorithm,25,26 as it is
one of the most well-established strategies to solve the
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CASSCF optimization problem. In particular, a very efficient
implementation of the WMK exists that relies on density fitting
as a compression technique to handle the two-electron
integrals.
CD and DF are intimately related from a theoretical point of

view, to the point that the Cholesky decomposition can be
considered a specific case of DF, where the auxiliary basis, here
called the Cholesky basis, is automatically generated by the
decomposition algorithm. In DF, the AO product densities are
expanded in terms of optimized basis functions; therefore, the
two-electron integrals are approximated as

∑μν ρσ μν ρσ| ≃ | | |−K K J J( ) ( )( ) ( )
KJ

1

(41)

where K and J are elements of the fitting basis and (K|J) is the
overlap matrix of such functions, i.e., the metric. Different
metrics can be used, where one considers either the
straightforward overlap of the two functions or their Coulomb
interaction, the latter being the preferred choice as it can be
proven that it affords an approximation of the integrals that is
correct up to first order.86 According to eq 41, the Cholesky
vectors can be expressed as

∑ μν= |μν
−L J B( )K

J
KJ

1

(42)

with BKJ being the Cholesky factor of the matrix (K|J). When
using an orthonormal Cholesky basis (BKJ = δKJ), the Cholesky
vectors are exactly the fitting coefficients. Therefore, the CD is
a DF procedure with a particular auxiliary basis.
From a computational point of view, there are, however,

several differences. DF uses optimized, precomputed basis sets
and requires thus only the computation of the inverse metric.
The latter operation is in principle expensive if direct linear
algebra techniques are used, but the inversion can be obtained
at a reduced cost by using local approximations.44,87 On the
other hand, Cholesky vectors have to be determined for each
system and each geometry. This is in practice not a major
source of overhead, as very efficient algorithms have been
recently proposed.51 It is also important to remark that CD
allows for easy and efficient parallelization of the code, as all of
the operations involving different Cholesky vectors can be
performed independently. As a consequence, parallelization is
easily achieved by distributing the Cholesky vectors among the
available processors, with a final reduction to be performed on
the computed quantities. In our implementation, we exploit
this feature by implementing all of the various operations with
the loop over the Cholesky vector as the most external one.
Even a simple-minded shared-memory parallelization with
OpenMP directives88 is already quite effective. Due to the
theoretical similarities between CD and DF, the scaling of the
various steps needed to perform a DF-WMK calculation are
equivalent to the ones observed in a CD-NEO one. In
particular, the leading computational step in DF-WMK is again
the transformation of the ERI into the MO basis, for which the
authors78 report a cost of MN( )b

3 , M being the number of
auxiliary basis functions, which is comparable with the

N N( )ch b
3 one for CD-NEO. The same applies to the

calculation of the MO gradient and to the optimization of
the WMK model function (i.e., the WMK microiterations),
which require one-index transformed quantities similar to the
ones reported here. While a thorough comparison of the
timings associated with the two implementations would be

beyond the scope of this work, preliminary tests performed on
the system used as a benchmark by Kreplin et al.78 show very
similar performances. Comparing the results reported in the
literature for systems of similar size as the ones reported in
section 4, we also observed overall similar timings. We stress
here that this is only a qualitative comparison and that a more
thorough comparison is needed to precisely assess the relative
performances of the two implementations.
As a general remark, because the Cholesky vectors are

precomputed, we expect a CD-based strategy to be particularly
attractive in a pre-asymptotic regime, i.e., when the sparsity of
the two-electron integrals matrix is not too pronounced. This
includes calculations on compact molecules but also
calculations that use large basis sets, especially if diffuse
functions are included. For even larger systems, there are two
factors that make a CD-based approach less competitive. First,
the Cholesky vectors may not fit in memory, requiring thus
slow disk I/O. Second, the sparsity of the two-electron
integrals is poorly exploited with CD. On the contrary, DF-
based approaches have the advantage of being operable using
the conventional integral-direct techniques, which allow one
not only to compute efficiently the required fitted integrals, but
also to achieve reduced (up to linear) scaling regimes when
assembling the Fock and Fock-like matrices thanks to the use
of advanced integral evaluation methods, such as the J-
engine,89 continuous fast multipole method,90 and various
screening techniques44,87,91 that efficiently exploit the sparsity
in the integrals. Therefore, for very large systems, DF
techniques are expected to achieve more significant speed
ups than the CD. It should be stressed, however, that
computational efficiency is not the only criterion of interest
when comparing two different approaches. While the accuracy
of the DF approach depends on the reliability of the fitting
basis, which needs to be optimized for both the quantum
chemistry model and the basis set, the accuracy of the CD is
solely controlled by the decomposition threshold, making this
approach virtually ab initio and model independentwe can
continuously move from an approximate to a near exact
description of the integrals. This feature is, in our opinion,
particularly attractive, especially for applications for which the
numerical accuracy of the results is fundamental.
It is also interesting to compare second-order strategies to

first-order ones, where the MOs and CI coefficients are
optimized separately in an alternating gradient spirit. First-
order methods require MO integrals with up to one virtual
index, and therefore the integral transformation costs

N N( )act b
4 , which can be reduced to N N N( )act b

2
ch using CD

or, analogously, DF. In the pre-asymptotic regime, this is the
leading contribution to the overall cost of such methods for
what concerns orbital optimization, making such methods
particularly efficient and well-suited for large-scale calculations.
Furthermore, first-order methods are well-suited for being
implemented in an integral-direct fashion, assembling the
various Fock matrices needed to compute the MO gradient in
the AO basis. This allows one to fully exploit the sparsity of the
ERI matrix in the asymptotic regime, achieving an overall
scaling that is between N N( )act b and N N( )act b

2 , as reported
by Hohenstein et al.65 in a recent paper. Furthermore, in such
an implementation the AO integrals and their contraction with
density matrices are performed using GPUs, achieving
impressive performances. For very large molecules, especially
when compact basis sets are used, this strategy is extremely
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efficient and bound to overperform any second-order
implementation. While a thorough comparison of such an
implementation with our CD-NEO strategy is out of the scope
of this work, preliminary tests show comparable performances
for medium−large systems, that is, as long as the Cholesky
vectors fit in memory and the sparsity of the ERI matrix is not
too prominent. On the other hand, first-order methods have no
guarantee of convergence and can require a very large number
of iterations. The robustness of second-order procedures is, in
our opinion, a very important feature, especially when one
considers the notorious difficulty of converging a CASSCF
calculation. Note that, in the pre-asymptotic regime, first-order
methods can greatly benefit from the use of CD.62 In
conclusion, the CD-NEO strategy represents a very good
compromise between robustness and efficiency for not-too-
large systems, as it was demonstrated in section 4.
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