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To characterize internal processes of an observer
conducting perceptual tasks, we developed an observer
model that combines the perceptual template model
(PTM), the attention mechanisms in the PTM framework
(Lu & Dosher, 1998), and uncertainty of signal detection
theory (Green & Swets, 1966). The model was evaluated
with a visual search experiment conducted in a range of
external noise, signal contrast, and target-distractor
similarity conditions. In each trial, eight Gabor patches
were shown in each of two brief intervals, with one
target at a different orientation from the distractors in
one of the presentations. Subjects were precued to a
subset of the stimuli (1, 2, 4, or 8) and asked to report (a)
which interval contained the target and (b) where the
target was. Individual roles of uncertainty and of
attention in visual search were investigated by
comparing models with and without an attention
component. The results showed that decision
uncertainty alone was sufficient to account for the
set-size effect, even in conditions with high
target-distractor similarity. Our theoretical model and
empirical results provide a coherent picture regarding
how visual information is selected and processed during
feature search.

Introduction

Selective attention to a location in space or to an
object has been a central topic in cognitive psychology
(Chun & Potter, 1995; Posner, 1980; Posner &
Cohen, 1984; Sperling & Melchner, 1978; Treisman &
Gelade, 1980; Wolfe, 1994), physiology (Desimone &
Duncan, 1995; Haenny, Maunsell, & Schiller, 1988;

Moran & Desimone, 1985; Reynolds, Chelazzi, &
Desimone, 1999), and brain imaging (Brefczynski
& DeYoe, 1999; Gandhi, Heeger, & Boynton, 1999;
Kanwisher & Wojciulik, 2000; Kastner, De Weerd,
Desimone, & Ungerleider, 1998; Martínez et al., 1999;
Somers, Dale, Seiffert, & Tootell, 1999; Watanabe
et al., 1998) since the 1970s (Carrasco, 2011; Itti, Rees,
& Tsotsos, 2005). It has been shown that selective
attention can improve performance accuracy or
response time relative to unattended locations or
unattended objects (e.g., Bashinski & Bacharach, 1980;
Downing, 1988; Duncan, 1984; Han, Dosher, & Lu,
2003; Nissen, 1985; Posner, 1978, 1980; Shiffrin &
Czerwinski, 1988; Sperling & Dosher, 1986), although
performance in attended and unattended conditions is
identical in some circumstances (Dosher & Lu, 2000a;
Lu & Dosher, 2000; Shiu & Pashler, 1994; Solomon,
2004). More recent work has suggested that the effects
of attention on accuracy and response time may be
dissociable (Smith, Ratcliff, & Wolfgang, 2004; Smith &
Ratcliff, 2009).

Historically, researchers have argued that selective
attention facilitates sensory analysis by strengthening
the sensory representation (Cheal, Lyon, & Gottlob,
1994; Corbetta, Miezin, Shulman, & Petersen, 1993;
Mangun, Hillyard, & Luck, 1993), redistributes limited
capacity mental processing resources required for
stimulus analysis (Bonnel & Miller, 1994; Henderson,
1996; Henderson & Macquistan, 1993; Palmer, Ames,
& Lindsey, 1993; Shiffrin, 1988), and/or eliminates
irrelevant stimuli (Shiu & Pashler, 1994) or masks (Enns
& Lollo, 1997). These intuitive or verbal analyses of the
potential roles of selective attention prompted us to
develop the external noise paradigm and the perceptual
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template model (PTM) theoretical framework in an
attempt to generate a systematic and quantitative
analysis of the mechanisms of attention (Lu & Dosher,
1998). The paradigm adds systematically increasing
amounts of external noise to the visual stimulus and
observes the effect on a perceptual task in attended
and unattended conditions. Effects of attention are
identified as one of three mechanisms: as improved
filtering of external noise or distractors through
retuning of perceptual templates (external noise
exclusion), as amplification of the stimulus or reduction
of internal noise sources (stimulus enhancement),
or as reduction of contrast gain control (internal
multiplicative noise reduction) or a mixture of these
three mechanisms.

In a series of studies using the external noise
method in spatial cueing, we showed that external noise
exclusion was a major mechanism of spatial attention
in complex multilocation displays with either central or
peripheral location cues (Dosher & Lu, 2000a, 2000b;
Lu & Dosher, 2000), while stimulus enhancement was
associated primarily with peripheral cueing of location
(Lu & Dosher, 2000). Additionally, the magnitude of
external noise exclusion increases with display size—
external noise exclusion played little role in two-location
displays, but it drastically reduced contrast thresholds
in eight-location displays (Dosher & Lu, 2000a).
Carrasco and colleagues (Carrasco, Penpeci-Talgar, &
Eckstein, 2000; Yeshurun & Carrasco, 1998) have also
shown attention improvements in noiseless displays
with peripheral precues (but see Gould, Wolfgang, &
Smith, 2007, for discussions on decision uncertainty).
Moreover, that spatial attention excludes unwanted
information has been consistently demonstrated at
the neuronal level in monkey single-cell recording
from V2 (Luck, Chelazzi, Hillyard, & Desimone, 1997;
Reynolds et al., 1999), V4 (Haenny et al., 1988; Luck
et al., 1997; Moran & Desimone, 1985; Reynolds et al.,
1999; Spitzer, Desimone, & Moran, 1988), Inferior
Temporal Cortex (IT) (Moran & Desimone, 1985),
and Middle Temporal (MT) and Medial Superior
Temporal (MST) areas (Treue & Andersen, 1996;
for a review, see Desimone & Duncan, 1995) and at
the neural population level by functional imaging
(Kastner et al., 1998; Kastner & Ungerleider, 2000;
Lu, Li, Tjan, Dosher, & Chu, 2011). Evidence for
stimulus enhancement has also been documented in V4
(Reynolds, Pasternak, & Desimone, 2000; Williford &
Maunsell, 2006) and MT (Martínez-Trujillo & Treue,
2002) in single-unit recordings and a host of visual
areas in functional MRI (Brefczynski & DeYoe, 1999;
Gandhi et al., 1999; Kanwisher & Wojciulik, 2000;
Kastner et al., 1998; Li, Lu, Tjan, Dosher, & Chu, 2008;
Martínez et al., 1999; Somers et al., 1999; Watanabe
et al., 1998).

The previous PTM studies on mechanisms of
attention have been mostly carried out using the spatial
cueing paradigm with stimuli and perceptual tasks in

which the templates for distinct targets were essentially
nonoverlapping or orthogonal (but see Dosher & Lu,
2013; Hetley, Dosher, & Lu, 2014; Liu, Dosher, & Lu,
2009, which tested the PTM for similar discriminations
based on an elaboration of the PTM for nonorthogonal
judgments in Jeon, Lu, & Dosher, 2009). In the current
study, we extended the investigation of visual search
to test regimes that require the discrimination of very
similar, nonorthogonal targets and to high-contrast
regimes typical of most of the classical attention
studies (Posner, Nissen, & Ogden, 1978; Sperling &
Weichselgartner, 1995; Treisman & Gelade, 1980) and
to visual search.

Visual search for a target among distractor
elements (e.g., finding a particular object among many
others) is one of those classical tasks that have been
typically studied in a high-contrast, supra(detection)
threshold regime often with similar stimuli. In visual
psychophysics, investigations have focused on the
set-size effect in visual search accuracy (see Palmer,
Verghese, & Pavel, 2000, for a review). Although spatial
attention is known to integrate several features into an
object in visual search (Treisman & Gelade, 1980), for
high-contrast, near-orthogonal stimuli without external
noise or masks, limited-capacity attention processes
(i.e., improved perceptual quality on the attended
location) have not been found. Instead, apparent
set-size effects generally reflect statistical uncertainty
in unlimited-capacity signal detection models (Davis,
Shikano, Peterson, & Keyes Michel, 2003; Eckstein,
Thomas, Palmer, & Shimozaki, 2000; Fahle, 1991;
McLean, Palmer, & Loftus, 1997; Palmer, 1994; Palmer
et al., 1993, 2000; Verghese & Stone, 1995), with more
difficult conjunction searches being associated with a
complex decision structure (Eckstein, 1998). Although
it has been generally accepted that the set-size effects in
visual search can be accounted for by spatial uncertainty
in most cases, some researchers have suggested that
spatial attention may also play a role in addition to
spatial uncertainty in visual search in some stimulus
conditions or tasks (Baldassi & Burr, 2000; Morgan,
Ward, & Castet, 1998; Põder, 1999; Rosenholtz, 2001).

We hypothesize that the conditions under which an
effect of spatially cued attention is substantial should
correspond to the circumstances in which attention
effects over and above uncertainty should occur in
visual search. Our analysis of the stimuli used in visual
search studies in the literature suggests that many of the
classical visual search experiments have been carried out
using stimulus conditions (high contrast, zero external
noise, moderate or low similarity), where attention
effects on perception are least likely to be found.

In the present study, we extended the original single-
channel and single-location PTM model to develop
a new model of perception and spatial attention that
consists of a multichannel and multilocation sensory
front end and a decision structure with both feature
and location uncertainties, as well as conducted a visual



Journal of Vision (2021) 21(3):1, 1–24 Baek, Dosher, & Lu 3

search experiment in a range of external noise and
contrast conditions for low and high template overlap
(target-distractor similarity). The new comprehensive
model allowed us to predict the effects of attention
limits that operate in visual search in the entire stimulus
space (external noise, contrast, target precision) in both
cueing and visual search paradigms, as well as evaluate
the contributions of stimulus enhancement, external
noise exclusion, multiplicative noise reduction, and
decision uncertainty in those paradigms. The empirical
study may help us align the results from spatial cueing
and visual search.

The multichannel and multilocation
perceptual template model

In this section, we describe the development
of the multichannel and multilocation perceptual
template model for visual search and derive signature
performance patterns of a number of attention
mechanisms. We focus on an odd-ball visual search
task in which the observer is presented with two brief
displays and required to decide which one of the two
displays contained a target. The two displays contain
an equal number of items, one with only distractors
(Gabors at the same orientation) and the other with a
target that is oriented differently from the distractors.
The orientation of the target varies from trial to trial:
Sometimes it is similar to that of the distractors, but
other times it is very dissimilar.

Our development extends the original PTM (Lu
& Dosher, 1998, 1999; see Lu & Dosher, 2008, for
review) in several important ways. First, the new model
considers detection or discrimination in the feature
domain as well as the contrast domain. The original
PTM and other observer models (e.g., the linear
amplifier model; Pelli, 1985) focused on the contrast
domain, while subsequent extensions of the PTM were
developed to account for feature similarity (Dosher &
Lu, 2013; Hetley et al., 2014; Jeon et al., 2009), and
the current development expands on this approach (see
below).

Second, all previous models are single-channel
models that assume each input stimulus activates only
one perceptual template. In contrast, the new model
considers the existence of multiple templates and
concurrent activation by a single input. This allows
us to model target-unknown situations. Finally, by
incorporating spatial uncertainty calculations, the
model can explain observers’ performance in visual
search tasks. In the following sections, we start with the
original PTM and describe the stochastic version of
the new model. An analytical version of the model is
described in the Appendix.

The original PTM

In the original (single channel) PTM (Figure 1; Lu &
Dosher, 1998, 1999, 2008), each input stimulus—either
with the signal embedded or not—is first processed
by a perceptual template that has certain selectivity
for stimulus characteristics but is broad enough to
allow external noise to affect performance. This model
was designed to account for performance in detection
tasks or discrimination tasks with orthogonal or
near-orthogonal stimuli. The output of the template
exhibits a certain magnitude of internal activation if
the stimulus matches the template or no activation
if the stimulus does not. It is then processed by a
nonlinear transducer function (Legge & Foley, 1980;
Nachmias, 1981; Nachmias & Sansbury, 1974) and
corrupted by multiplicative and additive internal
noises. While the magnitude of the multiplicative
internal noise is proportional to the total energy of the
stimulus, the magnitude of the additive internal noise
is independent of stimulus energy. In a two-interval
alternative forced-choice (2iAFC) detection task, two
input stimuli, one with signal present and the other
without, are processed by the PTM, resulting in two
noisy internal representations. If the magnitude of the
representation of the signal present stimulus is greater,
the observer makes a correct response. If the magnitude
of the representation of the signal present stimulus
is less, the observer makes an incorrect response. The
behavior of the observer can be modeled with the
probability distributions of the internal representations
of the signal-present and signal-absent stimuli. The
observer will have better performance when the
two distributions are separated to a greater extent
(large mean difference and/or small variances), often
associated with high-stimulus contrasts, low levels of
external noise, and/or small internal noises.

The PTM includes two forms of nonlinearity—
transducer nonlinearity and multiplicative noise (or
contrast gain-control). Both forms of nonlinearity
make external noise nonadditive and nonindependent.
All our experimental work related to the PTM indicated
that both forms of nonlinearity were necessary to
account for the data (see Lu & Dosher, 2008, for a
review).

Lu and Dosher derived the signature performance
patterns of three mechanisms of attention based on
the PTM (Dosher & Lu, 2000a, 2000b; Lu & Dosher,
1998, 1999, 2000): stimulus enhancement, external
noise exclusion, and multiplicative noise reduction.
With stimulus enhancement (Figure 2a), attention
amplifies the gain of the perceptual template on the
stimulus. This mechanism is mathematically equivalent
to a reduction of internal additive noise. For stimuli
in zero or low levels of external noise, it increases the
separation between the distributions of the two internal
representations and thus improves the observer’s
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Figure 1. The original PTM model. Internal processes for detecting the target in a 2iAFC task.

performance. For stimulus in high levels of external
noise, the mechanism is not effective. With external
noise exclusion (Figure 2b), attention improves the
filtering of external noise by changing the tuning curve
of the perceptual template. Studies suggest that spatial
attention excludes unwanted information by sharpening
selectivity of the cellular signal (Haenny et al., 1988;
Spitzer et al., 1988) and/or weighing the input from the
attended region/object more heavily without changing
cellular tuning characteristics (Desimone & Duncan,
1995; Luck et al., 1997; Moran & Desimone, 1985;
Reynolds et al., 1999; Treue & Maunsell, 1996). For
stimulus embedded in high levels of external noise,
effective filtering of external noise reduces the variance
of the internal representations. Although the distance
of signal-present and signal-absent distributions is not
changed, less noisy internal representations reduce the
overlap between the two probability distributions and
thus improve observers’ performance. The mechanism
is not effective in improving performance for stimuli
in zero or low external noise. With multiplicative noise
reduction (Figure 2c), attention reduces the variance
of the internal representations in all external noise
conditions. The mechanism improves performance in all
external noise conditions. This original PTM was used
to account for effects of spatial precueing in attention
in a range of tasks and situations (Dosher & Lu, 2000a,
2000b; Lu & Dosher, 1998, 1999, 2000).

The original PTM was subsequently extended
to discrimination between similar (nonorthogonal)
stimuli (Jeon et al., 2009). In this case, the magnitude

of activation in the template that mismatches the
stimulus is positive because the stimuli are similar.
The same basic PTM narrows the templates for
experimental stimuli; this increases the differences in
response to different stimuli, thereby increasing their
discriminability. The patterns of response for the three
mechanisms of attention are similar, except that both
now show effects even at very high stimulus contrasts
(at the asymptote of the psychometric functions) (see
Dosher & Lu, 2015; Hetley et al., 2014). The extended
PTM accounted for spatial precueing of attention
that varied in external noise and in stimulus similarity
(Dosher & Lu, 2015; Hetley, et al., 2014). In these
experiments, the assumption of the single-channel PTM
of two templates matched to the stimuli (signal known)
is engaged by collecting data for different similarity
discriminations in different blocks.

In the current application, we extend the PTM
model further to multiple locations and multiple
templates operating simultaneously and apply it to
a standard feature visual search task with different
display sizes. This new multichannel, multilocation
model differs from the original and extended PTM
in that it takes inputs from multiple spatial locations
(the search locations) and from multiple templates
(target unknown). We examine whether any of the
three attention mechanisms are at play in circumstances
where visual spatial attention has been shown to
be most impactful yet are rarely tested in visual
search experiments. Alternatively, the effects of
display size on performance in standard visual search
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Figure 2. Mechanisms of attention in the PTM model. Internal
processes for detecting target in a 2iAFC task. (a) Stimulus
enhancement mechanism. (b) External noise exclusion
mechanism. (c) Multiplicative noise reduction mechanism. In all
diagrams, blue dashed lines show how attention changes
internal processes.

may reflect simply irreducible effects of channel
uncertainty.

Multiple channels

Physiological evidence indicates that neural receptors
or visual detectors are selectively responsive to features
of the visual input, such as orientation or spatial
frequency. For example, a cell in the primary visual
cortex responds best to stimuli within a specific range
of orientations but less to others (De Valois, William
Yund, & Hepler, 1982; Hubel & Wiesel, 1962, 1974).
The firing rate of a neuron is strongest to the stimulus
in its preferred orientation with some variance and
decreases as the input orientation differs from the
preferred orientation (Bradley, Skottun, Ohzawa, Sclar,
& Freeman, 1987).

In the elaborated PTM model, we assume that the
visual system has multiple orientation templates that
are selectively tuned to six different orientations (i.e.,
5°, 20°, 35°, 40°, 42.5°, and 45° counterclockwise
from the horizontal). The model with multiple known
channels for the simple feature stimuli (Gabors) used
in the current study corresponds closely with known
physiological properties of the visual system, although
the assumption may not hold for more complex
stimuli, and elaborated models such as those based on
feature maps (Itti & Koch, 2000) may prove useful.
A single input is processed through all the templates
with different tuning profiles and produces different
outputs from them. In each channel, the output of
the template is processed in the same way as in the
original PTM: It passes through the signal pathway and
gain-control pathway. Figure 3 shows a schematic of
the multiple-channel model.

Information integration: Integration of multiple
channels

The visual system combines outputs from all
channels. Since the number of internal responses is
equal to the number of templates, the visual system
needs to integrate all responses to build a single percept
of the stimulus. The most common integration rule in
visual psychophysics is the maximum rule (Graham,
1989; Nolte & Jaarsma, 1967): If the target identity
is known to the observer (e.g., searching for a target
with fixed orientation among distractors with various
orientations), the system compares all the internal
responses and chooses the template with the maximum
output to make its response; On the other hand, if the
target identity is not known but the distractor identity is
known (e.g., searching for a target with any orientation
among distractors with a single orientation), the system
could use a variation of the max rule—the maximum of
differences—to decide whether the input is a distractor
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Figure 3. Multiple channels and integration of channel information. A single input is independently processed in multiple channels.
Different channels have perceptual templates with different tuning profiles. Internal responses from the channels are integrated by
the “max of difference” rule.

or not. Since we aimed to model internal processes
during visual search in which the target identity (i.e.,
orientation) is unknown, the model assumes that the
system computes the differences of responses between
the distractor-preferring template (i.e., template tuned
to 45°) and templates tuned to all possible target
orientations (as responses in the five other templates in
the model) and uses the maximum of these differences
to make a decision. As the maximum of the differences
(between the activations in the distractor template and
any target template) is greater, the observer is more
likely to report target presence. For a low-precision
stimulus (a target obviously different from distractors),
for example, responses would be strongest in the
channel with its template matched to the target but very
small in the channel with its template matched to the
distractor. Greater response differences of the distractor
channel from other channels therefore indicate higher
probabilities of being a target, not a distractor. In
contrast, for a high-precision stimulus such as a slightly
tilted target, the response difference would be very
small or even negative because the target and distractor
templates overlap a considerable extent. This makes the
max difference small, so that the task is difficult.

Information integration: Integration of multiple
locations

In the next step, the model integrates information
from all items in a display and chooses the stimulus

with the maximum amount of evidence favoring a
target to decide the target location. Figure 4 shows a
full description for set-size 2 display with two intervals.
Integration of information from multiple locations
with the maximum rule has well accounted for the
set-size effects in psychophysical studies supporting
the uncertainty model (Eckstein et al., 2000; Graham,
Kramer, & Yager, 1987; Palmer et al., 2000; Shaw, 1982,
1984; Verghese & Nakayama, 1994; Verghese & Stone,
1995). In a 2iAFC task, the observer could make a
correct response for detecting the target interval in two
different ways: (a) The integrated response to a target is
greater than all integrated responses in the target-absent
interval, and (b) the integrated response to a distractor
in the target interval is greater than all responses in the
target-absent interval by chance. A correct response in
detecting both target interval and target location could
be made only in the first case.

Model predictions

Figures 5 and 6 show signature performance
patterns for three mechanisms of attention,
stimulus enhancement, external noise exclusion, and
multiplicative noise reduction, in visual search. Each
panel shows the probability of making a correct
response (pc) as a function of target-distractor angular
difference for different set-sizes in both target interval
and location identification tasks (Figure 5) and in target
interval identification (Figure 6). Compared to the case
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Figure 4. The multichannel, multilocation PTM for visual search with set-size 2 in a 2iAFC task. The target appears at Location 1 in
Interval 1.
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Figure 5. Model predictions for three attention mechanisms. Each panel shows the probability of making a correct response (pc) as a
function of target-distractor angular difference for different set-sizes in both target interval and location identification tasks. No
attention effects, stimulus enhancement, external noise exclusion, and multiplicative noise reduction mechanisms are illustrated in
each row.
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Figure 6. Model predictions for three attention mechanisms. Each panel shows the probability of making a correct response (pc) as a
function of target-distractor angular difference for different set-sizes in target interval identification. No attention effects, stimulus
enhancement, external noise exclusion, and multiplicative noise reduction mechanisms are illustrated in each row.
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in which there is no attention effect in visual search (first
row), stimulus enhancement significantly increases pc
only for small set-sizes in low signal contrast conditions
(second row), and external noise exclusion increases pc
only for small set-sizes in high external noise conditions
(third row). Multiplicative noise reduction mechanism
increases pc for small set-sizes in all signal and external
noise conditions (fourth row).

Experiment

It is not possible to cover the entire stimulus space
in a single experimental study. Here, we conducted
a visual search experiment in three of the most
important stimulus regimes based on the PTM analysis:
(a) low-contrast signal without external noise, (b)
high-contrast signal without external noise, and (c)
high-contrast signal with high external noise. We
used a relevant set-size manipulation (Palmer et al.,
1993) to control sensory processes such as lateral
masking (Palmer et al, 1993). In this relevant set-size
manipulation, stimuli are presented in all locations in
all trials, but the relevant locations (set-size) for visual
search are marked by precues.

Methods

Observers
Three observers, the first author and two naive

observers with no prior experience in psychophysical
experiments, participated in the study. All observers
had normal or corrected-to-normal vision. The study
protocol was approved by the institutional review board
at the University of Southern California.

Apparatus
The experiment was conducted on an IBM PC

compatible computer, running MATLAB (Mathworks,
Natick, MA, USA) with Psychtoolbox (Brainard, 1997;
Pelli & Zhang, 1991) and Eyelink Toolbox (Cornelissen,
Peters, & Palmer, 2002) extensions. The stimuli were
displayed on a Hewlett-Packard 19-in. monitor with a
100-Hz refresh rate and a 1,024 × 786-pixel resolution.
A special circuit (Li, Lu, Xu, Jin, & Zhou, 2003)
was used to generate a monochromatic signal with a
high grayscale resolution (> 12.5 bits). Gray levels
were linearized using a psychophysical procedure
such that available contrasts ranged from –100% to
100% (Lu & Dosher, 2013). All displays were viewed
binocularly with natural pupil at a viewing distance
of approximately 97 cm in dim light. A chinrest was
used for observers to maintain their head position and
fixation throughout the experiment.

Observer eye movement was recorded using an SR
Research Desktop-Mount EyeLink 1000 system (SR
Research, Osgoode, ON, Canada) with a sampling rate
of 1,000 Hz. The eye tracker was placed below the
monitor, 60 cm from the observer’s dominant eye.

Stimuli
The target and distractors were approximately equal

spaced on an imaginary circle with a radius of 5°
from the fixation point. The position of each item was
randomly jittered around its original location on the
circle by randomly changing its vertical and horizontal
positions independently within 0.5° of visual angle in
each trial.

Each individual stimulus was an elliptical Gaussian-
windowed sinusoidal grating (Gabor). The global
orientation of each stimulus was aligned to its local
orientation using elliptical Gabors with its profile
described by

L(x, y)= L0

[
1.0 + c sin(2π f (x cos θ ± y sin θ ))

× exp

(
− (2x′)2 + y′2

2σ 2

) ]
, (1)

where (x′, y′) = (x cox θ + y sin θ , −x sin θ +
y cos θ ), θ is the orientation of the Gabor, c is the
signal contrast, and the background luminance L0
was set in the middle of the dynamic range of the
display (Lmin = 1 cd/m2; Lmax = 42 cd/m2) (Hu, 2015).
The orientation of the distractors was 45° from the
horizontal, and the target was tilted to 2.5°, 5°, 10°,
20°, and 40° counterclockwise from the orientation
of distractors. The Gabors were rendered on a 60 ×
60-pixel grid, extending 1° × 1° of visual angle.

In a given trial, external noise images were made
of 2 × 2-pixel elements (0.03° × 0.03°) with jointly
independent, identically distributed randomly generated
contrasts. The contrast of each noise element was
drawn independently from a Gaussian distribution with
a mean of 0 and a standard deviation of 0.33. Because
the maximum achievable contrast is 1.0, a sample with
a standard deviation of 0.33 conforms reasonably well
to a Gaussian distribution.

Each display always included eight stimuli. To control
sensory effects (e.g., lateral masking) on the set-size
effects, we manipulated the relevant set-size using
central precues to indicate possible target locations,
instead of manipulating the number of displayed
stimuli (Palmer, Ames, & Lindsey, 1993). The precues
consisted of lines extending 1.5° from the center of
the display to the locations of the relevant stimuli (on
the imaginary circle). The thickness of all lines was
0.017°. The relevant set-size manipulation is illustrated
in Figure 7a.



Journal of Vision (2021) 21(3):1, 1–24 Baek, Dosher, & Lu 11

Figure 7. (a) Relevant set-size conditions and (b) an example of the trial sequence of the psychophysical experiment.

Design
We tested four relevant set-sizes (one, two, four,

and eight items). The distractors were tilted 45° from
vertical. The target differed from the distractors by
one of five angular differences (2.5°, 5°, 10°, 20°,
and 40°). There were three external noise × contrast
conditions: low contrast/no noise (c = .25, Next = 0),
high contrast/no noise (c = 1, Next = 0), and high
contrast/high noise (c = 1, Next = .33). Thus, the total
number of tested conditions was 60 (= 4 set-sizes
× 5 angular differences × 3 noise-signal contrasts).
All conditions were intermixed in each session. All
observers ran 20 sessions of 300 trials, for a total of
6,000 trials (100 trials per experimental condition).

Procedure
An example trial sequence is illustrated in Figure 7b.

Each trial began with the observer fixating on a small

dot for 1,000 ms, followed by a central precue (1,000 ms)
indicating potential target locations, the first stimulus
display (100 ms), an interstimulus interval (1,000 ms),
the second stimulus display (100 ms), and two response
displays. The stimulus sequence consisted of five
stimulus frames of 20 ms each: external noise, signal,
external noise, signal, and external noise. In the first
response display, observers were asked first to identify
which interval contained the target with a keyboard.
Auditory feedback was provided after each incorrect
target interval response. Then, in the second response
display, placeholders (circles with a 1° radius) appeared
at all possible target locations. Observers were required
to indicate the target location with a mouse click on
one of the placeholders. Auditory feedback was also
provided after each incorrect location response.

Observers were instructed to maintain fixation
throughout each trial. To discourage eye movements,
gaze position of the dominant eye was tracked. If the
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eye position deviated more than 1.5° of visual angle
from the fixation, a low-tone beep was used to inform
the observer, the trial was discarded, and the condition
was repeated in a trial randomly placed within the
remaining trials of the session. Eye-tracker calibration
was performed in the beginning of each session, with
drift correction in the beginning of each block (30
trials). Each experimental session consisted of 10 blocks
and lasted about 60 min.

Results

Observers successfully maintained fixation in most
trials. They broke fixation in only on average 4.5% of
trials (7.5%, 3.8%, and 2.1% for observers BH, JB, and
KL, respectively), and these trials were repeated within
the block.

We calculated the fraction of trials in which the
observer made correct responses for the target interval
(detection task) and for both target interval and location
(both tasks). A repeated-measures analysis of variance
was conducted on probability correct (pc) to examine
effects of set-size and target-distractor orientation
difference. For the detection task, performance
significantly decreased as set-size increased (F(3, 6) =
647.53, p < 0.001) and increased as target-distractor
orientation difference increased (F(4, 8) = 26.43,
p < 0.001). The interaction between set-size and
target-distractor difference was also significant (F(12,
24) = 9.85, p < 0.001). All main effects and the
interaction were significant for percent correct in “both
tasks” (F(3, 6) = 214.11, p < 0.001 for set-size; F(4, 8)
= 40.49, p < 0.001 for target-distractor difference; and
F(12, 24) = 109.48, p < 0.001 for interaction). If the
location errors were made due to spatial uncertainty
alone, probability of choosing locations should be the
same over all distractor locations in incorrect trials. As
shown in Figure 8, incorrect responses of the location
task were not focused on locations next to the target.
The probability of choosing the adjacent locations (i.e.,
±1) was 0.068 and that of choosing far locations (i.e.,
±2, ±3, and ±4) was 0.061 (0.061 vs. 0.050 for BH;
0.053 vs. 0.067 for JB; 0.089 vs. 0.064 for KL).

The analytic model (Equation A16 in Appendix)
was fitted to the probability of correct responses in
identifying both target interval and location using
a least squares estimation procedure. In the model,
probability correct is a function of observer parameters
(σm, the proportion constant of multiplicative internal
noise; σ a, the standard deviation of additive internal
noise; βmax, the maximum gain of the template to
the preferred stimulus; βσ , the bandwidth of the
template; γ , transducer nonlinearity) and stimulus
parameters (σ ext, the standard deviation of external
noise; c, signal stimulus contrast; θ , target-distractor
orientation difference; SS, set-size). In the model-fitting

Figure 8. Probability of choosing locations in the set-size 8
condition as a function of target-response distance. A
target-response distance of 0 indicates a correct response;
responses at all the other target-response distances are
incorrect in the target location task.

procedure, all observer parameters were the same for
all stimulus conditions in the experiment and free to
vary. The model was fitted to the aggregated data across
observers as well as individual data separately. Model
parameters were adjusted using a gradient descent
method to minimize the error function, the sum of the
squared differences between the predicted and observed
probability correct. The best-fitting parameters are
listed in Table 1, and the corresponding PTM model
predictions are plotted in Figure 9 along with the data.
Even without the operation of attention mechanism
factors, psychophysical data were well accounted for by
the model (r2 = .9809), indicating the ability of a pure
spatial uncertainty model in accounting for the bulk of
the data.

The same fitting procedure was also carried out
with the model with either one or both of the two
primary attention mechanisms (stimulus enhancement
and external noise exclusion) applied to the data in
the set-size 1 condition. (There is no evidence in the
current spatial attention literature using the PTM for
the third, multiplicative noise mechanism.) In addition
to observer parameters of the no-attention model,
there are multipliers on additive internal noise (Aa)
for the stimulus enhancement mechanism and on the
maximum gain (Af) and width (Afσ ) of the external
noise filter for the external noise exclusion mechanism.
These attention parameters were applied to fit models
to only data in the set-size 1 condition. Thus, models
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Observer Model βmax βσ (°) γ σm σ a Af(1) Afσ (1) Aa(1) r2 F p

All NE + SE 8.36 14.09 1.06 0.0005 0.6947 0.97 1.00 1.00 0.9810 — —
NE 8.36 14.09 1.06 0.0005 0.6947 0.97 1.00 — 0.9810 0.00 0.986
SE 8.42 14.00 1.06 0.0004 0.6993 — — 1.00 0.9809 0.19 0.827
No attention 7.84 14.07 1.06 0.0000 0.6510 — — — 0.9809 0.13 0.943

BH NE + SE 6.34 10.99 1.00 0.0009 0.4505 1.00 1.00 1.00 0.9714 — —
NE 6.33 10.99 1.00 0.0009 0.4498 1.00 1.00 — 0.9714 0.01 0.935
SE 6.34 11.01 1.00 0.0009 0.4493 — — 1.00 0.9714 0.00 0.998
No attention 6.30 10.99 1.00 0.0002 0.4476 — — — 0.9714 0.01 0.998

JB NE + SE 2.90 15.25 1.36 0.0000 0.2423 0.87 1.00 1.00 0.9516 — —
NE 2.90 15.25 1.36 0.0000 0.2423 0.87 1.00 — 0.9516 0.00 1.000
SE 2.77 14.71 1.32 0.0000 0.2363 — — 1.00 0.9468 2.53 0.089
No attention 2.77 14.71 1.32 0.0000 0.2363 — — — 0.9468 1.69 0.181

KL NE + SE 5.94 15.09 1.00 0.0007 0.5007 1.00 1.00 1.00 0.9713 — —
NE 5.25 14.90 1.00 0.0009 0.4463 1.00 1.00 — 0.9712 0.26 0.615
SE 5.94 15.09 1.00 0.0007 0.5007 — — 1.00 0.9713 0.00 1.000
No attention 5.54 14.39 1.00 0.0089 0.4748 1.00 1.00 1.00 0.9712 0.04 0.989

Table 1. Parameters of the best-fitting model and results of nested model tests (probability correct in detecting the target interval and
location). Notes: NE = external noise exclusion; SE = stimulus enhancement; βmax = maximum gain of template; βσ = bandwidth of
template; γ = exponent of the nonlinear transducer function; σ a = additive noise; σm = multiplicative noise.

with attention parameter(s) for set-size 1 and models
without attention parameter(s) for other set-sizes were
concurrently fitted for each attention mechanism. The
attention parameters had constraints of 0 ≤ Aa ≤ 1,
Af ≤ 1, and 0 ≤ Afσ ≤ 1. The models with attention
factors showed slightly better goodness of fit than the
model without attention factors: r2 = .9809, .9810,
and .9810 for stimulus enhancement, external noise
exclusion, and both mechanisms, respectively. However,
these differences are quantitatively small.

To quantitatively evaluate contributions of the
mechanisms of attention involved in visual search,
we compared the goodness of fit of several models
using the F test for nested models. For two models
with kfull and kreduced parameters, the F statistic is
defined as

F (d f1, d f2) =
(
r2f ull − r2reduced

)
/d f1(

1 − r2f ull
)

/d f2
, (2)

where df1 = kfull − kreduced, df2 = N − kfull, and N is the
number of data points.

For the average data across all the subjects, we found
that models with additional attention parameters did
not significantly improve the goodness of fit over the
model without any attention parameters (F(2, 52) =
0.19, p = 0.827 for external noise exclusion; F(1, 52)
= 0.00, p = 0.986 for stimulus enhancement; and F(3,
52) = 0.13, p = 0.943 for both mechanisms). These
results suggest that enhanced perceptual quality for the
attended items is not a major component to explain
search accuracy and that statistical uncertainty alone is
sufficient to explain the observed set-size effects.

To investigate individual differences in attention
effects, we also fit the model to each observer’s data.
The results were consistent with those from the average
data. The model without any attention mechanism well
accounted for the data (r2 ranged from .9468 to .9714),
and no attention mechanism was necessary to account
for the data of any observer (see Table 1).

We also fitted the analytic model (Equation A17
in Appendix) to probability correct in detecting the
target interval, ignoring performance in the localization
task (Table 2 and Figure 10). The average data from
the experiment were well accounted for by the model
without any attention mechanism but solely location
uncertainty (r2 = .9676) and the models with attention
mechanisms (r2 = .9676 for all stimulus enhancement,
external noise exclusion, and both mechanisms).
Differences in the goodness of fit between the models
with and without attention mechanisms were not
statistically significant (F(2, 52) = 0.00, p = 0.997 for
external noise exclusion; F(1, 52) = 0.01, p = 0.909 for
stimulus enhancement; and F(3, 52) = 0.00, p = 1.000
for both mechanisms). The conclusion is also supported
by individual data analysis (see Table 2). These results
suggest that we can account for observers’ performance
in the visual search task without any spatial attention,
with all differences between set sizes reflecting the
statistical effects of location uncertainty.

Discussion

To characterize internal processes of an observer
conducting visual search, we developed an observer
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Figure 9. The best-fitting model. Probability correct in detecting the target interval and location. Curves represent the predictions of
the model, and filled circles represent data from the psychophysical experiment (aggregated data in the first row and individual data
in the following rows). Different colors represent set-size conditions (blue: SS1; red: SS2; yellow: SS4; purple: SS8). Dashed lines show
chance levels for different set-size conditions (.5, .25, .125, and .0625 for set-sizes 1, 2, 4, and 8, respectively).
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Observer Model βmax Βσ (°) γ σm σ a Af (1) Afσ (1) Aa(1) r2 F p

All NE + SE 5.76 13.37 1.10 0.0001 0.4793 1.00 1.00 1.00 0.9676 — —
NE 5.96 13.12 1.09 0.0007 0.4973 1.00 1.00 — 0.9676 0.01 0.909
SE 5.95 13.14 1.09 0.0021 0.4968 — — 1.00 0.9676 0.00 0.997
No attention 5.98 13.11 1.09 0.0000 0.4982 — — — 0.9676 0.00 1.000

BH NE + SE 6.25 11.12 1.00 0.0010 0.4472 1.00 0.99 1.00 0.9559 — —
NE 6.13 11.10 1.00 0.0001 0.4391 1.00 0.95 — 0.9559 0.04 0.844
SE 6.02 11.06 1.00 0.0001 0.4315 — — 1.00 0.9558 0.05 0.948
No attention 6.02 11.06 1.00 0.0001 0.4316 — — — 0.9558 0.04 0.991

JB NE + SE 3.49 22.08 1.50 0.0001 0.2587 0.74 1.00 1.00 0.9162 — —
NE 3.49 22.06 1.50 0.0001 0.2589 0.74 1.00 — 0.9162 0.00 1.000
SE 4.07 24.07 1.55 0.0000 0.3085 — — 0.59 0.9107 1.70 0.192
No attention 3.47 18.63 1.42 0.0000 0.2706 — — — 0.8965 4.07 0.011

KL NE + SE 5.73 14.13 1.11 0.0011 0.4816 1.00 1.00 1.00 0.9016 — —
NE 5.73 14.13 1.11 0.0011 0.4816 1.00 1.00 — 0.9016 0.00 1.000
SE 6.15 13.86 1.09 0.0006 0.5188 — — 1.00 0.9013 0.06 0.938
No attention 6.14 13.86 1.09 0.0000 0.5179 — — — 0.9013 0.04 0.989

Table 2. Parameters of the best-fitting model and results of nested model tests (probability correct in detecting the target interval
only).

model that combines the PTM, the attention
mechanisms in the PTM framework (Lu & Dosher,
1998), and decision uncertainty in signal detection
theory (Green, 1961; Green & Swets, 1966). Previous
studies based on the PTM framework have focused
on the role of spatially cued attention in altering the
internal representation of sensory information while
controlling structural uncertainty as much as possible
(Dosher & Lu, 2000a, 2000b; Lu & Dosher, 1998,
2000; Lu, Liu, & Dosher, 2000). In these studies,
stimulus discrimination tasks, the location of the
target was indicated by a response cue, and external
noise exclusion was the primary mechanism (Dosher
& Lu, 2000a, 2000b; Lu & Dosher, 1998, 2000; Lu
et al., 2000), a pattern that held for either low- or
high-precision discrimination tasks (Hetley et al.,
2014). The differences between the current visual
search experiment and those attention experiments are
considered below.

The current study differed from those explicit
studies of spatial attention to ask whether the same
mechanisms, which improved sensory coding and
performance, also operated to distribute attention
resources among the stimuli in different display sizes
in standard visual search. It extends the previous
investigations of the role of attention over and above
location uncertainty (Dosher & Lu, 2000a, 2000b;
Lu & Dosher, 1998, 2000; Lu, Liu, & Dosher, 2000)
or target similarity (Hetley et al., 2014) in those
studies by examining tasks with varying precision
in the target discrimination (stimulus unknown)
and integrating the effects of stimulus contrast and
external noise, factors by which the PTM accounts
for psychophysical performance over a large range of

stimulus manipulations in visual search. That is, it
explicitly considers both target variation (by assuming
multiple overlapping templates to represent the oriented
stimuli) and multiple locations. By assuming multiple
overlapping templates for a single input and using the
power of the PTM, the current model successfully
characterized visual search performance in a wide range
of conditions, including signal intensity, external noise
level, discrimination precision, and target identity and
location uncertainties with only five parameters.

The contributions of decision uncertainty and
attention in a visual search task were evaluated with
the model. We did not find any contribution of
attention—or effects of different display sizes on the
sensory quality of the stimulus representations. Target
identity and location uncertainties were sufficient to
account for the observed set-size effects in different
stimulus regimes. The results are consistent with
decision uncertainty-based theories of visual search
(Davis et al., 2003; Eckstein, 1998; Eckstein et al., 2000;
Fahle, 1991; McLean et al., 1997; Palmer, 1994; Palmer
et al., 1993, 2000; Verghese & Stone, 1995). On the
other hand, our results differ from the results in spatial
cueing experiments (Dosher & Lu, 2000a, 2000b; Lu &
Dosher, 2000) where strong attention effects were found
in multiple location displays that involved four to eight
stimuli in conditions that were apparently very similar
to those of the current study.

The powerful role of attention in spatial cueing
and lack of attention distribution on the sensory
representation of individual stimuli in visual search
surely reflect the different deployment of attention in
the two cases and may reflect other paradigm differences
as well. A two-alternative forced identification task with
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Figure 10. The best-fitting model. Probability correct in detecting the target interval only. Curves represent model predictions, and
filled circles represent data from the psychophysical experiment (aggregated data in the first row and individual data in the following
rows). Different colors represent set-size conditions (blue: SS1; red: SS2; yellow: SS4; purple: SS8). Black dashed lines show chance
levels, .5, in all set-size conditions.

a single display with attention cues to a single item
and elimination of location uncertainty by response
cues was used in the spatial cueing studies (Dosher
& Lu, 2000a, 2000b; Dosher, Liu, Blair, & Lu, 2004;

Lu & Dosher, 2000; Lu et al., 2000). In these, a valid
precue (or, alternatively, a simultaneous valid cue)
indicated a single stimulus to be attended and resulting
in the same performance regardless of display size



Journal of Vision (2021) 21(3):1, 1–24 Baek, Dosher, & Lu 17

(Dosher et al., 2004; Hetley et al., 2014). In contrast,
a 2-interval forced-choice task with two displays was
used in the current experiment, and the “attention”
manipulation was effective set-size of the display. We
chose this 2iAFC task to be compatible with most of
the visual search studies looking for attention effects
over and above the effects of location uncertainty in
psychophysical tasks (especially those of Palmer). While
distributing spatial attention across different numbers
of locations might have led to a different quality
of sensory representation, as in the spatial cueing
experiments, an inducement to differential attention
deployment may be limited by only small benefits
from broad distribution in the largest two set-sizes.
The typical spatial attention experiments use cues that
are highly predictive of the target locations. Finally,
the practice level of the observers might be another
contributor to any differences. Large amounts of
practice may eliminate attention effects in visual tasks
(Dosher, Han, & Lu, 2010). Because of the factorial
design, we had to collect 20 sessions of data from
each observer. It is possible that we did not observe
any significant attention effects because our observers
had considerable practice. In sum, several factors
may have led to the lack of attention effects over and
above spatial uncertainty in the current visual search
study, which tested some conditions associated with
strong effects of spatially cued attention. Additional
studies are necessary to reconcile the apparent
inconsistency between lack of attention effects in
visual search and the presence of attention effects in
spatial cuing. Nevertheless, our theoretical model may
serve as a framework to investigate the taxonomy of
visual attention by identifying the circumstances in
which attention limitations play a substantial role in
performance or, conversely, in which focused attention
improves performance.

We have focused on feature search (e.g., orientation)
in this study. Eckstein et al. (2000) showed that spatial
uncertainty is sufficient to explain search performance
in conjunction search without assuming limited
capacity of attention. Itti and Koch (2000) developed a
feature saliency model to account for covert attentional
shift and overt eye movements in free-viewing natural
scenes. The model includes multiple templates in
multiple feature dimensions (e.g., color and orientation)
and combines outputs of feature maps to produce a
“saliency map” over space. We only focused on feature
search with simple stimuli. A natural extension of our
current development is to model visual search with
more complex stimuli and conjunction search.

In this study, we developed a model to account
for search accuracy in brief displays that limited
eye movements. In our model as well as other
signal-detection models, set-size effects in search
accuracy can be a simple statistical consequence of
integrating more sources of information or statistical

decision effects (Eckstein, 1998; Palmer, 1994; Palmer,
Verghese, & Pavel, 2000; Shaw, 1982; Sperling &Dosher,
1986). Others measured response times in visual search
using displays that remained on until response (e.g.,
Cave & Wolfe, 1990; Treisman, 1988). In this paradigm,
observers’ eye movement is uncontrolled, so that results
include unknown contributions of eye movements.
Set-size effects in response times have been modeled
with two-stage architectures in which attention is
associated with a serial processing stage. These serial
processing models include the feature integration
theory (Treisman & Gelade, 1980), selective search
models (Dosher, 1998; Egeth, Virzi, & Garbart, 1984),
and guided search models (Cave & Wolfe, 1990; Wolfe,
1994). In addition, Smith, Ratcliff, and Wolfgang
(2004) showed that effects of attention on accuracy
and response time were dissociable. In their spatial
cueing experiment, attention had a substantial effect
on response time but not on accuracy for perceptually
well-localized stimuli without backward masks. We
believe it is possible to combine the multichannel,
multilocation observer model developed in this study
with response time models to account for response
times or speed-accuracy trade-offs in various visual
search tasks (e.g., Dosher, Han, & Lu, 2004, 2010;
Purcell, Schall, Logan, & Palmeri, 2012), a goal that
would require a substantial additional elaboration that
we have not pursued here.

Keywords: attention, uncertainty, visual search, spatial
cueing
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Appendix: The multichannel and
multilocation analytical PTM

The PTM

The single-channel PTM is constructed with four
components: the gain of the perceptual template (β)
to the signal stimulus, the exponent of the nonlinear
transducer function (γ ), internal additive noise (σ a),
and coefficient of the multiplicative internal noise (σm)
(see Lu & Dosher, 2008, for details). The magnitude
of the response to a signal stimulus is expressed
by (βc)γ , where c is the contrast of the signal. The
multiplicative internal noise follows a zero-mean
Gaussian distribution with its standard deviation
proportional to the total energy of the input stimuli
(with proportional constant σm). The additive internal
noise also follows a zero-mean Gaussian distribution
but with a fixed standard deviation, σ a.

In each trial, the internal response is the sum of
outputs from the signal pathway and the internal and
external noises. The final output of the system to a
stimulus with contrast c is

(βc)γ + g(0, σa) + g(0, σm)((βc)γ + g(0, σext )γ ) + g(0, σext )γ (A1)

where g(a, b) is a random sample from a Gaussian
distribution with a mean of a and standard deviation
of b. The probability distribution of responses follows
a Gaussian distribution with

μ = (βc)γ

σ =
√

σ
2γ
ext + σ 2

m

(
(βc)2γ + σ

2γ
ext

)
+ σ 2

a
(A2)

If the input does not contain a signal stimulus, the
system output to an external noise-only stimulus is

μ = 0

σ =
√

σ
2γ
ext + σ 2

mσ
2γ
ext + σ 2

a
(A3)

In a simple case of a 2-interval forced-choice task,
observers’ discriminability can be formulated as a

https://doi.org/10.1073/pnas.96.4.1663
https://doi.org/10.1126/science.694536
https://doi.org/10.1037//0033-295X.102.3.503
https://doi.org/10.1126/science.3353728
https://doi.org/10.1080/02724988843000104
https://doi.org/10.1016/0010-0285(80)90005-5
https://doi.org/10.1038/382539a0
https://doi.org/10.1017/S095252380000866X
https://doi.org/10.1016/0042-6989(95)00038-2
https://doi.org/10.1152/jn.1998.79.4.2218
https://doi.org/10.1152/jn.01207.2005
https://doi.org/10.1038/23936


Journal of Vision (2021) 21(3):1, 1–24 Baek, Dosher, & Lu 23

normalized distance between two distributions (Green
& Swets, 1966):

d ′ = μsignal − μnoise√
σ 2
signal + σ 2

noise

(A4)

where μsignal and σ signal are the mean and standard
deviation of the internal responses to signal +
noise stimulus, and μnoise and σ noise are the mean
and standard deviation of the internal responses to
noise-only stimulus.

PTM with multiple channels

In the present extension of the original PTM, it is
assumed that there are multiple perceptual templates.
Each template is tuned to one of the potential input
orientations (one distractor orientation and five
possible target orientations in our experiment) and has
a Gaussian tuning function with a bandwidth of βσ

and maximum gain, βmax, to the preferred stimulus. To
reiterate multiple templates, β i represents a template
gain of the ith detector to an input stimulus:

βi = βmaxg (�θi, 0, βσ ) (A5)

where �θ is the angular difference between a template’s
preferred orientation and the stimulus orientation.
Since a bank of channels is located in a small spatial
location, the variance of the multiplicative noise is
proportional to the total energy from the outputs of all
the templates. In sum, an output distribution in the ith
channel is a Gaussian distribution with

μi = (βic)γ

σi =
√√√√σ

2γ
ext + σ 2

m

((∑
i

βic
)2γ

+ σ
2γ
ext

)
+ σ 2

a

(A6)

Mechanisms of attention in PTM with multiple
channels

In the model, attention may work in three
different ways: (a) stimulus enhancement, which is
mathematically equivalent to internal additive noise
reduction in the PTM, is modeled by multiplying σ a by
Aa; (b) external noise exclusion with increased weight
of the input from the attended region/object without
changing the tuning characteristics of the perceptual
template is modeled by multiplying σ ext with Af ; and
(c) external noise exclusion that changes the tuning
bandwidth of the perceptual template is modeled by

multiplying βσ with Afσ . The output distribution of
the ith channel for an attended location is a Gaussian
distribution with

βi = βmaxg
(
�θ, 0, βσAf σ

)
μi = (βic)γ

σi =

√√√√√√√√√
(
Af σext

)2γ + σ 2
m

((∑
i

βic
)2γ

+(
Af σext

)2γ )
+ (Aaσa)2

(A7)

Information integration: Integration of multiple
channels

To compute the “max of differences” for a single
input, the model computes (a) μdist and σ dist representing
the channel tuned to distractor orientation, (b) μi and
σ i of the response distributions in all nondistractor
channels (i = 1, 2, 3, …), (c) distributions of the
differences between the distractor channel and
nondistractor channels, and (d) then the distribution of
maximum difference across all nondistractor channels.
To simplify the computation, we first computed the
distribution (with μmax and σmax) of the maximum
internal response across all nondistractor channels and
then a distribution of differences (with μdiff and σ diff)
between the max distribution and the distributions
of the distractor channels. The two approaches are
mathematically equivalent.

“Max” distribution
According to Clark (1961), the max of two

random samples picked from two different Gaussian
distributions with a correlation ρ = 0 could be
approximated by a Gaussian distribution with mean
and variance as

μmax = μ2G(β ) + μ1G (−β ) + αg (β )

σmax =
√√√√(

μ2
2 + σ 2

2
)
G (β ) + (

μ2
1 + σ 2

1
)
G (−β )

+ (μ1 + μ2)αg (β ) − μ2
max

(A8)

where G(x) is a cumulative Gaussian distribution and

α =
√

σ 2
1 + σ 2

2

β = μ2 − μ1

α

(A9)
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For the max distribution from more than two
distributions, the approach can be used recursively:

fmax = max ( f1, max ( f2, · · ·)) (A10)

where max() represents Clark’s approach.

Max difference distribution
The distribution of differences (with μdiff and σ diff)

between the max distribution (μmax and σmax) and
the distractor channel distribution (μdist and σ dist) is a
Gaussian distribution with

μdi f f = μmax − μdist

σdi f f =
√

σ 2
max + σ 2

dist
(A11)

In a set-size 1 trial of the 2iAFC task in which an
observer reports which interval includes a target among
the two intervals (i.e., target present and target absent),
the model computes distributions of “max difference”
for both target-present (μdiff_int1 and σ diff_int1) and
target-absent intervals (μdiff_int2 and σ diff_int2).

Sensitivity and performance
Signal detection theory models d’ and probability

correct as

d ′ = μdi f f_int1 − μdi f f_int2√
σdi f f_int12+σdi f f_int22

2

(A12)

pc =
∫

g(x − d ′)G(x) (A13)

Information integration: Integration of multiple
locations

The model is extended to multiple locations (or
stimuli) using the max rule. Observers might make
a correct answer when internal response for target
exceeds the max of all distractors in the other interval.
According to signal detection theory, this probability
could be formulated by

pc =
∫

g(x − d ′)G(x)2U+1 (A14)

where U = SS − 1. Another possibility of correct
response in the 2iAFC detection task is the chance that
max response to distractors is greater in target interval
than in the other interval:

pc =
∫

Ug(x)G(x)2Ug(x − d ′) (A15)

In the latter case, response is correct even though the
observer does not correctly detect the target. For this
reason, the formulations for detection correct and both
correct are

pc=
∫

g(x− d ′)G(x)2U+1+Ug(x)G(x)2Ug(x− d ′) (A16)

pc =
∫

g(x − d ′)G(x)2U+1 (A17)


