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Abstract

The search for general properties in network structure has been a central issue for food web

studies in recent years. One such property is the small-world topology that combines a high

clustering and a small distance between nodes of the network. This property may increase

food web resilience but make them more sensitive to the extinction of connected species.

Food web theory has been developed principally from freshwater and terrestrial ecosys-

tems, largely omitting marine habitats. If theory needs to be modified to accommodate

observations from marine ecosystems, based on major differences in several topological

characteristics is still on debate. Here we investigated if the small-world topology is a com-

mon structural pattern in marine food webs. We developed a novel, simple and statistically

rigorous method to examine the largest set of complex marine food webs to date. More than

half of the analyzed marine networks exhibited a similar or lower characteristic path length

than the random expectation, whereas 39% of the webs presented a significantly higher

clustering than its random counterpart. Our method proved that 5 out of 28 networks fulfilled

both features of the small-world topology: short path length and high clustering. This work

represents the first rigorous analysis of the small-world topology and its associated features

in high-quality marine networks. We conclude that such topology is a structural pattern that

is not maximized in marine food webs; thus it is probably not an effective model to study

robustness, stability and feasibility of marine ecosystems.

Introduction

Food webs are complex networks of feeding (trophic) interactions among diverse species in

communities or ecosystems [1]. Studies characterizing and modelling food web structure have

suggested the existence of general properties [2]–[5], as well as simple models that predict the

complex structure of these networks [6–10].

Although some of the earliest food web studies were done considering marine examples

[11]–[12], food web theory has been developed principally from freshwater and terrestrial
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habitats, largely omitting marine ecosystems [13]. Led by Link [2] and Dunne et al. [14], the

number of marine food web studies has increased considerably in the last decade [15–22],

among others. Despite the amount of new marine food web data, whether food web theory

needs to be modified to accommodate observations from marine ecosystems, based on major

differences in several topological characteristics (i.e. higher link density, connectance, mean

chain length and omnivory), is still on debate [2]. It has been suggested that more evenly and

highly resolved networks are required in order to decide whether current patterns are artifacts

or whether they reflect more significant similarities or differences between marine and non-

marine food webs [5], [14].

In this regard, the presence of the small-world (SW) topology [23] in marine food webs is

also an open question. This topology, inspired by the “six degrees of separation” sociology

experiment by Milgram [24], has emerged as a suitable framework to study the global structure

of food webs [25]. Two network properties are typically analyzed in order to gain insight into

this pattern: the characteristic path length, a global property of the network that refers to the

average shortest distance between pairs of nodes; and the clustering coefficient, a local prop-

erty of the network defined by the average fraction of pairs of nodes connected to the same

node that are also connected to each other [23]. These features are usually compared to its ran-

dom counterpart web (equal size and link density or connectance), with the aim of investigat-

ing how much does the empirical food web deviate from the random one [26]. A SW network

needs to display a high clustering coefficient and a short characteristic path length, compared

to a random graph. The latter property gives the name “small-world” to these networks,

because it is possible to connect any two vertices in the network through just a few links [25].

Furthermore, SW networks may display three of the following scale patterns: scale-free,

broad-scale or single-scale [25]. The first one describes a network with very few nodes highly

connected and most nodes poorly connected, following a power-law degree distribution [27]–

[28]. On the other hand, a broad-scale pattern is characterized by a degree distribution that

has a truncated power-law regime or a power-law regime followed by a sharp cutoff [29].

Finally, single-scale networks present a degree distribution with a fast decaying tail, such as

exponential or Gaussian [25]. Most studies of empirical food webs show that degree distribu-

tions rarely differ from any of these scale patterns [4], [30]–[33], meaning that this structural

feature (i.e. degree distribution) would not be essential to determine whether food webs dis-

play a SW topology or not.

Disregarding its habitat (e.g. marine, freshwater or terrestrial), several studies have consid-

ered whether empirical food webs display the SW topology similar to many other real-world

networks [20]–[21], [28], [30]–[31]. Most of these explored individual marine food webs or

considered few networks belonging to this habitat; while some suggested the presence of the

SW topology [20]–[21], [28], [34], others stated that food webs do not display such topology

[30], [32].

Why is it important to explore the SW topology in marine food webs? There is no doubt

that network topology can have important implications for network function [35]. More

detailed knowledge on food web topology in marine ecosystems will help to understand the

dynamics of complex systems, historically subject to intense fisheries pressure and subsequent

regime shifts and collapse [36–40]. In general, consequences of SW topological pattern in food

webs are of great importance in recognizing evolutionary paths and the vulnerability to pertur-

bations [28]. A short characteristic path length showed by SW food webs imply a rapid spread

of an impact (e.g. invasion, population fluctuation, local extinction) throughout the network

[3]. However, based on its high clustering coefficient SW networks are associated with rapid

responses to disturbances resulting in a high resilience [28], [41]. Recently, extinction simula-

tions in three marine food webs displaying this topology presented opposite results regarding
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susceptibility to the loss of highly connected species [20]–[21], [34]. In this sense, the analysis

of large mobile predators might shed light on this issue, as they are highly connected species,

energy-channel couplers and ubiquitously affected by antropogenic disturbances [42]. There-

fore, it is not certainly known neither if the SW topology is a common pattern in marine food

webs, nor if the most connected species in such networks (e.g. species of commercial interest,

top predators) should be protected to avoid structural and functional impacts in ecosystems

that cover more than 70% of the planet´s surface.

As stated above, research on marine food web properties on individual networks is abundant,

yet topological studies analyzing the global structure in large sets of well-resolved marine food

webs are scarce [14], [17]. The SW topology, a pattern that gives a clear overview of organization

and resistance in trophic networks [20], has been difficult to detect in empirical food webs because

of incompatibility in used approaches and insufficient methodological rigour [21], [28], [34].

In this work, our aim was to analyze the SW structural pattern in empirical marine food

webs. For this, we gathered a broad range of high-quality marine food webs, some of which have

never been examined using a topological network approach. We developed and implemented a

simple and rigorous method to determine whether food webs presented the SW topology. This

method is rigorous because it considers the structural properties of interest (i.e. characteristic

path length, clustering coefficient and degree distribution) and statistically tests the probability

of presenting such topology, taking into account the position of the empirical values for the

structural properties in the confidence interval (99%) of the equivalent random networks. Our

results were compared with that of Humphries and Gurney [43], who proposed a quantitative

and continuous small-world-ness metric for complex networks. Finally, we hypothesized about

possible implications of the SW topology for ecosystem functioning in marine habitats.

Methodology

We compiled and selected a large set of well-resolved marine food webs, many of which are

included for the first time in network topology analyses. We limited our inclusion to food

webs with a minimum size (= number of trophic species), following Link et al. [13] recommen-

dation of considering only networks with 20–25 nodes at least. The studied food webs repre-

sent a wide range of number of trophic species (27–513) and connectance (0.01–0.27). The

assembled marine food webs cover from pelagic to coastal habitats, and tropical to polar

regions (Table 1). The list is by no means exhaustive, but the high taxonomic resolution of the

webs and the variety of regions that comprises likely make this list the most representative and

comprehensive picture of the topology in real-world marine food webs.

We studied the cumulative degree distribution, or the fraction of trophic species P(k) that

have k or more trophic links, for each network [44]. The use of cumulative distributions gives

a more accurate picture of the shape of the distribution in small, noisy data sets [32]. Model fit

was done using maximum likelihood [45], and model selection was performed by computing

the Akaike Information Criterion corrected for small sample size (AICc) [46].

In order to explore the SW phenomenon among these empirical marine food webs, we ana-

lyzed the properties of interest: characteristic path length (CPL) and clustering coefficient

(CC). The CPL is defined as the average shortest path length between all pairs of nodes and

represents a global property of the network [23]. Here, CPL was calculated as the average num-

ber of nodes in the shortest path CPLMin (i,j) between all pairs of nodes S(i,j) in a network aver-

aged over S(S-1)/2nodes [28]:

CPL ¼
2

SðS � 1Þ

XS

i¼1

XS

i¼1

CPLMinði; jÞ
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On the other hand, CC quantifies the local interconnectedness of the network and it is

defined as the fraction of the number of existing links between neighbours of node i among all

possible links between these neighbours. In this study, the CC of each food web was deter-

mined as the average of the individual clustering coefficients CCi of all the nodes in the net-

work. Individual CCi were determined as follows:

CCi ¼
2Ei

KiðKi � 1Þ

where Ei is the effective number of interactions between Ki nearest-neighbor nodes of node i
and the maximal possible number of such interactions [44], [47].

Table 1. Network and biological properties of high quality marine food webs, ordered by decreasing connectance.

Network Region Size Links C CPL CC DD U/M PP/C Reference

La Guajira Tropical 27 198 0.27 1.53 0.66 Uniform� 0.04 0.13 [51]

Benguela Temperate 29 203 0.24 1.6 0.3 Uniform 0.07 0.04 [52]

NE US Shelf Temperate 81 1482 0.23 1.6 0.31 Uniform 0.01 0.01 [2]

Gulf of Cadiz Temperate 42 410 0.23 1.99 0.56 LogNormal� 0.02 0.02 [53]

Baltic Sea Temperate 33 191 0.18 1.41 0.31 Poisson� 0.06 0.07 [54]

Beagle Channel Subpolar 33 183 0.17 1.46 0.32 Uniform� 0.03 0.55 [55]

Angola Subtropical 28 127 0.16 1.61 0.36 Uniform� 0.04 0.04 [56]

Chilean rocky Temperate 106 1362 0.12 1.34 0.11 Truncated power-law� 0.00 0.83 [57]

Gulf of Lions Temperate 39 189 0.12 1.77 0.34 Truncated power-law� 0.10 0.15 [58]

Florida Tropical 48 221 0.1 1.76 0.31 Uniform� 0.13 0.09 [59]

Simon Bay Temperate 30 70 0.08 1.7 0.12 Poisson� 0.04 0.56 [60]

Celtic Sea Temperate 48 169 0.07 2.3 0.3 Exponential� 0.00 0.00 [61]

Cuba Tropical 240 3874 0.07 1.86 0.11 Truncated power-law� 0.01 0.04 [62]

Jamaica Tropical 249 4105 0.07 1.84 0.12 Truncated power-law� 0.01 0.05 [62]

Cayman Is. Tropical 242 3766 0.06 1.85 0.11 Truncated power-law� 0.01 0.04 [62]

Monterey Bay Temperate 37 79 0.06 1.4 0.09 Truncated power-law� 0.08 0.12 [63]

Barents Sea Boreal Temperate 180 1546 0.05 2.28 0.25 Exponential� 0.04 0.02 [19]

Caribbean reef (l) Tropical 249 3312 0.05 1.9 0.16 Uniform 0.01 0.02 [64]

Potter Cove Polar 91 307 0.04 1.82 0.09 Exponential� 0.03 0.46 [22]

Southern Brazil Subtropical 139 837 0.04 3.25 0.07 Truncated power-law 0.02 0.02 [20]

Barents Sea Arctic Polar 159 848 0.03 2.06 0.16 Exponential� 0.05 0.04 [19]

Beach Peru Subtropical 46 88 0.04 1.73 0.09 Exponential� 0.07 0.10 [65]

Sanak intertidal Polar 235 1804 0.03 3.06 0.15 Truncated power-law� 0.03 0.08 [66]

Sanak nearshore Polar 513 6774 0.03 3.41 0.18 LogNormal� 0.01 0.08 [66]

SW Pacific Ocean Temperate 109 202 0.02 1.2 0.02 Truncated power-law� 0.00 0.33 [67]

Gulf of Alaska Polar 406 1057 0.01 2.59 0.001 Power-law 0.01 0.01 [34]

Gulf of Tortugas Tropical 256 647 0.01 1.65 0.02 LogNormal 0.01 3.90 [21]

Weddell Sea Polar 442 1915 0.01 2.05 0.04 LogNormal� 0.02 0.01 [68]

S, Size; L, Links; C, Connectance (L/S2); CPL, Characteristic Path Length; CC, Clustering Coefficient; DD, cumulative degree distribution fit.

� model fit using maximum likelihood and AICc. References are given for the source of the original network data. U/M, Unicellular/Metazoans; PP/C, Primary

Producers/Consumers.

Note
1 clustering coefficient for Gulf of Alaska food web is 0.0026.

https://doi.org/10.1371/journal.pone.0198217.t001
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With the aim of testing whether marine food webs presented the SW topology, we com-

pared the empirical values of CPL and CC with those resulted from 1000 randomly generated

networks with the same size (S) and number of links (L). Random webs were created using the

Erdös-Rényi model, where links are added to the complete set of nodes (S) and chosen uni-

formly randomly from the set of all possible links [48]. Small-world networks are considered

to present similar or lower CPL values between empirical and random webs (CPL empirical�

CPL random), and a much higher CC in empirical than in random webs (CC empirical >>

CC random) [23], [49].

The rigurosity of our method lies in the use of confidence intervals (CI 99%) for the empiri-

cal-random comparison of the CPL and CC properties. If the empirical value for a particular

food web was positioned within or to the left (= lower than) the CI 99% of the random CPL,

and to the right (= higher than) the CI 99% of the CC, then the food web was considered to

present the SW topology. We also calculated the ´small-world-ness´ Sws metric proposed by

Humphries and Gurney [43] for each studied food web, and compared these results with our

method. If Sws > 1 and Sws > Sws CI 99% (confidence interval), then the food web was said to

be a SW network.

The complete source code for generating the random networks and statistical analyses was

done in R [50], and is available at GitHub (https://github.com/lsaravia/MarineFoodWebs

SmallWorld).

Results

The analysis of the topological properties associated with the SW pattern showed that the char-

acteristic path length (CPL) and the clustering coefficient (CC) among the studied marine

food webs varied from 1.20 to 3.41 and from 0.0026 to 0.66, respectively. Connectance range

for these food webs was 0.01–0.27, considering networks comprising from 27 to 513 trophic

species (Table 1).

The cumulative degree distributions of the marine food webs fitted to a broad variety of

models: exponential, power-law, truncated power-law (power-law regime with a sharp cutoff),

lognormal, uniform. To our surprise some networks displayed a poisson distribution. The

majority of the networks exhibited ‘power-law-like’ (i.e. power-law and truncated power-

law = 40%) or uniform (25%) cumulative degree distributions (Table 1).

More than half of the analyzed food webs (19/28) exhibited similar or lower CPL than

expected for random networks. Following the CPL empiric results, minimum and maximum

CPLEmpirical/CPLRandom ratios were exhibited by those food webs with the lowest and highest

empiric values (i.e. SW Pacific Ocean and Sanak nearshore, respectively). Only 39% of the

webs presented higher CC than its random counterpart. A small number of food webs showed

both features: low CPL and high CC, compared to random networks (Fig 1).

The comparison between the small-world-ness metric (Sws) defined by Humphries and

Gurney [43], and our method to determine SW topology in complex networks reflected

differences. While the first one registered that 11 out of 28 webs presented the SW topol-

ogy, our method proved that only five food webs exhibited such pattern. These five

empiric networks displayed a similar or lower CPL and a higher CC, compared to the con-

fidence interval 99% of the random networks for each of the topological properties (Fig

1). Supporting information S1 Table presents detailed results on the comparison between

these methods.

Following Watts [26], we positioned each food web in the coordinate system x = CPL

empirical/random ratio, and y = CC empirical/random ratio (Fig 2). Our method demon-

strated that the only well-resolved marine food webs that clearly present the SW topology are:
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Gulf of Lions, Florida, Caribbean reef (l), Barents Sea Arctic and Weddell Sea (Fig 2B). Values

of CPL and CC ratios for the SW marine food webs are: 0.98 and 1.35 (Gulf of Lions), 0.91 and

1.60 (Florida), 0.98 and 1.49 (Caribbean reef (l)), 0.86 and 2.37 (Barents Sea Arctic), 0.67 and

2.04 (Weddell Sea). It is worth noting that network size in these food webs varies from 39 to

442 trophic species; connectance ranges from 0.01 to 0.12 (an order of magnitude of differ-

ence); and that the degree distribution was: truncated power-law, uniform, uniform, exponen-

tial and lognormal, respectively (Table 1).

Fig 1. Comparison between empirical and random food webs: Clustering coefficient and characteristic path length. (A) Clustering Coefficient (CC) and (B)

Characteristic Path Length (CPL) for empirical and random networks (ordered by decreasing connectance), generated with the same size (S) and number of

links (L). Horizontal line for each food web corresponds to the confidence interval (99%) of the 1000 random networks. The inverted triangule symbol indicates

food webs that follow the SW topology according to our method.

https://doi.org/10.1371/journal.pone.0198217.g001
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Discussion

The method developed and applied in this study to determine whether high quality food webs

present the SW topology showed that most of the marine networks analyzed do not display

such topology. Likewise, Dunne et al. [32] argued that food webs are not SW networks, though

other studies identify several individual or small sets of food webs as having the SW topology

[20]–[21], [28], [30], [34], [41].

The first condition for a network to exhibit a SW topology is a short distance between all

nodes of the web. All studies looking at this topology in food webs have reported short path

lengths similar to random expectations, coincident with one aspect of such structural pattern

[69]. Consistently, the majority of the CPL empiric values for the analyzed marine food webs

in the present study were similar or lower than the random webs.

Previously suggested dependence of CPL on connectance (i.e. path length decreases with

increasing connectance) [3], [5], [17] was not found among the largest and most complex

marine food webs available to date. In this regard, the lowest and highest values for CPL in the

analyzed networks were displayed by marine food webs with relatively very low connectance

(C = 0.02 and 0.03, respectively). On the other hand, CPL might be sensitive to network size in

marine food webs, but with an opposite scaling relationship as described by Riede et al. [17],

since the shortest CPL occured in SW Pacific Ocean food web, S = 109, and the longest CPL

was found in Sanak nearshore web (S = 513), a food web five times larger than the first one.

There is no doubt that the mechanisms responsible for short path lengths and potentially

Fig 2. Characteristic path length (CPL) and clustering coefficient (CC) empirical/random ratios. Marine food webs that follow a SW topology according to (A)

small-world-ness metric (SWness), and (B) our method (SWconf). SW networks are indicated with an inverted yellow triangle.

https://doi.org/10.1371/journal.pone.0198217.g002
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scaling correlations with other structural properties in marine food webs deserve further

investigation.

In spite of short path lengths, similar to random expectations, currently available food web

data clearly deviate from the SW topology due to a low clustering coefficient compared to ran-

dom networks [32]. Although analyses of compartmentalization in aquatic and terrestrial eco-

systems and food web models are profused [70–73], few studies have evaluated the presence of

clusters (i.e. subsets of species that interact more frequently among themselves than with other

species in the community, compared to random networks) in well-resolved marine food webs.

In this sense, Pérez-Matus et al. [74] reported 5 compartments for the Chilean subtidal food

web (not included here due to lack of information), and Rezende et al. [16] found for the

Caribbean reef food web (included here) a significant compartmentalized structure, higher

than that expected for its random counterpart. However, the present study demonstrates that

in general marine food webs tend to have low clustering coefficients (<< 1); less than half of

the networks (11 out of 28) showed a significantly higher empiric clustering coefficient com-

pared to the random expectation (i.e. CCEmpiric > CCRandom CI 99%). As a result, compart-

mentalization in marine ecosystems is very small, meaning that food webs are characterized by

trophic species highly interconnected between each other. It has been suggested that being

compartmentalized is advantageous to a community because compartments buffer the propa-

gation of extinctions, and that the observed architecture of empirical food webs (e.g. SW topol-

ogy) increases both the persistence and resilience against perturbation [73], [75]. Therefore,

the fact that the analysis of the largest set of complex marine food webs statistically showed

that the minority of the networks displays high clustering coefficients brings to light that: 1)

current marine food webs are predicted to be fragile and susceptible to structural changes with

consequent alterations in the functioning of the ecosystem, or 2) the influence of the clustering

coefficient in the stability and feasibility of large marine communities is not as significant as it

is thought. A third factor to take into account at this point is the resolution of the low-trophic

levels, usually represented by a few aggregated large groups (e.g. detritus, phytoplankton). A

reduced number of complex food webs in the marine ecosystem present high ratios of unicel-

lular/metazoans or primary producers/consumers (see Table 1). The importance of including

microbial species (i.e. cyanobacteria, pennate and centric diatoms, dinoflagellates) in marine

food web structural analyses has been recently reinforced by D’Alelio et al. [76]. Link diversity

and interconnectedness among these species are worth to be considered while defining marine

food web properties.

The drivers of a lower empiric clustering coefficient than its random counterpart in food

webs are suggested to be small network size (i.e. low diversity) and high connectance, features

displayed in ecological networks compared to other network types (e.g. neuronal, social and

technological) [69]. On the contrary, we have showed that large food webs (> 100 trophic spe-

cies) can also present notably low clustering coefficient ratios (e.g. Chilean rocky, SW Pacific

Ocean, Gulf of Alaska), similar to what Camacho et al. [30] have suggested. Regarding connec-

tance, SW marine networks exhibited one order of magnitude of difference (0.12–0.01). Nei-

ther network size nor complexity (= connectance) seem to be playing an important role in

explaining the lack of compartmentalized structures in marine food webs; highly interconnec-

ted nodes might be the case for these networks. These findings imply that species-rich food

webs (i.e. high diversity) in the marine ecosystem might not be organized by combining sub-

web compartments, as previously suggested for food webs in general [17].

Small-world networks seem to exhibit a variety of degree distributions [25]. To date, it has

been reported and identified in SW food webs the presence of scale-free or ‘power-law like’

structures [20]–[21], [28], [34] and exponential distributions [30]. Here, the majority of the

marine food webs identified as having the SW structural pattern showed neither ‘power-law
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like’ nor exponential degree distributions; instead they fit to uniform and lognormal models.

This is the first study that, using a robust statistical methodology (i.e. maximum likelihood and

Akaike Criterion), presents evidence for the occurrence of uniform degree distribution in SW

food webs. Added to the three classes of small-world networks proposed by Amaral et al. [25],

we suggest a new class: uniform-scale networks, characterized by a connectivity distribution

with an approximately constant node degree. It has been hypothesized that the presence of

uniform degree distributions in food webs may occur in relatively small (= few nodes) and

high-connected networks [77]. Food webs with this type of distribution are expected to be

more robust against intentional removal of the most connected nodes than networks with

more skewed distributions [78]–[79]. Nearly all of the marine food webs assessed in the cur-

rent study follow the pattern suggested by Dunne et al. [77], with the exception of the Caribben

reef food web that is comparatively large (S = 249) and low connected (C = 0.05). As it seems

to occur in general with food web degree distributions [77], SW networks in the marine eco-

system may display a broad variety of distribution models which proves the minor influence of

such property in the structural pattern of marine food webs. Furthermore, in contrast with

what is expected in real-world networks [28], [47], [77], we have demonstrated that empiric

marine food webs display poisson degree distributions (e.g. Baltic Sea and Simon Bay).

It has been suggested that network size, connectance and the degree distribution pattern

are drivers of the SW topology in complex networks in general [43] and in food webs in partic-

ular [32], [80]. After applying a novel small-world-ness metric to examine several classes of

real-world networks (e.g. social, information, technological and biological), Humphries and

Gurney [43] concluded that high connectance results in low SW-ness, confirming what was

stated for food webs [69]. Although we have not performed correlation analyses, neither of the

suggested drivers seems to be playing an important role in the presence of the SW structural

pattern in marine food webs: SW food web network size and connectance ranged from 39 to

442 and from 0.12 to 0.01 (one order of magnitude of difference), respectively. In addition,

three different models fit their degree distributions: ‘power-law like’ (power-law and truncated

power-law), lognormal and uniform.

After examining the features of the SW topology (i.e. path length, clustering coefficient and

degree distribution) and exposing the discrepancies among studies, it seems more than appro-

priate the application of a rigorous method like the one proposed here if the aim is to search

for a universal, generalized model explaining the structural pattern in food webs. Early sug-

gested correlations between path length, clustering coefficient and degree distribution with

network size and connectance in food webs [3], [5], [17], [77] might not be followed in the

structure of marine networks. It is crucial to better understand the topology and possible scal-

ing relationships among food web properties in marine ecosystems, since network structure

has deep consequences in the functioning of exploited systems [34], [21], [74], [81].

In conclusion, this study represents the first rigorous analysis of the SW topology and its

associated features in the largest set of complex marine food webs examined to date. It

attempts to resolve the ‘small-world controversy’ in food webs. We found that the SW topology

is a structural pattern that is not so frequent neither maximized in marine food webs; thus it is

probably not an effective model to study the robustness, stability and feasibility of marine

ecosystems.
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54. Yletyinen J, Bodin Ö, Weigel B, Nordström MC, Bonsdorff E, Blenckner T. Regime shifts in marine com-

munities: a complex systems perspective on food web dynamics. InProc. R. Soc. B. 2016; 283:

20152569.

55. Riccialdelli L, Newsome SD, Fogel ML, Fernández DA. Trophic interactions and food web structure of a

subantarctic marine food web in the Beagle Channel: Bahı́a Lapataia, Argentina. Polar Biology. 2017;

40: 807–21.

56. Angelini R, Vaz-Velho F. Ecosystem structure and trophic analysis of Angolan fishery landings. Scientia

Marina. 2011; 75: 309–19.
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