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Abstract: The landscape of pediatric oncology has dramatically changed over the course of the past
several decades with five-year survival rates surpassing 80%. Anthracycline therapy has been the
cornerstone of many chemotherapy regimens for pediatric patients since its introduction in the 1960s,
and recent improved survival has been in large part due to advancements in chemotherapy, refine-
ment of supportive care treatments, and development of novel therapeutics such as small molecule
inhibitors, chimeric antigen receptor T-cell therapy, and immune checkpoint inhibitors. Unfortunately,
many cancer-targeted therapies can lead to acute and chronic cardiovascular pathologies. The range
of cardiotoxicity can vary but includes symptomatic or asymptotic heart failure, arrhythmias, coro-
nary artery disease, valvar disease, pericardial disease, hypertension, and peripheral vascular disease.
There is lack of data guiding primary prevention and treatment strategies in the pediatric population,
which leads to substantial practice variability. Several important future research directions have
been identified, including as they relate to cardiac disease, prevention strategies, management of
cardiovascular risk factors, risk prediction, early detection, and the role of genetic susceptibility
in development of cardiotoxicity. Continued collaborative research will be key in advancing the
field. The ideal model for pediatric cardio-oncology is a proactive partnership between pediatric
cardiologists and oncologists in order to better understand, treat, and ideally prevent cardiac disease
in pediatric oncology patients.
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1. Introduction

The landscape of pediatric oncology has dramatically changed over the course of the
past several decades, with five-year survival rates surpassing 80%. Improved survival has
been in large part due to advancements in chemotherapy, refinement of supportive care
treatments, and development of novel therapeutics, such as chimeric antigen receptor T-cell
therapy (CAR-T) and immune checkpoint inhibitors (ICI) [1–3]. However, with improved
survival rates, a five- to six-fold increase in cardiovascular disease risk has been observed,
and cardiovascular disease is now the leading non-cancer cause of death. The range of
cardiotoxicity can vary, but includes symptomatic or asymptotic heart failure, arrhythmias,
coronary artery disease, valvar disease, pericardial disease, hypertension, and peripheral
vascular disease [4–6]. Many patients will be asymptomatic for prolonged periods and may
present for care at a late stage of disease if not appropriately screened early.

1.1. Mechanisms of Cardiac Toxicity
1.1.1. Conventional Chemotherapy

Anthracycline therapy has been the cornerstone of many chemotherapy regimens for
pediatric patients, since its introduction in the 1960s. Cardiotoxicity is the main dose limit-
ing side effect that was reported a decade after its first use [7–10]. While the mechanisms
of anthracycline cardiotoxicity are multifaceted, one key pathway is through interaction
with topoisomerase 2β, which leads to nuclear DNA damage, mitochondrial dysfunction,
and formation of reactive oxygen species [11–14]. Acute onset cardiotoxicity caused by an

Children 2022, 9, 127. https://doi.org/10.3390/children9020127 https://www.mdpi.com/journal/children

https://doi.org/10.3390/children9020127
https://doi.org/10.3390/children9020127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/children
https://www.mdpi.com
https://orcid.org/0000-0003-2005-6303
https://doi.org/10.3390/children9020127
https://www.mdpi.com/journal/children
https://www.mdpi.com/article/10.3390/children9020127?type=check_update&version=1


Children 2022, 9, 127 2 of 16

anthracycline is rare; it is defined as occurring within one week of administration of the
anthracycline and is often reversible with discontinuation. Early onset chronic cardiotoxic-
ity occurs within one year of administration, and late onset chronic cardiotoxicity presents
greater than one year after administration of an anthracycline. For the chronic forms,
disease is generally progressive. The current definition of high dose anthracycline exposure
within the Children’s Oncology Group (COG) is a doxorubicin equivalent of 250 mg/m2.
However, there are reports of children developing cardiovascular disease with doses as
low at 60 mg/m2 [15,16]. Importantly, recent data have demonstrated that certain accepted
dosing equivalencies for mediations like mitoxantrone may actually underestimate the
cardiotoxic effect of such therapeutics on survivors of childhood cancer [17].

Non-anthracycline chemotherapy agents are not always thought of as cardiotoxic. How-
ever, there is a growing body of evidence demonstrating that alkylating agents
(e.g., cyclophosphamide), microtubule inhibitors, proteasome inhibitors, platinum-based
drugs, and antimetabolites contribute to cardiovascular disease, which can manifest as ven-
tricular dysfunction, ischemia, venous thromboembolism, arrhythmia, and QT prolongation
(Table 1) [18]. Therefore, all patients undergoing cancer therapy are at an increased risk of
developing cardiotoxic side effects, regardless of the treatment modality utilized [19–22].

Table 1. Cancer therapies associated with cardiovascular toxicity.

Treatment Agent Potential Cardiovascular Toxicity

Anthracyclines Ventricular dysfunction/heart failure

Radiation

Ventricular dysfunction/heart failure
Valvular disease

Pericardial disease
Ischemic vascular disease/coronary artery disease

Arrhythmias

Tyrosine kinase and Vascular
endothelial growth factor inhibitors

Ventricular dysfunction/heart failure
Hypertension

Pulmonary hypertension
Ischemic vascular disease/coronary artery disease

Thromboembolism
QT Prolongation

HER2-targeted agents Ventricular dysfunction/heart failure

Immune checkpoint inhibitors Myocarditis
Arrhythmia

CAR-T cell therapy Ventricular dysfunction
Cytokine release syndrome-related hypotension

Alkylating agents Ventricular dysfunction/heart failure
Thromboembolism

Platinum-based agents
Ventricular dysfunction/heart failure

Ischemic vascular disease/coronary artery disease
Thromboembolism

Proteasome inhibitors Ventricular dysfunction/heart failure

Antimetabolites Ischemic vascular disease/coronary artery disease

Microtubule inhibitors Arrhythmia
Ischemic vascular disease/coronary artery disease

Other
Thalidomide and analogs

arsenic

Arrhythmia; Thromboembolism
QT Prolongation
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1.1.2. Radiation

Radiation therapy is associated with cardiotoxicity through direct or indirect exposure
of cardiovascular structures to the radiation field, dependent on the type and location of
a cancer [23]. This is likely due to the initiation of an inflammatory cascade, generation
of fibrosis, and development of endothelial dysfunction. Clinically, this may manifest as
pericardial disease, coronary artery disease, calcification of the aortic root, conduction
system abnormalities, valvar tissue injury (in severe cases leading to aortic and mitral valve
stenosis), cerebrovascular disease, peripheral vascular disease, and heart failure [6,24,25].
While there is no known safe dose of radiation, high risk radiation has been accepted
as >30 Gy of total exposure and >15 Gy for direct cardiac exposure [26]. The reduction
in exposure to cardiac radiation from the 1970s to the 1990s has led to a significant de-
crease in heart failure and late-term coronary artery disease in adult survivors of pediatric
cancers [27]. Alternatively, utilizing proton therapy may spare the heart from radiation
exposure, which could in turn reduce the risk of cardiotoxicity [23]. There is literature
suggesting that different areas and structures of the heart are able to withstand varying
amounts of total doses of radiation before overall clinical change is seen. Novel research
will be needed to advance this area, to further reduce cardiotoxity as well [25].

Intensity-modulated radiation therapy is a novel approach to directing radiation effect
to desired fields (i.e., neoplasms), while sparing unaffected tissue. A recent prospective
clinical trial determined that whole lung radiation, using intensity-modulated radiation
therapy, with the goal of sparing the cardiac field, was feasible and offered similar cancer
outcomes but lower doses of total Gy to the heart [28]. These data will be incorporated into
the next generation of the Children’s Oncology Group Wilms Tumor Clinical Trials [29].
These studies will allow for the long-term follow-up of both oncologic and cardiac effects,
to determine efficacy and safety.

1.1.3. Chimeric Antigen Receptor T-Cell Therapy

The advent of CAR-T therapy has increased remission rates for refractory or relapsed
acute lymphocytic leukemia. CAR-T therapy utilizes genetically engineered T-cells to target
specific cancer antigens [30–32]. However, a major, and potentially fatal, complication
of CAR-T therapy is cytokine release syndrome (CRS). This syndrome is defined by a
triad of fevers, hypotension, and hypoxia with multi-organ involvement, driven by high
levels of inflammatory cytokines (IL-6, TNF-alpha, IL-10, and IFN-Y). CRS can range in
severity from mild to severe. This cascade of events can lead to cardiovascular dysfunction,
including tachycardia, heart failure, and even death. The mechanism of action is unclear,
but it is hypothesized that IL-6 plays a role similar to that in sepsis-related cardiomyopathy.
This is confounded by patients having previously received cardiotoxic therapies such as
anthracyclines and radiation prior to undergoing treatment with CAR-T therapy. However,
the timing of a cardiac event following CAR-T is somewhat predictable, with most occurring
just under a week following the infusion [33–36].

It is imperative that clinicians monitor for CRS and be conscientious that CRS may
lead to serious and devastating cardiovascular injuries. Echocardiogram, ECG, and cardiac
biomarkers should be obtained in the setting of progressive and severe CRS. Treatment
with Tocilizumab, an anti-IL 6 receptor antagonist, may reverse CRS and prevent long-term
cardiovascular complications [37]. Inotropic and vasoactive agents may be required to
support patients with ventricular dysfunction and hypotension. Unfortunately, ventricular
dysfunction can persist after CAR-T cell therapy [38,39].

1.1.4. Immune Checkpoint Inhibitors

Therapy with ICI has changed the landscape of cancer treatment. In recent years, ICI
have become more prevalent and at times are used as a front line therapy for a subset of
pediatric cancers, which has helped to advance cure rates [40,41]. By definition, ICI are
monoclonal antibodies that alter the patient’s immune response to cancer, leading to cell
blockade or apoptosis. Cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and the
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programmed cell protein-1 (PD-1) pathways are the two most common targets utilized with
ICI [42]. Both of these pathways are critical in T-cell regulation; thus, altering the pathway
has autoimmune side effects that may affect every organ [43].

Cardiac related adverse effects of ICIs are becoming more frequent, and it is necessary
to monitor patients closely throughout therapy. The most common cardiac related events
are myocarditis, pericarditis, vasculitis, and arrhythmias. While myocarditis from ICI is a
rare occurrence, it has a mortality rate of 40%. This high rate of mortality is thought to be
a direct result of T-cell dysregulation targeting the heart, which can translate into clinical
symptoms of arrhythmias, congestive heart failure, pneumonitis, or myositis. Vasculitis
fatality rate is reported at 6% and can manifest with arthritis and rashes [44].

1.1.5. Small Molecule Inhibitors

Targeted cancer therapies include tyrosine kinase inhibitors, vascular growth factor
inhibitors, human epidermal growth factor-2 targeted therapies, and platelet-derived
growth factor inhibitors. Currently, over 20 small molecule tyrosine kinase inhibitors,
such as sorafenib and imatinib, are available for clinical use [45–47]. These drugs are
well suited for cancer therapy, given their impact on cellular proliferation, differentiation,
and survival, particularly in malignancies. Tyrosine kinase inhibitors inhibit cancer cell
proliferation by competing through ATP binding sites, thereby reducing the tyrosine kinase
phosphorylation leading to cell dysregulation [48–51]. Their benefits in pediatric cancers
have been established [52–54]. Although these medications affect tyrosine kinase pathways
in the myocardium, there are currently limited data on their role in cardiotoxicity. Kinase
inhibitors have been associated with ventricular dysfunction, hypertension, pulmonary
hypertension, and thromboembolism [55–58].

1.1.6. Targeted Antibody Therapy

Targeted antibody therapy can be used to disrupt molecular pathways, similarly to
those affected by small molecule kinase inhibitors [59–61]. Given the overlap in the mecha-
nism of action, these monoclonal antibodies can produce similar cardiotoxic effects [62].
Trastuzumab has a primary role in the treatment of human epidermal growth factor 2 posi-
tive (HER2+) breast cancers. It is a murine monoclonal antibody that stops the proliferation
of overexpression of HER2+ cells. It has been found to work in synergy with many tradi-
tional chemotherapy agents commonly used to treat breast cancer [63]. While it is currently
the standard of care in this patient population, the most frequent adverse outcome with
use of trastuzumab is cardiotoxicity [64]. In pediatric patients, antibody therapies have
demonstrated effectiveness in various cancers [59–61,65]. These monoclonal antibodies can
also cause cardiotoxicity, but clinical trials have shown that standard heart failure therapies
offer protection [66].

1.2. Cardioprotection and Prevention
1.2.1. Alternative Anthracycline Dosing Strategies and Derivatives

To mitigate anthracycline mediated cardiotoxicity, alternative dosing strategies have
been utilized. In adult patients, increasing anthracycline infusion duration to longer than
6 hours may reduce the risk of subclinical cardiac injury, when compared to a shorter
time of administration. Due to limited data in pediatric patients, these data cannot be
extrapolated to this population. There was no difference in cardiotoxicity seen for those
receiving single peak doses >60 mg/m2 of doxorubicin, when compared to <60 mg/m2 [67].
A liposomal formulation of doxorubicin was developed in order to allow clinicians to
overcome the lifetime cumulative dose maximum. This formulation encapsulates the
doxorubicin with a phospholipid bilayer of methoxypolyethylene glycol [68]. Liposomal
doxorubicin allows a longer half-life, but with decreased cardiac side-effects, and is the
only derivative definitively shown to decrease cardiotoxicity [69].
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1.2.2. Dexrazoxane

Dexrazoxane (Zinecard) is an EDTA derivative that acts as an iron chelator. It was first
approved by the U.S. Food and Drug Administration in 1991 for prevention of cardiomy-
opathy associated with doxorubicin in breast cancer patients. In 2014, it was designated
as an orphan drug for prevention of cardiomyopathy in pediatric and adolescent patients
receiving anthracycline therapy. Dexrazoxane has been shown to be cardio-protective by
multiple groups. Its primary mechanism of action is to prevent mitochondriopathy by
chelating myocardial iron, preventing it from coupling with anthracyclines and reducing
the formation of superoxide free radicals. Data support the cardioprotective effects of
dexrazoxane, as manifested by improved troponins, natriuretic peptides, and function by
echocardiography [70–73]. Despite the potential benefit, dexrazoxane has not routinely
been utilized, due to concerns over its impact on anthracycline treatment effect and the
risk of secondary malignancies. The risk of secondary malignancy or decreased efficacy of
anthracyclines against the primary cancer are reasons dexrazoxane has not been widely
incorporated into pediatric care. Some studies have shown dexrazoxane to be safe in these
regards, [74–77], while others suggest a statistically borderline increase in risk [78]. COG
now mandates the use of dexrazoxane in children who have a life time cumulative dose
greater than >150 mg/m2 of anthracyclines or any dose of anthracyclines with concomitant
radiation use [79].

1.2.3. Exercise and Modifiable Risk Factors

Patients who have cancer and undergo cancer treatment are more likely to have
modifiable cardiovascular risk factors, such as hypertension, diabetes, and obesity. Im-
portantly, pre-existing cardiovascular risk factors are strong predictors for development
of anthracycline- and radiation-related cardiotoxicity [80]. In addition, the incidence of
medical frailty, as defined by five domains (walking limitations, low energy, exhaustion,
low lean mass, and weakness) is significantly higher in survivors of pediatric cancer than
in sibling controls [81]. Structured exercise demonstrates improvement in mortality, cancer
progression, cancer recurrence, health-related quality of life, cardiovascular risk factors,
and frailty in a dose-dependent manner [82–87]. Routine exercise in adults has been shown
to improve cardiovascular function, immune function, body composition, chemotherapy
completion rates, and reported markers of mental health. Several studies in adult survivors
of pediatric cancers, as well as limited studies in pediatric patients, have likewise demon-
strated decreases in cardiovascular-related and total mortality, often in a dose-dependent
fashion [85,88,89]. As such, the American Cancer Society has established the ‘Moving
Through Cancer’ initiative, with the mission ‘to ensure that that all individuals living
with and beyond cancer are assessed, advised, referred to, and supported to engage in
appropriate exercise and rehabilitation programming as the standard of care.’ [90].

Aerobic activity is generally considered safe for survivors of pediatric cancer and
is advised as part of a ‘heart healthy lifestyle’. Traditionally, patients were advised to
avoid isometric/weightlifting activities. However, recent guidelines from the National
Comprehensive Cancer Network include recommendations regarding strength training
activity for patients with normal ventricular function. There are exercise guidelines for
cancer survivors published by the American College of Sports Medicine, although these
are primarily adult focused [91]. COG only cautions against such activities for individuals
with ventricular dysfunction. For patients who wish to participate in competitive sports,
standard guidelines for athletic participation should be followed and ongoing monitoring
by a cardiologist is recommended. In 2019 the American Heart Association released a Scien-
tific Statement about cardio-oncology rehabilitation exercise (CORE) programs, including a
safety checklist prior to engaging in CORE, components of CORE, and recommendations
on how a patient should engage with various rehabilitation services [80]. Finally, clinicians
should consider performing an assessment of physical activity when a patient is seen
and provide an ‘exercise prescription’ that is safe and effective [92]. A systematic review
demonstrated that adherence to such recommendations was improved by goal setting and
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instruction on how to perform the activities, and there were only a small number of adverse
events [93]. Exercise interventions by telehealth have also shown good compliance and
limited adverse events [94].

1.2.4. Other Cardioprotective Strategies under Investigation

Remote ischemic conditioning using intermittent limb ischemia-reperfusion is a novel
approach in the cancer community. Animal models demonstrated significantly reduced
anthracycline cardiac toxicity with utilization of remote ischemic preconditioning [95–97].
Currently, clinical studies are ongoing to assess the feasibility and efficacy of remote
ischemic conditioning in humans [98].

The COG ALTE1621 study is a multi-center, prospective, randomized, placebo-controlled
trial intended to determine if low-dose carvedilol can prevent left ventricular remodeling
and dysfunction in survivors of pediatric cancer. The goal enrollment is 250 individuals
diagnosed at <21-years-old and treated with high-dose anthracyclines (>300 mg/m2), who
will be followed for a period of 2 years. Participants will undergo scheduled assessments
with echocardiographic and serum biomarkers [99].

2. Screening and Surveillance

Childhood cancer survivors are a unique group of patients, who require a collaborative
approach to optimize their care. COG has published survivorship guidelines that provide
broad health counseling for potential late side effects, including carotid artery disease
and cardiac toxicity (cardiomyopathy, heart failure, and valve disease), with referral to
Cardiology if concerns arise.

2.1. Risk Prediction

Data from the Childhood Cancer Survivor Study (CCSS) and other studies identified
factors that increase the risk of developing cardiac toxicity including: younger patient age,
African American race, female sex, total anthracycline dose, concomitant radiation expo-
sure, underlying heart disease, pre-modern radiation protocols, and time since treatment
(Table 2) [5,100].

Table 2. Patient and treatment risk factors in the development of cancer treatment-related cardiotoxi-
city in patients treated for pediatric cancer.

Risk Factors

Patient-Related Treatment-Related

Younger age (especially <5 years of age) Total cumulative anthracycline dose **

Female gender Chest radiation ***

African American race Time since treatment

Trisomy 21 Pre-modern radiation protocols (before 1975)

Cardiovascular risk factors (hypertension,
hyperlipidemia, diabetes, obesity)

Concomitant therapy with cyclophosphamide,
bleomycin, vincristine, amsacrine,

mitoxantrone, immunotherapy

Underlying heart disease (congenital heart
disease, cardiomyopathy)

Genetic factors *

* Multiple genotypes identified as risk factors. ** Dose cut-off frequently cited as >250 mg/m2 doxorubicin
equivalent. *** Dose cut-off frequently cited as >15–30 Gy chest radiation.

According to the National Comprehensive Cancer Network (www.nccn.org accessed
10 October 2021), patients that have undergone cancer treatment should be considered
American College of Cardiology/American Heart Association stage A heart failure (no
structural abnormality, but at risk to develop heart failure) [101]. Based on both pa-
tient and treatment risk factors from the CCSS data (Table 2), an online risk calcula-

www.nccn.org
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tor (https://ccss.stjude.org/tools-documents/calculators-other-tools/ccss-cardiovascular-
risk-calculator.html accessed on 10 October 2021) was created to predict risk of heart
failure, ischemic heart disease, and stroke by age 50 years in survivors of pediatric can-
cers [102–104]. No specific surveillance or treatment recommendations are made by this
risk calculator.

2.2. Surveillance Guidelines

Most of the existing guidelines regarding monitoring for the development of car-
diotoxicity are established for adult patients, with limited discussion of adult survivors
of pediatric cancer [105–108]. Unfortunately, there are no standardized guidelines for
pediatric patients during therapy, and there are variations between protocols [67]. Adult
studies revealed that up to 10% of patients can develop subclinical and asymptomatic
ventricular dysfunction during induction therapy with anthracycline administration. A
delay in recognition and initiation of treatment of just 1–2 months may produce adverse
long-term outcomes [109,110]. Recent data in pediatric patients undergoing treatment for
acute myeloid leukemia showed that early cardiac toxicity was significantly associated
with reduction in event-free survival and overall survival over a 5-year follow up [111].

COG has produced surveillance recommendations for patients that have completed
cancer therapy (www.survivorshipguidelines.org accessed on 10 October 2021). These
guidelines recommend an annual history and physical exam; lab work, including a lipid
profile and glucose every 2 years; ECG during initial evaluation and then as necessary; and
echocardiogram every 2–5 years based on risk factors. There are currently no recommen-
dations for pediatric-specific imaging protocols or recommendations regarding the use of
serum biomarkers, although efforts to develop such guidelines are underway. In addition
to COG, other organizations have also created surveillance guidelines for childhood cancer
(Table 3).

Table 3. Resources providing information and/or guidance for cardiovascular care of survivors of
pediatric cancers.

Resource

American Heart Association Scientific Statement on Pediatric, Adolescent, and Young Adult
Long-Term Survivors [6]

Children’s Oncology Group (www.childrensoncologygroup.org)

National Comprehensive Cancer Network (nccn.org)

Dutch Childhood Oncology Group [112]

Scottish Intercollegiate Guidelines Network (www.sign.ac.uk)

UK Children’s Cancer and Leukaemia Group (www.cclg.org.uk)

International Late Effects of Childhood Cancer Guideline Harmonization Group [113]

In summarizing and interpreting several separate recommendations, the International
Late Effects of Childhood Cancer Guideline Harmonization Group recommends screening
of left ventricular function with echocardiography as the preferred method, no later than
2 years after completion of anthracycline and/or radiation therapy. Repeat ECG and
echocardiogram are recommended every 5 years thereafter, unless dictated otherwise
by clinical status. More frequent and lifelong screening can be considered in high-risk
survivors [113].

More recently developed imaging modalities such as 3-D echocardiography and my-
ocardial strain assessment have been found to be more sensitive in identifying myocardial
changes prior to changes of ejection fraction and shortening fraction [3,114–116]. Studies
in adult cohorts have assessed the overall utility of myocardial strain in the patient with
cancer, with ongoing debate as to the benefits of early detection of ventricular dysfunction
weighed against the risk of modifying therapy for a change in strain when the ejection

https://ccss.stjude.org/tools-documents/calculators-other-tools/ccss-cardiovascular-risk-calculator.html
https://ccss.stjude.org/tools-documents/calculators-other-tools/ccss-cardiovascular-risk-calculator.html
www.survivorshipguidelines.org
www.childrensoncologygroup.org
nccn.org
www.sign.ac.uk
www.cclg.org.uk
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fraction remains normal [117,118]. Cardiac MRI or radionuclide angiography may be rea-
sonable when echocardiography is not technically feasible or optimal. Cardiac MRI is used
frequently in pediatric centers, while radionuclide studies are much less common than
in adult patients. Cardiac biomarkers may be incorporated in conjunction with imaging
but should not be used in isolation. Modalities such as stress echocardiography, exercise
testing, and ambulatory rhythm monitoring are not included in the guidelines but are often
considered and utilized based on clinical needs.

3. Therapeutic Approaches
3.1. Medical Heart Failure Therapy

Treatment of adult patients who develop heart failure should be directed by stan-
dard heart failure guidelines and supplemented by cardio-oncology-specific guidelines
regarding changes in imaging, serum biomarkers, symptoms, and chemotherapy exposure
risk stratification [119]. Standard medical management in adults includes use of ACE
inhibitors, beta blockers, and statins [106,109,120,121]. Starting therapy in the first few
months after the development of ventricular dysfunction can lead to improvements in
systolic function in the vast majority of patients [109,110]. There are limited comparable
data in the pediatric population. Guidelines for management of pediatric cardiomyopathy
and heart failure exist, but they do not specifically discuss the cardio-oncology popula-
tion [122]. ACE inhibitors can decrease left ventricular wall stress and improve subclinical
markers of cardiac dysfunction in children. However, the long-term therapeutic effects are
unclear [123,124]. Moreover, Lipshultz suggests that the long-term phenotype in survivors
of pediatric cancer is that of ‘inadequate ventricular mass with chronic afterload excess
associated with progressive contractile deficit and possibly reduced cardiac output and
restrictive cardiomyopathy’, the so-called ‘Grinch syndrome’ in which treatment with
an ACE inhibitor may be inappropriate [125]. A Cochrane database in 2016 showed no
improvement in survival or development of heart failure in the limited number of studies
that looked at various treatments, including one of enalapril with 135 survivors of pediatric
cancers with asymptomatic LV dysfunction [126]. Sacubitril-valsartan (Entresto) has been
studied and shown to have benefit in adult patients with cardiotoxicity, but it has not yet
been studied in pediatric patients for this purpose [127].

Two recent surveys of practitioners who care for pediatric cardio-oncology patients
found that the majority (>80%) use ACE inhibitors to treat ventricular dysfunction. Con-
versely, the addition of beta blockers varied between the two studies, with one survey
reporting a 20% utilization rate and the other study up to 70%. Only one of the studies
reported on the use of aldosterone antagonists, at approximately 50% [128,129].

Once therapies are started, it is unclear if and when they can be discontinued if
function returns to normal. The TRED-HF study demonstrated higher rate of relapse of
ventricular dysfunction after cessation of medical therapy when compared to patients
maintained on medication [130]. Unfortunately, there are not stronger data to suggest
a universal practice in this regard. Discontinuation of therapy should be made on an
individual basis with the understanding that function may deteriorate.

3.2. Implantable Cardiac Defibrillators and Cardiac Resynchronization Therapy

Indications for an implantable cardiac defibrillator and cardiac resynchronization
therapy are similar to other disease processes that cause heart failure and cardiomyopathy.
Adult patients with cancer are less likely to receive an implantable cardiac defibrillator
compared to other heart failure patients. There is a paucity of data on the efficacy of
cardiac resynchronization therapy in cancer survivors, particularly involving pediatric
patients [131].
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3.3. Advanced Heart Failure Therapy

For some patients, standard oral therapies may become insufficient for the man-
agement of cancer treatment-mediated heart failure. In those cases, inotropic infusions,
mechanical circulatory support, and even heart transplantation could be considered.

3.4. Heart Transplantation

The first reports of transplantation for anthracycline-induced heart failure in pediatric
patients date back to the early 1990s [132,133]. Based on the International Society for Heart
and Lung Transplantation guidelines, listing criteria for heart transplantation in patients
with a cancer diagnosis should take into account a variety of factors, including type of
neoplasm, response to therapies, risk of recurrence, and presence or absence of metastases.
Active neoplasm and ongoing cancer treatment with chemotherapy/radiation are absolute
contraindications to transplantation at most centers [134]. There is no defined time from
the onset of remission to listing for heart transplantation.

For appropriately selected pediatric patients, there is no difference in long-term out-
comes after transplant when compared to dilated cardiomyopathy [135,136]. In patients
transplanted after a primary oncological diagnosis, there is concern for disease recur-
rence or increased risk of secondary cancers, related to the immunosuppression necessary
to maintain a transplanted heart. However, data from the Pediatric Heart Transplant
Society, representing 1985 transplants, demonstrated that all malignancies were due to
post-transplant lymphoproliferative disorder, with no difference in malignancy rates in
anthracycline-induced cardiomyopathy recipients [137–139].

3.5. Mechanical Circulatory Support

Patients that cannot wait for transplantation or are inappropriate for listing due to
ongoing cancer therapy may be candidates for mechanical circulatory support. Short- or
medium-term support strategies can be utilized as a bridge to recovery in the setting of
temporary or reversible dysfunction [140]. Long-term support can be used as a bridge
to transplantation or as destination therapy for those that are not transplant candidates.
Several case reports and two small cohort studies have described the use of a left ven-
tricular assist device as a bridge to recovery in adult patients with anthracycline-induced
cardiomyopathy. Survival was similar to other causes of ventricular dysfunction. However,
in one study, there was a higher need for subsequent right ventricular support in the
anthracycline-induced cardiomyopathy group [141–144]. Data in pediatric patients are
currently limited to a single case report [145].

4. Conclusions

Many cancer-targeted therapies can lead to acute and chronic cardiovascular patholo-
gies. Unfortunately, there is lack of data guiding primary prevention and treatment strate-
gies in the pediatric population, which leads to substantial practice variability. Several
important future research directions have been identified, including those related to cardiac
disease, prevention, management of risk factors, risk prediction, early detection, and the
role of genetic susceptibility in development of cardiotoxicity. A combination of cohort stud-
ies and randomized controlled trials will be key in answering these important questions [3].
The future state within pediatric cardio-oncology should shift to a more proactive stance, to
promote continued partnership between pediatric cardiologists and oncologists, in order to
better understand, treat, and, ideally, prevent cardiac disease in pediatric oncology patients.
Collaboration amongst specialties and across centers will provide critical data to further
advance the rapidly growing field of cardio-oncology.
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