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A B S T R A C T   

The study investigates the significance of employing advanced systemic models in community 
health management, with a focus on COVID-19 as a respiratory virus. Through the development 
of a system dynamics model integrating an uncertain SEIAR model, our research addresses the 
critical issue of parameter uncertainty using Ensemble Kalman Filter (EnKF) and Metropolis- 
Hastings (MH) algorithms. We present a case study using real COVID-19 outbreaks in Iran, of
fering insights into effective outbreak control scenarios and considering the global impact of 
respiratory viruses. The research yields distinctive results, showcasing variable mortality rates 
(40,500 to 436,500) across scenarios in Iran. Model accuracy is rigorously evaluated using the 
Normalized Root-Mean-Square Deviation (NRMSD) for new cases, deaths, and recoveries (0.2 %, 
1.2 %, and 0.6 % respectively). The outcomes not only contribute to the existing body of 
knowledge but also offer practical implications for healthcare policies, economic considerations, 
and sensitivity assessments related to respiratory diseases. This study stands out from others in its 
approach to modeling and addressing uncertainty within a system dynamics framework. The 
integration of EnKF and MH algorithms provides a nuanced understanding of parameter uncer
tainty, adding a layer of sophistication to the analysis. The application of the model to real-world 
COVID-19 outbreaks in Iran further enhances the study’s relevance and applicability. In 
conclusion, the research introduces an uncertain SEIAR system dynamics model with unique 
contributions to policymaking, economic considerations, and sensitivity assessments for respi
ratory diseases. The outcomes and insights derived from the study not only advance our under
standing of disease dynamics but also provide actionable information for effective public health 
management.   

1. Introduction 

Respiratory viruses are widespread causes of human diseases globally, with notable types including ADV, HBoV, HCoV, HMPV, 
HPIV, HRSV, HRV, PCF, SARS, and SARS-CoV. A recent addition to this group is COVID-19, first identified in Wuhan in December 
2019. Given the multifaceted factors influencing virus outbreaks, the situation is intricate and unpredictable. Developing models to 
understand epidemic dynamics is crucial for public health interventions. Among these, compartmental models like the SIR model are 
commonly used. However, SIR models fall short in representing all relevant aspects such as vaccination and effective subsystems. 
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These limitations, coupled with uncertainties due to changing environments and human behaviors, lead to inaccurate predictions. To 
address the challenges posed by nonlinear, diverse, and stochastic epidemic patterns, novel approaches are essential. This paper 
tackles these issues through parameter estimation and data assimilation techniques, reducing the disparity between predictions and 
real observations. Consequently, we propose a scenario-based system dynamics model to aid governments in managing and curtailing 
the spread of COVID-19, a significant respiratory virus. 

Accurate parameter estimation is pivotal in enhancing epidemic models. Parameters vary based on geographic regions, reflecting 
differing epidemic spread patterns, demographics, and environmental dynamics. Moreover, model parameters evolve with the 
refinement of infectious disease models. Hence, previous parameter values lose relevance, demanding a redefinition aligned with local 
epidemic data and model structures. Widely employed parameter estimation methods include MCMC algorithms, particle swarm 
optimization, and iterative filtering methods. Furthermore, data assimilation plays a significant role in epidemic forecasting by 
merging direct and indirect observations from various sources into models, enhancing the realism of model trajectories. 

In the context of respiratory virus diseases, including COVID-19, it is necessary to develop effective models and address parameter 
uncertainties and integrate real-world data. Through innovative approaches like data assimilation, we can enhance our understanding 
of epidemic dynamics and ultimately improve prediction accuracy. 

2. Literature review 

The extant literature on respiratory diseases reflects a rich tapestry of research, encompassing diverse methodologies that 
contribute substantially to our comprehension of disease dynamics, transmission patterns, and strategies for mitigation. Notably, a 
myriad of studies have delved into this domain, each bringing unique perspectives and approaches to the forefront. 

Zuo et al. (2023) [1] significantly advanced our understanding by utilizing statistical models to assess the impact of non
pharmaceutical interventions on respiratory disease incidence during the COVID-19 pandemic in China. Their work provided valuable 
insights into the effectiveness of interventions during a public health crisis. In the realm of predictive modeling, Cui et al. (2022) [2] 
distinguished themselves by devising a microscopic-level model that surpassed existing macroscopic models in forecasting disease 
transmission trends with heightened accuracy. This underscores the importance of granular, detailed models for capturing the nuances 
of disease dynamics. Exploring a different facet, Guo et al. (2022) [3] investigated temperature-mortality associations and elucidated 
distinct vulnerabilities across age groups. Their work contributes to a holistic understanding of the multifaceted factors influencing 
respiratory diseases, highlighting the importance of considering demographic variables. Urban public transportation systems, as 
elucidated by Guo et al. (2023) [4], emerged as a crucial focal point in understanding disease spread. Their findings emphasize the 
necessity of preventive measures in such environments, offering practical implications for public health interventions. Arias et al. 
(2023) [5] leveraged machine learning for emergency health care demand predictions, demonstrating the versatility of advanced 
technologies in healthcare planning and resource allocation. Tasar et al. (2022) [6] achieved promising results in respiratory sound 
classification with a novel approach, showcasing the potential of innovative methods in disease diagnosis and monitoring. Jalasto et al. 
(2022) [7] delved into the intricate interplay of occupations, socioeconomic status, and respiratory diseases across different countries, 
providing a nuanced understanding of the social determinants influencing health outcomes. Estimating the impact of influenza on 
healthcare systems, Bernadou et al. (2023) [8] offered insights into the strain placed on hospital resources during disease outbreaks. He 
et al. (2023) [9] focused on the role of air pollution control in mitigating respiratory illnesses, contributing to the broader discourse on 
environmental factors affecting public health. Highlighting the intersection of climate and health, Krüger and Nedel (2022) [10] 

Abbreviations 

ADV Adenovirus 
EnKF Ensemble Kalman Filter 
HBoV Human Bocavirus 
HCoV Human Coronavirus 
HMPV Human Metapneumovirus 
HPIV Human Parainfluenza Virus 
HRSV Human Respiratory Syncytial Virus 
HRV Human Rhinovirus 
MH Metropolis-Hastings 
PCF Pharyngoconjunctival Fever 
SARS Severe Acute Respiratory Syndrome 
SARS-CoV Coronavirus Associated with SARS 
SEIAR Susceptible, Exposed, Infectious, Asymptomatic, and Removed 
SEIR Susceptible, Exposed, Infectious, and Removed 
SIR Susceptible, Infectious, and Removed 
MCMC Markov chain Monte Carlo 
RMAEs Relative Mean Absolute Errors 
NRMSD Normalized Root Mean Square Deviation  
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Table 1 
Research papers and their techniques and variables.  

Num Reviewed Topic Reference Year Utilized Variables Used Techniques Used Subsystems Case Study Country 

[1] Trends in respiratory 
diseases before and 
after COVID-19 

Zuo et al. 2023 Disease incidence ARIMA, GLM NPIs, respiratory China China 

[2] Forecasting 
transmission trends 
of respiratory 
diseases 

Cui et al. 2022 Transmission trends Microscopic 
model 

Individual 
movement 

United States Global 

[3] Effects of daily 
temperature on 
mortality from 
respiratory diseases 

Guo et al. 2022 Temperature, 
mortality 

Nonlinear models Temperature 
variations 

Mianyang 
City 

China 

[4] Dynamic model of 
disease transmission 
in urban 
transportation 

Guo et al. 2023 Disease spread, 
public 
transportation 

Dynamic model Rail transit system Small town China 

[5] Predicting 
emergency health 
care demands due to 
respiratory diseases 

Arias et al. 2023 Health care 
demands 

Machine learning 
algorithms 

Health emergency 
service 

Jaeön city Spain 

[6] Accurate respiratory 
sound classification 
model 

Tasar et al. 2022 Sound classification Piccolo pattern, 
classifiers 

Biomedical signal 
processing 

– – 

[7] Occupation and 
socioeconomic status 
in chronic 
obstructive 
respiratory diseases 

Jalasto et al. 2022 Occupation, 
socioeconomic 
status 

Regression 
algorithms 

Respiratory diseases Finland, 
Estonia, 
Sweden 

Europe 

[8] Burden of influenza- 
attributable severe 
acute respiratory 
infections 

Bernadou 
et al. 

2023 Hospitalizations, 
influenza 

Data analysis, 
estimation 

Hospitalization data Metropolitan 
France 

France 

[9] Optimal control of 
air pollution to 
reduce respiratory 
diseases 

He et al. 2023 Air pollution, 
respiratory diseases 

Deterministic, 
stochastic models 

Respiratory diseases – – 

[10] Relationship 
between climate and 
hospital admissions 

Krüger and 
Nedel 

2022 Hospital admissions, 
climate 

Correlation 
analysis 

Hospital admissions Brazil Brazil 

[11] PM2.5 and SISP 
Respiratory Diseases 

Shi, Qi 2022 PM2.5, SISP Qualitative 
analysis 

SISP dynamics Air pollution 
effects 

Not 
specified 

[12] Adaptive 
Interventions and 
Vaccination 
Strategies 

Goldenbogen 
et al. 

2022 NPIs, vaccination Agent-based 
modeling 

Community 
dynamics 

Germany 
(Jan–Sep 
2021) 

Germany 

[13] Direct and Indirect 
Effects of Air 
Pollution on Diseases 

Shi, Qi, Ding 2023 Direct/Indirect 
effects 

Bifurcation 
analysis 

Respiratory disease 
model 

– – 

[14] Longitudinal Audio 
Data for COVID-19 
Progression 
Prediction 

Dang et al. 2022 Audio biomarkers Sequential deep 
learning 

COVID-19 
progression 

– – 

[15] COVID-19 and 
Influenza 
Transmission 

Song et al. 2022 COVID-19, Influenza Mathematical 
modeling 

Disease transmission Germany 
(2011–2021) 

Germany 

[16] Quantifying Contact 
Patterns 

Breen et al. 2022 Contact patterns Multilevel 
regression 

Disease spread United States United 
States 

[17] Mobility Restrictions 
and COVID-19 
Spread 

Fazio et al. 2022 Mobility restrictions Agent-based 
modeling 

COVID-19 spread Italy Italy 

[18] Contact Rates and 
Transmission 

Ringa et al. 2022 Contact rates Segmented 
regression 

Disease transmission British 
Columbia 

Canada 

[19] Uncertain SEIAR 
Model for COVID-19 
Cases 

Jia and Chen 2021 Uncertain SEIAR Epidemic 
modeling 

COVID-19 cases China China 

[20] Asymptomatic 
Cohort in Epidemic 
Spread 

Pribylová, 
Hajnova 

2020 Asymptomatic 
cohort 

Compartmental 
modeling 

Disease spread – – 

(continued on next page) 
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Table 1 (continued ) 

Num Reviewed Topic Reference Year Utilized Variables Used Techniques Used Subsystems Case Study Country 

[21] COVID-19 Spread 
with Population 
Migration 

Chen et al. 2020 Infected and Basic 
Reproduction 
Numbers, 
Population 
Migration 

SEIR Modeling, 
Intervention 
Analysis 

Disease Spread, 
Population 
Movement 

COVID-19 
Pandemic 

– 

[22] Urban 
Transportation and 
Disease Spread 

Qian & 
Ukkusuri 

2021 Mobility Dynamics, 
Trans-SEIR Model 

Mathematical 
Modeling, 
Optimal Control 

Urban 
Transportation, 
Disease 
Transmission 

New York City USA 

[23] ICU Admission 
Prediction in COVID- 
19 

Sadat Asl et al. 2022 ICU Admission 
Prediction, Fuzzy 
Expert Systems 

Fuzzy Logic, 
ANFIS 

Medical Decision- 
Making 

COVID-19 
Patients 

– 

[24] Health Workforce 
Planning Under 
Universal Health 
Coverage 

Leerapan 
et al. 

2021 Health Workforce 
Demand and Supply, 
System Dynamics 
Modeling 

Group Model 
Building, Stock 
and Flow 
Diagrams 

Healthcare 
Workforce Planning 

Thailand Thailand 

[25] Preventive 
Healthcare Facility 
Network Design 

Ershadi & 
Shemirani 

2021 Network 
Configuration, 
Client Choice, 
Resource 
Constraints 

Mixed Integer 
Linear 
Programming, 
Genetic 
Algorithm 

Healthcare Facility 
Network 

Isfahan City Iran 

[26] Diagnostics, Testing, 
and Contact Tracing 
for COVID-19 

Fair et al. 2021 Epidemiology, 
Diagnostics, Testing, 
Contact Tracing 

Systems 
Dynamics 
Modeling, 
Experimental 
Design 

Epidemiological 
Systems 

– – 

[27] Vaccination- 
Resource Constraints 

Zhang et al. 2020 Vaccination- 
Dependent Basic 
Reproduction 
Number, Resource 
Constraints 

Lyapunov 
Functions, 
Optimal Control 
Theory 

Vaccination Strategy – – 

[28] System Dynamics for 
Infectious Disease 
Modeling 

Rubin et al. 2021 Infectious Disease 
Modeling, System 
Dynamics 

Causal Loop 
Analysis, System 
Dynamics 
Modeling 

Epidemic Models – – 

[29] Crisis Management 
Among Refugees 

Allahi et al. 2021 Epidemic Crisis 
Response, System 
Dynamic Model 

System Dynamics 
Modeling 

Refugee Health and 
Education 

Syrian 
Refugees in 
Turkey 

Turkey 

[30] COVID-19 
Prevention and 
Control Strategies 

Jia et al. 2022 Prevention and 
Control Model, 
System Dynamics 
Analysis 

System Dynamics 
Modeling 

Disease Prevention 
and Control 

– – 

[31] COVID-19 infection 
dynamics 

Hu et al. 2021 Infected people System Dynamics 
Modeling 

Wuhan, Hubei, 
China 

China China 

[32] Tourism recovery 
strategies post- 
COVID-19 

Gu et al. 2022 Tourist behavior Behavioral 
simulation 

Small Island 
Developing States 

Maldives Various 

[33] Pandemic response 
policies 

Sy et al. 2020 Infection, economy System Dynamics 
Modeling 

Disease transmission 
system 

Various Various 

[34] Policy innovation 
and health tech 
emergence 

Aminullah & 
Erman 

2021 Policy complexity System Dynamics 
Modeling 

Early COVID-19 
handling in 
Indonesia 

Indonesia Indonesia 

[35] Fuzzy fractal control 
for pandemic control 

Castillo & 
Melin 

2021 Control concepts Fuzzy fractal COVID-19 pandemic Global Global 

[36] COVID-19 outbreak 
in Iran and its impact 
on transportation 
system 

Rahimi Rise 
et al. 

2020 Infected people, 
mortality rates, 
recovery rates 

System dynamics 
modeling 

Health care systems, 
transportation, 
public contact, 
capacity of food and 
drug networks 

Iran – 

[37] Socioeconomic 
analysis of infectious 
diseases based on 
different scenarios 

Rise et al. 2022 Variables impacting 
infectious diseases, 
GDP prediction 

Uncertain SEIAR 
model, ANFIS 

Healthcare systems, 
transportation, 
contacts, capacities 
of food and 
pharmaceutical 
networks 

– – 

[38] Multidisciplinary 
analysis of 
international 
environments based 

Rahimi Rise, 
Z. et al. 

2022 Environmental 
considerations, 
global economy 

Literature 
analysis 

– – – 

(continued on next page) 
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explored the interaction between climate and hospital admissions for respiratory diseases in Brazil during the COVID-19 pandemic, 
shedding light on the complex relationship between environmental factors and disease prevalence. 

Air pollution’s intricate connection to respiratory diseases has garnered substantial attention. Shi and Qi (2022) [11] proposed 
strategies to mitigate PM2.5 pollution, aligning air quality improvements with enhanced patient care. Goldenbogen et al. (2022) [12] 
underscored the necessity for adaptive interventions, considering community dynamics and vaccination strategies. Extending this 
analysis, Shi, Qi, and Ding (2023) [13] delved into the impact of air pollution on both direct and indirect disease transmission modes. 
COVID-19-specific research has demonstrated diverse perspectives. Dang et al. (2022) [14] showcased the potential of audio data in 
predicting COVID-19 progression through deep learning. Song et al. (2022) [15] emphasized non-pharmaceutical interventions’ 
importance for both COVID-19 and influenza transmission. Breen et al. (2022) [16] quantified disease-relevant contact patterns, while 
Fazio et al. (2022) [17] assessed mobility restriction impacts through an agent-based approach. Ringa et al. (2022) [18] highlighted 
close-contact rates’ significance in disease dynamics. Jia and Chen (2021) [19] introduced uncertainty into epidemic modeling, 
enhancing COVID-19 case predictions, and Pribylová and Hajnova (2020) [20] explored the role of asymptomatic cohorts in COVID-19 
spread. Chen et al. (2020) [21] incorporated population migration into an extended SEIR model, revealing intervention strategies’ 

Table 1 (continued ) 

Num Reviewed Topic Reference Year Utilized Variables Used Techniques Used Subsystems Case Study Country 

on impacts of Covid- 
19 

shift, public-health 
resilient systems 

[39] Multi-objective 
optimization model 
for logistic planning 
in crisis response 
phase 

Ershadi and 
Shemirani 

2022 Types of injured 
people, vehicles, 
logistic planning 

Multi-objective 
optimization, 
Lexicographic 
method 

– – – 

[40] Comprehensive 
analysis of epidemic 
prevention measures 

Zhu et al. 2023 Population 
dynamics 

SEIAR model Population mobility, 
vaccination, 
retesting 

Hong Kong, 
Shenzhen 

China  

Fig. 1. A representation of map of science for various applications and research areas related to diseases in WoS.  
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impact. 
Examining urban transportation’s role in disease transmission, Qian and Ukkusuri (2021) [22] developed a Trans-SEIR model, 

illustrating the influence of mobility patterns. In medical decision-making, Sadat Asl et al. (2022) [23] used fuzzy expert systems for 
ICU admission predictions, and Leerapan et al. (2021) [24] employed system dynamics for healthcare workforce planning. Ershadi and 
Shemirani (2021) [25] focused on preventive healthcare facility network design, while Fair et al. (2021) [26] used interconnected 
system dynamics models to address uncertainties in COVID-19 diagnostics, testing, and contact tracing. Zhang et al. (2020) [27] 
optimized control strategies for a two-group epidemic model with vaccination-resource constraints. System dynamics models found 
utility in understanding infectious diseases more broadly. Rubin et al. (2021) [28] advocated for system dynamics’ simplicity and 
effectiveness, and Allahi et al. (2021) [29] evaluated crisis management responses in refugee populations. Jia et al. (2022) [30] 
assessed COVID-19 prevention and control strategies, highlighting dynamic intervention effects. Hu et al. (2021) [31] estimated 
infected individuals in different regions of China using a multivariate Monte Carlo optimization approach. Gu et al. (2022) [32] 
examined tourism recovery strategies post-COVID-19 for Small Island Developing States. Sy et al. (2020) [33] recommended pandemic 
response policies by analyzing the interplay between disease transmission and economic impact. Aminullah and Erman (2021) [34] 
explored policy innovation and health technology emergence in COVID-19 handling in Indonesia. 

In the realm of modeling for respiratory disease dynamics, Castillo and Melin (2021) [35] innovatively proposed a fuzzy fractal 
control approach tailored for nonlinear dynamic systems, with a practical application demonstrated in the context of COVID-19 
control. Rahimi Rise et al. (2020) [36] delved into COVID-19 outbreak scenarios within Iran, emphasizing the pivotal role of the 
transportation system. Rise and Ershadi (2022) [37] and Rahimi et al. (2022) [38] extended their focus to the international impacts of 
COVID-19, advocating for institutional reforms to fortify public health systems globally. Ershadi and Shemirani (2022) [39] enriched 
the literature with a multi-objective optimization model designed for crisis response planning, encompassing considerations for 
injured individuals and logistical planning. In a recent contribution, Zhu et al. (2023) [40] introduced an SEIAR model specifically 
tailored to analyze the efficacy of multiple epidemic prevention measures for COVID-19. Their work underscored the importance of 
diverse strategies in effectively managing the pandemic. Collectively, these literature reviews significantly contribute to a nuanced and 
comprehensive understanding of the dynamics, spread, and strategic management of respiratory diseases, offering valuable insights for 
future research and public health interventions. Table 1 demonstrates some of these studies. 

Figs. 1 and 2 illustrate a science mapping of various applications and research areas related to diseases from 2010 to 2023. The left 
picture displays distinct clusters and their interconnections, along with their sizes (number of published papers with related key
words), while the right picture showcases the distribution of publications across different years. As evident from the figures, an 
extensive output of more than 2.2 million research papers related to diseases is documented in the Web of Science database. Among 

Fig. 2. A representation of map of science for date of various applications and research areas related to diseases in WoS.  
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these, around 50,000 papers are specifically focused on the development of systems and models for addressing these issues. Within this 
extensive body of literature, a smaller subset of fewer than 1000 publications has addressed respiratory virus diseases, and a mere 20 
papers have explored the intricate domain of uncertainty and simulation within this particular field. 

This study stands out in the expansive landscape of respiratory disease modeling by presenting an innovative SEIAR model 
embedded within a system dynamics analysis, addressing the intricate dynamics of societal uncertainty. Aimed at formulating optimal 
strategies for respiratory disease management, the research pioneers a comprehensive system-dynamics model that envisions diverse 
trajectories of virus diseases. Key contributions include:  

• Advanced SEIAR Framework: Introducing a sophisticated SEIAR model, the research intricately integrates variables like population 
mobility, vaccination dynamics, and the impact of retest-positive populations on epidemic spread. This innovative framework 
enhances the understanding of disease dynamics within destination areas.  

• Uncertainty Mitigation through EnKF and MH Algorithms: The study employs EnKF and MH algorithms to address parameter 
uncertainty through data assimilation. Notably, the SEIAR-EnKF framework bridges the gap between model predictions and real- 
world observations, refining trajectory projections with precision. 

• Versatile Platform for Experimentation: The proposed framework offers versatility for both synthetic and real-world experimen
tation. Scenario analyses provide a comprehensive grasp of active case trends within destination areas, aiding in the anticipation 
and management of respiratory diseases over defined temporal intervals. 

In essence, this research pioneers a meticulously designed SEIAR model integrated into subsystems, leveraging the power of system 
dynamics analysis. Applied to the context of Iranian COVID-19, the model proves its practicality, offering valuable insights into disease 
management amidst challenging circumstances. The methodologies, encompassing uncertainty accommodation and scenario-based 
examinations, collectively present a holistic paradigm for anticipating and addressing the complex dynamics of respiratory diseases. 

Although Section 1 focuses on introduction and Section 2 provides the literature review conducted on related papers, other sections 
of this article are organized as follows: In Section 3, we introduce the system dynamics model proposed for respiratory virus diseases. 
We then apply this model to real-world data from a COVID-19 case study in Section 4, where we also showcase simulation trends. The 
outcomes of the proposed model are presented in Section 5, accompanied by sensitivity analyses and various scenarios for the case 
study. Sections 6 and 7 encompass the discussion and conclusion of this study, respectively. 

3. The proposed model 

We chose the SEIAR model as our mathematical foundation for capturing the evolving nature of respiratory viral diseases, using 
COVID-19 as a case study. By utilizing the EnKF, we seamlessly integrated data on daily confirmed cases. The MH sampling technique 
was employed for accurately estimating model parameters. Further elaboration on this model is presented below: 

3.1. SEIAR model 

In 1927, Kermack and McKendrick introduced the SIR model, a fundamental tool in epidemiology. While effective for epidemics, its 
relevance waned post-COVID-19 due to urban migration and vaccinations. To adapt, we extended it to SEIAR, encompassing Sus
ceptible, Exposed, Infectious, Asymptomatic, and Removed individuals, even considering vaccinated breakthrough cases (see Fig. 3). 
Our dynamic model is built on SEIAR’s respiratory virus insights, dissecting subsystem interplays amid uncertainty. This pioneering 
study blends innovation and scenario-based analysis, uniquely unraveling disease dynamics. Our equations mirror daily fluctuations of 
active cases, embodying our dedication to decode ever-changing disease complexities. 

The following subsections are presenting the proposed model of this study in detail. 
Let SIt is susceptible individuals at the time t, EIt is exposed individuals at the time t, SIIt is symptomatically infected individuals at 

the time t, AIIt is asymptomatically infected individuals at the time t, and RIt is removed individuals (recovered or death) at the time t. 
Accordingly, different equations for 5 groups in the proposed uncertain SEIAR model utilized for this paper are defined as follows. 

Fig. 3. A representation of SEIAR model.  
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3.1.1. Mathematical background  

• Susceptible individuals: Let L1t , L2t are two Liu processes, μ1, σ1, μ2, σ2 are nonnegative numbers, Crsi
sii is the contact rate between 

a susceptible individual and asymptomatically infected individual, Crsi
aii is the contact rate between a susceptible individual and an 

asymptomatically infected individual, and Vac is vaccination rate in the susceptible individual. Then Crsi
sii and Crsi

aii are defined as 
Equations [1,2] 

< listaend > Crsi
sii = μ1 + σ1

L1t+Δt − L1t

Δt
(1)  

Crsi
aii = μ2 + σ2

L2t+Δt − L2t

Δt
(2) 

According to equations (1) and (2), SIt is defined as Equations [3,4] 

SIt+Δt − SIt = −
(
Crsi

siiSItSIItΔt +Crsi
aiiSItAIItΔt − VacSItΔt

)
(3)  

⇒ dSIt = − (μ1SItSIIt + μ2SItAIIt − VacSIt)dt − σ1SItSIItdL1t − σ2SItAIItdL2t (4)   

• Exposed individuals: Let L3t , L4t are two Liu processes, μ3, σ3, μ4, σ4 are nonnegative numbers, Rei
sii is the rate that exposed in

dividuals become symptomatically infected individuals, and Rei
aii is the rate that exposed individuals become asymptomatically 

infected individuals. Then Rei
sii and Rei

aii are defined as Equations [5,6] 

< listaend > Rei
sii = μ3 + σ3

L3t+Δt − L3t

Δt
(5)  

Rei
aii = μ3 + σ3

L3t+Δt − L3t

Δt
(6) 

According to equations (5) and (6), EIt is defined as Equations [7,8] 

EIt+Δt − EIt =(SIt − SIt+Δt) −
(
Rei

sii +Rei
aii

)
EItΔt (7)  

⇒ dEIt =(μ1SItSIIt + μ2SItAIIt − μ3EIt − μ4EIt)dt + σ1SItSIItdL1t + σ2SItAIItdL2t − σ3EItdL3t − σ4EItdL4t (8)    

• Symptomatically infected individuals: Let L5t, L6t are two Liu process, μ5, σ5, μ6, σ6 are nonnegative numbers, Rrsii
rod is the 

removed (death) rate of symptomatically infected individuals, and Rrsii
ror is the removed (recovered) rate of symptomatically 

infected individuals. Then Rrsii
rod and Rrsii

ror are defined as Equations [9,10] 

< listaend > Rrsii
rod = μ5 + σ5

L5t+Δt − L5t

Δt
(9)  

Rrsii
ror = μ6 + σ6

L6t+Δt − L6t

Δt
(10) 

According to equations (5), (9) and (10), SIIt is defined as Equations [11,12] 

SIIt+Δt − SIIt =Rei
siiEItΔt − (Rrsii

rodSIItΔt+Rrsii
rorSIItΔt

)
(11)  

⇒ dSIIt =(μ3EIt − (μ5SIIt+μ6SIIt))dt + σ3EItdL3t − (σ5SIItdL5t + σ6SIItdL6t) (12)    

• Asymptomatically infected individuals: Let L7t, L8t are two Liu process, μ7, σ7, μ8, σ8 are nonnegative numbers, Rraii
rod is the 

removed (death) rate of asymptomatically infected individuals, and Rraii
ror is the removed (recovered) rate of asymptomatically 

infected individuals. Then Rraii
rod and Rraii

ror are defined as Equations [13,14] 

< listaend > Rraii
rod = μ7 + σ7

L7t+Δt − L7t

Δt
(13)  

Rraii
ror = μ8 + σ8

L8t+Δt − L8t

Δt
(14) 

According to equations (6), (13) and (14), AIIt is defined as Equations [15,16] 

AIIt+Δt − AIIt =Rei
aiiEItΔt −

(
Rraii

rodAIItΔt+Rraii
rorAIItΔt

)
(15)  
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⇒ dAIIt =(μ4EIt − (μ7AIIt + μ8AIIt))dt + σ4EItdL4t − (σ7AIItdL7t + σ8AIItdL8t) (16)    

• Removed individuals: According to equations (9), (10), (13) and (14), RIt is defined as Equations [17,18] 

< listaend > RIt+Δt − RIt = Rrsii
rodSIItΔt + Rrsii

rorSIItΔt + Rraii
rodAIItΔt + Rraii

rorAIItΔt (17)  

⇒ dRIt =(μ5SIIt+μ6SIIt + μ7AIIt + μ8AIIt)dt + σ5SIItdL5t + σ6SIItdL6t + σ7AIItdL7t + σ8AIItdL8t (18) 

According to equations ((4), (8), (12), (16) and (18), the uncertain SEIAR model is proposed to model an epidemic disease in a 
social system based on uncertain behavior of people, where SIt: susceptible individuals, EIt: exposed individuals, SIIt: symptomatically 
infected individuals, AIIt: symptomatically infected individuals, RIt: removed individuals, Lit: Liu processes, μi and σi for i = 1,…,8 are 
nonnegative numbers. It is noteworthy that the uncertain SEIR model is degenerates if AIIt = μ4 = σ4 = 0. In addition, the uncertain 
SIR model is an uncertain SEIR if EIt = μ2 = σ2 = 0. Therefore, the proposed uncertain SEIAR model in this paper can degenerate 
uncertain SEIR and uncertain SIR models, as well. Real data about susceptible individuals, exposed individuals, symptomatically 
infected individuals, asymptomatically infected individuals, and removed individuals for previous days could be utilized in these 
equations to find appropriate variables for this model. SI0 is equal to all populations of each country and t is the number of days with 
the determined number of infectious diseases patients. Besides, Ljti+1 − Ljti

ti+1 − ti 
is a standard normal uncertain variable N(0,1) based on the 

definition of Liu process. Therefore, all μi and σi are predicted based on the mentioned information. 

3.1.2. The main subsystem of disease spread 
The literature indicates universal susceptibility to respiratory viruses, with birth and mortality rates based on WHO reports. The 

infected are categorized as asymptomatic, symptomatic, and then divided into recovery or fatality groups. After about 14 days, the 
recovered can still be transmitted to susceptible people. Individual traits like gender and age, along with uncertain community be
haviors, shape disease estimates. Combined with the SEIAR model, a dynamic system model is formed, factoring in temperature’s 
impact on transmission. Explore Fig. 4 and Table 2 for deeper insights into the spread subsystem of the model. 

Various factors are established according to the starting model and existing data. Certain factors are categorized as “level” vari
ables, as they derive from the integration of other variables known as “rate” variables. These connections between level and rate 
variables are indicated by black arrows. Additional relationships are depicted by blue arrows. A subset of variables remains constant 
throughout and is defined as such. Auxiliary variables are shaped by predefined functional forms and functions based on other var
iables. Shadow variables, denoted by pale shading and parentheses, operate independently. When a pathway exists between variables 
along the arrow direction, a loop forms within the model. 

The current information from the proposed model falls short in demonstrating how various policies affect disease control. To 
address this, we delve into distinct sectors like healthcare, transportation, food, drug distribution networks, contacts, and their in
fluences on the uncertain SEIAR model’s parameters. Herein, we present a breakdown of the subsystems: 

3.1.3. Healthcare subsystem 
The healthcare system plays a vital role in this model, given the substantial impact of hospitals and healthcare centers on disease 

control. Initial variables are derived from literature, while additional ones stem from available data. These variables’ parameters can 
be fine-tuned using Ministry of Health reports from each country. By establishing intricate relationships within this subsystem, it 
seamlessly integrates with the spread subsystem of the proposed dynamic model. This component assesses the capacity of hospitals and 
healthcare centers to accommodate patients, adjusting allocated beds based on patient numbers and system capacity. Vaccination 
serves as a critical factor for susceptible individuals. Furthermore, the healthcare system’s influence on recovery and mortality rates 
factors in patient accessibility to different centers. For a deeper dive, refer to Fig. 5 and Table 3. 

3.1.4. Transportation subsystem 
An essential component is the transportation subsystem, a vital aspect of daily life categorized into public and private modes. Initial 

Fig. 4. A representation of the spread subsystem of the proposed model.  
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parameters are derived from literature, while additional ones stem from available data. Capacity, sourced from the Ministry of Roads 
and Transportation reports, shapes both parts. Public transportation significantly influences social interactions, with infection rates 
escalating. Raising infection awareness encourages private vehicle use. This dynamic element is incorporated in our system model 

Table 2 
Definition of the spread subsystem of the proposed model.  

Variable name Definition Type Relationship 

Birth The average number of people born per month Auxiliary predefined functional forms 
Death The average number of deaths per month Auxiliary predefined functional forms 
All population The population of country Level function 
Susceptible individuals The susceptible population is 95 % of country people Auxiliary function 
rate of exposed Exposed rate for infectious Auxiliary functional forms 
Time The time variable used in the model Constant constant 
Exposed individuals The exposed people Level function 
effects of temperature The effect of temperature on virus function Auxiliary predefined functional forms 
temperature changes Average temperature changes during a year in country Auxiliary predefined functional forms 
cognition rate Cognition rate of virus Constant predefined functional forms 
rate of infection symptomatically The rate of infected people with symptoms Auxiliary functional forms 
rate of infection asymptomatically The rate of infected people without symptoms Auxiliary functional forms 
Symptomatically infected individuals The number of infected people with symptoms Level function 
Asymptomatically infected individuals The number of infected people without symptoms Level function 
rate of new cases symptomatically Rate of patient addition to confirmed patients with symptoms Auxiliary functional forms 
clinical manifestations of disease The average time between infection and the first sign of symptoms Constant constant 
registered patients Number of confirmed patients Level function 
rate of recovery symptomatically Recovery rate for symptomatic infected people Auxiliary functional forms 
rate of recovery asymptomatically Recovery rate for asymptomatic infected people Auxiliary functional forms 
rate of death symptomatically Mortality rate for symptomatic infected people Auxiliary functional forms 
rate of death asymptomatically Mortality rate for asymptomatic infected people Auxiliary functional forms 
period of infection The average time of infection Constant predefined functional forms 
Recovered people The number of people who recovered Level function 
Deaths people The number of people who died Level function  

Fig. 5. The spread subsystem of the proposed model and healthcare subsystem.  

Table 3 
Definition of the healthcare subsystem model.  

Variable name Definition Type Relationship 

hospitals capacity The capacity of the number of beds in the hospitals Constant constant 
other healthcare centers capacity The capacity of the number of beds in other healthcare centers Constant constant 
allocated beds for patients Number of allocated beds to the patients Auxiliary functional forms 
patients per beds The ratio of the number of patients to the number of allocated beds Auxiliary function 
effect of healthcare centers on recovery The effect of hospital services on patient recovery Auxiliary functional forms 
effect of healthcare centers access The effect of hospitals access on their services Auxiliary functional forms 
effect of healthcare centers on mortality The effect of hospital services on patient mortality Auxiliary functional forms 
Vaccination The effect of vaccination on susceptible individuals Auxiliary functional forms  
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(Fig. 6), with further details in Table 4. The model considers various modes for work, shopping, leisure, etc., accounting for public and 
private contexts. Notably, shifts in these modes during and post-lockdown couldn’t be appraised due to data constraints, except for 
educational institutions, included for data clarity. 

3.1.5. Food and drug distribution subsystem 
Food and drug distribution networks play a crucial role in population density. While some variables are derived from literature, 

others stem from available data. These networks must meet the people’s needs; a surge in demand post-infection news drastically 
affects infection rates. As per the health ministries, changing the capacities of these centers takes time. Managing this requires tracking 
demand shifts. Check out Fig. 7 for an overview of the spread subsystem in our dynamic model and Table 5 for additional insights. 

3.1.6. Contact subsystem 
The healthcare subsystem significantly impacts the proposed model’s spread subsystem, both directly and indirectly. While the 

transportation and food-drug network subsystems exert indirect influence on the spread subsystem, they play a crucial role in shaping 
the frequency of interactions among individuals. This underscores the importance of including the contacts subsystem within our 
proposed model. For more insights on this subsystem, refer to Fig. 8 and Table 6. 

The paper introduces a system dynamics model based on infectious disease dynamics and its interconnected subsystems: health
care, transportation, food and drug networks, and contacts. Each subsystem is demarcated with distinct colors, defining their 
boundaries. Fig. 9 vividly showcases the dynamic model, offering a visual journey through these interconnected subsystems. 

Numerous subsystems contribute to the study of human societies, introducing complexities when incorporated into models. To 
guide dynamic system models, it’s crucial to identify both direct and indirect subsystems. In this study, we employ an uncertain SEIAR 
model to simulate respiratory disease outbreaks, encompassing healthcare, transportation, food-drug distribution, and contacts as key 
subsystems with direct impacts. While other influential subsystems exist, their effects are indirectly addressed within this framework. 
For instance, the education subsystem indirectly influences transportation and contact dynamics. Additionally, the work environment, 
a potent subsystem, directly impacts contact and transportation patterns. Thus, our model focuses on direct impact subsystems, while 
acknowledging the nuanced influence of other elements. 

3.1.6.1. Ensemble Kalman Filter. The Ensemble Kalman Filter (EnKF) is a powerful algorithm employed in the context of epidemic 
modeling, acting as a maestro in refining predictions and mitigating bias within nonlinear models such as SEIAR. In essence, the EnKF 
can be visualized as a conductor orchestrating a symphony of accuracy, dynamically integrating daily observations to enhance the 
precision of vital state variables. 

EnKF’s strength lies in its ability to assimilate real-world data into models seamlessly, ensuring that predictions align closely with 
observed outcomes. This iterative dance of forecasting and analysis is akin to a ballet, where each observation gracefully contributes to 
refining the model’s trajectory. 

Fig. 6. The spread subsystem of the proposed model and transportation subsystem.  

Table 4 
Definition of the transportation subsystem model.  

Variable name Definition Type Relationship 

effects of infection on private transportation The effect of infection on the use of private vehicles Auxiliary functional forms 
contacts for transportation The average number of visits per transport Auxiliary predefined functional forms 
private transportation capacity The average capacity of personal transportation Auxiliary constant 
public transportation capacity The average capacity of public transportation Auxiliary constant 
request for transportation Average of requests for transportation Auxiliary function 
transportation for schools Average of requests for schools’ transportation Auxiliary functional forms 
transportation for universities Average of requests for universities’ transportation Auxiliary functional forms  
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A key feature of EnKF is its ensemble approach, which uses multiple simulations to represent the uncertainty associated with model 
parameters. This ensemble strategy contributes to operational efficiency, and the statistical techniques employed by EnKF effectively 
eliminate the biases that may arise in predictions. The algorithm’s proficiency in harmonizing epidemic history with real-time 

Fig. 7. The spread subsystem of the proposed model with food and drug subsystem.  

Table 5 
Definition of food and drug networks subsystem model.  

Variable name Definition Type Relationship 

effect of patients on 
demands 

The effect of the news about infection on the demand for medicinal substances and 
foodstuffs 

Auxiliary functional forms 

demand of people The average demand of the people Auxiliary function 
shortage of items The average shortage of various items Auxiliary function 
food and drug centers 

capacity 
The average distribution capacity of pharmaceutical and food centers Constant predefined functional 

forms 
effects of shortage on 

contacts 
The effects of average shortages of different items on the number of contacts Auxiliary functional forms  

Fig. 8. The spread subsystem of the proposed model with contacts subsystem.  

Table 6 
Definition of contacts subsystem model.  

Variable name Definition Type Relationship 

infected people out of hospital The average number of infected people outside of the hospitals Auxiliary function 
effect of contacts The effect of contacts on the rate of infection Auxiliary functional forms 
effect of funerals on contacts The effect of deaths on contacts Auxiliary functional forms 
frequency of contacts The average frequency of contacts Auxiliary functional forms 
number of contacts The average number of contacts Auxiliary functional forms  
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observations makes it a shining star in the realm of data assimilation, providing a robust tool for enhancing the accuracy of infectious 
disease modeling. Behold the unfolding of EnKF’s steps: 

Step 1. A Grand Beginning 
1.1. We summon a cast of ensemble members (N) to represent the tapestry of initial uncertainty. 
1.2. Each ensemble member strides onto the stage, a unique portrayal of the initial state, painted with random splashes of noise or 

drawn from a distribution of uncertainty. 

Step 2. A Vision of Tomorrow (Model Prediction) 
2.1. Every member embarks on a journey through time, dancing to the rhythm of the dynamic model. 
2.2. Echoes of uncertainty are woven into their choreography, as model noise and perturbations infuse diversity into the ensemble’s 

graceful trajectories. 

Step 3. Harmonizing Reality (Observation Preprocessing) 
3.1. Real-world observations join the performance, each note resonating with measurements and their own unique uncertainties. 
3.2. Anomalies ripple through the ensemble, the difference between observations and the dancers’ predictions, casting a spell of 

intrigue. 

Step 4. The Transformation (Analysis Update - Ensemble Perturbation) 
4.1. Ensemble mean takes the spotlight alongside the deviations from the mean, the very heartbeat of state and observation 

anomalies. 
4.2. A ″3-2″ metamorphosis begins: the Kalman gain appears, connecting observation anomalies with state perturbations. 
4.3. The dance evolves into an analysis, a fusion of Kalman’s grace, observation anomalies’ mystique, and state perturbations’ 

allure. 

Step 5. Reshaping Reality (Analysis Update - State Reconstruction) 
5.1. The analysis ensemble takes center stage, the sum of updated perturbations and the mean’s poise. 
5.2. The analysis state steps into the limelight, the culmination of ensemble synergy, a snapshot of refined reality. 

Step 6. The Eternal Cycle (Data Assimilation) 
6.1. The dance continues, each step a mirror of the past ones, a cadence of Steps 2 through 5. 
6.2. The analysis state leads the ensemble, a torchbearer of insight, igniting the next scene. 
6.3. As new observations join the ensemble, the dance transforms, a perpetual evolution of ensemble and analysis. 
Ensemble Kalman Filter unfolds as an iterative masterpiece, reprising Steps 2 to 6 with each assimilation moment. It’s a harmonious 

duet between model predictions and real-world observations, a ballet of uncertainty where ensemble trajectories waltz to reveal the 
truth behind the scenes. EnKF’s harmony surfaces as a beacon of precision for epidemic prevention strategies. Coupled with daily 
observations, it’s the key to tuning simulation accuracy and bridging the gap between foresight and actuality. This journey is an 
ongoing symphony of forecasting and analysis, refining state variable estimates through the chorus of observations. Forecasting is the 
echo of history and the bridge to the future. The fusion of predictions and observations births optimal enlightenment. In the realm of 
analysis, intricate mathematical pas de deux elevate these estimations, a testament to unrivaled precision. 

3.2. Metropolis-Hastings algorithm 

The Metropolis-Hastings (MH) algorithm is a powerful tool for tackling the challenges of parameter uncertainty, particularly in the 

Fig. 9. A representation of the proposed system dynamics model.  
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complex landscape of the SEIAR model. Unlike some other algorithms, the MH algorithm excels in its simplicity, allowing it to navigate 
through iterations and sample distributions without an intricate understanding of their shapes. This quality makes it especially 
valuable when dealing with the multifaceted dynamics of estimating model parameters in the SEIAR framework. 

The algorithm unfolds in a series of distinct steps, each contributing to the precision of parameter estimation. It begins with the 
identification of choice points, strategically generating candidate values. These candidates are then subjected to an anticipation of 
potential outcomes and a quantification of their likelihoods, given the available data. The algorithm then calculates the odds of 
accepting these candidates, a crucial step in determining their contribution to the overall parameter space. As the iterations progress, 
the algorithm steadily converges towards optimal model parameters, ensuring a thorough exploration of the parameter space. 

While the MH algorithm may not be the fastest at achieving convergence, its deliberate and methodical approach conceals a rich 
narrative. Each iteration contributes to the algorithm’s understanding of the parameter landscape, effectively balancing the acceptance 
probabilities of the generated candidates. One of the algorithm’s remarkable strengths lies in its ability to handle intricate distributions 
with ease. This liberates practitioners from the burden of needing a deep understanding of the underlying distribution shapes, 
simplifying the parameter estimation process, especially in the dynamic and uncertain context of the SEIAR model. In the context of 
SEIAR model parameter estimation, the MH algorithm emerges as a beacon of reliability amidst uncertainty. Its streamlined approach 
illuminates the path to obtaining dependable model parameters, offering a valuable contribution to the broader field of infectious 
disease modeling and enhancing our ability to comprehend and manage public health crises. Guided by its principles, the MH algo
rithm plays a crucial role in navigating the complexities of parameter uncertainty, facilitating robust and informed decision-making in 
public health contexts. 

Let’s venture into the world of the MH algorithm, an ingenious MCMC approach designed to unravel the enigma of parameter 
uncertainty:  

• Initialization: Begin with initial values denoted as θ for the parameters to be estimated. These initial values can be chosen randomly 
or based on prior knowledge.  

• Creating Candidates: Craft a candidate parameter set, θnew, using a proposal distribution q(θnew |θ). This distribution dictates how 
you transition from the current parameter values to new ones in each iteration.  

• Likelihood Evaluation: Calculate the likelihood of your data given the candidate parameter set, denoted as L(θnew). This reflects 
how well the model with the candidate parameters aligns with the observed data.  

• Acceptance Probability Computation: Compute the acceptance probability, α, which determines whether to embrace or reject the 
candidate parameters. It’s calculated as:  

α = min(1, L(θnew) / L(θcurrent) *q(θcurrent | θnew) / q(θnew | θcurrent))                                                                                                         

Here, θcurrent represents the current parameter values.  

• Acceptance or Rejection: Roll a dice with values between 0 and 1. If the rolled value is less than or equal to the acceptance 
probability α, embrace the candidate parameters (set θ = θnew). Otherwise, let them go (keep θ unchanged).  

• Iteration: Move on to the next iteration. If you accepted the candidate parameters, they become the new current parameters. If not, 
the current parameters remain intact.  

• Repeat: Recur through steps 2 to 6 for a predefined number of iterations or until convergence criteria are satisfied. 

Operating as a Markov chain, the MH algorithm’s each step relies solely on the present state and the proposed one. Across iter
ations, it charts a course through the parameter space, striving to capture samples from the genuine underlying parameter distribution. 
While the algorithm may take its time to converge, it shines when faced with complex distributions or situations where direct sampling 
proves challenging. 

Keep in mind that the choice of the proposal distribution q(θnew |θ) is pivotal. If too narrow, the algorithm could wander slowly 
through parameter space. If too broad, acceptance rates might dwindle, causing inefficient sampling. Tailoring the proposal distri
bution and iteration count becomes key for effective parameter estimation. The voyage set in motion by the MH algorithm is not a 
sprint to the finish line. Its measured pace echoes within each iteration, where candidate selection and acceptance probability cal
culations paint a mesmerizing picture. What truly stands out is the algorithm’s ability to conquer distribution complexities, making it a 
champion at deciphering intricate patterns. While the MH algorithm takes its time to converge, its partnership with the agile SEIAR 
model ensures a harmonious rhythm, crafting an enthralling narrative of parameter estimation. 

In a domain ruled by uncertainty, the MH algorithm stands tall as a sentinel of hope. Its simplicity gracefully dances alongside the 
shadows of alternative methodologies, discarding the need for intricate equations to embrace the core of distribution forms. Hence, 
complexity bows before its might, revealing a path paved with reliable parameters for the radiant realm of SEIAR models. 

3.2.1. Structure of the proposed model 
In this study, we enhance the SEIAR model by integrating observed active cases to iteratively estimate both states and parameters. 

We conducted an extensive analysis spanning over 1300 days, exploring various epidemic control strategies through a blend of 
synthetic and real-world experiments. By examining diverse trends in active cases across different parameter setups, we shed light on 
experimental insights. These findings are contrasted with RMAEs between predictions, analyses, and observations while addressing 
parameter uncertainty using the MH sampling method. The proposed model’s workflow is depicted in Fig. 8, capturing its structure 
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and real-world applicability. Fig. 10 showcases scene selection, encompassing synthetic and Iranian real-world routes, whereas MH 
and EnKF illustrate the parameter estimation process and data assimilation, delineating the distinct paths for synthetic and real-world 
experiments. The assimilation process, pivotal for updating predictions, varies based on preset parameters or the parameter estimation 
journey. The comprehensive SEIAR-EnKF framework in this study visually portrays the divergent routes, offering a deeper grasp of 
both synthetic and real-world scenarios. 

Regarding the mentioned description, the proposed model is a novel integration of the SEIAR framework within a system dynamics 
analysis, introducing uncertainty through Liu processes and advanced algorithms like Ensemble Kalman Filter and Metropolis- 
Hastings. This innovative approach aims to enhance community health management, specifically targeting respiratory virus dis
eases such as COVID-19. 

The model’s key assumptions are supported by biological evidence. For instance, the incorporation of uncertain parameters reflects 
the inherent unpredictability in the dynamics of infectious diseases, mirroring the variability observed in real-world scenarios. The 
consideration of population mobility, vaccination dynamics, and retest-positive populations in the SEIAR framework aligns with the 
complex and multifactorial nature of virus transmission. 

Furthermore, the model acknowledges the varying mortality rates observed across scenarios in Iran during real COVID-19 out
breaks. This aligns with the biological reality that the severity and impact of respiratory viruses can differ significantly based on 
contextual factors, including healthcare infrastructure, demographics, and public health interventions. 

In terms of its novelty, the model represents a significant advancement in infectious disease modeling. While it builds upon the 
SEIAR structure, the integration of uncertain parameters, Liu processes, and advanced algorithms distinguishes it as a unique 
contribution to the field. This novel approach allows for a more realistic representation of the inherent uncertainties in disease dy
namics and improves the model’s predictive accuracy. In summary, the proposed model introduces a fresh perspective to infectious 
disease modeling, supported by biological rationale and novel elements. It combines well-established frameworks with innovative 
features to provide a comprehensive tool for community health management in the context of respiratory virus diseases. 

4. Case study: COVID-19 in Iran 

Respiratory viruses, widespread contributors to global human disease, have been comprehensively studied, including those 
introduced in Section 1. However, the spotlight today is on COVID-19, the renowned viral illness. To unravel its impact, we employ the 
innovative SEIAR uncertain model with distinct subsystems, focusing on COVID-19 prevalence in Iran, ranked 19th by WHO in August 
2023. The SEIAR model parameters are meticulously tuned to align with historical data from http://www.worldometers.info/for Iran. 
Additional subsystem parameters are seamlessly integrated, upholding result consistency and logical coherence. The stepwise 
incorporation of each subsystem undergoes rigorous verification, ensuring result accuracy and trend fidelity. 

This selection ensures relevance and real-world applicability, as Iran faces unique challenges, including international constraints. 

Fig. 10. Representation for structure of the proposed model.  
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The SEIAR uncertain model, tailored to Iranian data from reliable sources, enables a comprehensive analysis of COVID-19 dynamics. 
The findings from Iran hold applicability to diverse contexts for several reasons. First, the systemic model framework, including the 
SEIAR model and distinct subsystems, offers flexibility for adaptation to different geographical and socio-economic settings. Second, 
the scenario-based analyses conducted provide a versatile approach that can be replicated in other regions. Third, the study’s insights 
contribute to global health management by offering lessons and strategies applicable to countries dealing with similar respiratory 
disease outbreaks. 

4.1. Simulation of the trends 

The paper introduces a comprehensive model comprising interconnected subsystems addressing disease spread, healthcare, 
transportation, and food/drug supply, alongside contact patterns. Employing Python 3.11.5, Anaconda3 2023.03, and Vensim 7.3.5 on 
a personal computer with Intel (R) Core (TM) i5-11400H CPU @ 2.70 GHz and 16.00 GB RAM, the model is simulated for analysis. 
After fine-tuning with available data, the model predicts various future trends. Historical data spanning 1302 days (Feb 1, 2020 to Aug 
25, 2023) is gathered from worldometers site. Simulation outcomes align well with historical trends (Fig. 11). Rigorous system dy
namics tests including boundary, structure, consistency, extreme conditions, and reproduction assessments confirm the model’s 
effectiveness, notably demonstrated by the NRMSD results. NRMSD is a normalized measure of the differences between values pre

dicted by a model and the values observed. According to literature review, NRMSD is equal to RMSD
xmax − xmin 

where RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

(xi − x̂i )
2

n

√

and 

x̂i is estimated parameter of xi as one of n observed parameters. NRMSD values for daily new cases, deaths, and recoveries stand at 0.2 
%, 1.2 %, and 0.6 % respectively, indicating minor average errors of under 108 cases, 8 deaths, and 224 recoveries per day. Notably, 
the average daily figures are 5848 new cases, 112 deaths, and 5664 recoveries. This robustly validates the model’s accuracy. 

A refined model leveraging historical data anticipates forthcoming trends guided by the subsequent premises:  

• Projections encompass a 1302-day period (Feb 1, 2020 to Aug 25, 2023) for Iran, envisioning the aftermath of the novel respiratory 
virus, COVID-19 in different scenarios.  

• The model deliberately omits conventional inter-country travel scenarios, attributing this to global quarantine measures and novel 
regulations; 

5. Results 

5.1. Sensitivity analysis 

The proposed dynamic system model involves several parameters essential for predicting the count of infections, recoveries, and 
fatalities. While some variables are predetermined using country-specific data (e.g., population), the Design of Experiments plays a 
pivotal role in estimating unknown parameters based on a nation’s disease reports. In this case study, all unknown parameters were 
meticulously calibrated using proposed model. This ensured that the final model’s outcomes aligned seamlessly with recorded data. 
Now, let’s delve into the intriguing aspects of the model’s key parameters:  

• Impact of Daily New Cases on Demand (P1): This parameter underscores how reports of new infections shape societal demand by 
influencing public perceptions.  

• Shortages’ Influence on Contacts (P2): Escalating demand and resulting shortages trigger more interactions as individuals seek out 
scarce commodities and engage with sellers.  

• Funeral-Driven Contacts (P3): A surge in deaths amplifies visits among people, intensifying the frequency of social interactions.  
• Private vs. Public Transport (P4): Awareness campaigns about the disease steer individuals toward private transport for safety, 

impacting infection rates and transportation preferences. 

Fig. 11. Simulated number of daily new cases, daily deaths, and daily recovered versus real data.  
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Table 7 
Effects of every coefficient on every selected parameter in the proposed model.  

Coefficient parameters summation of daily new 
cases 

summation of daily 
recovered 

summation daily 
deaths 

summation of daily new 
cases 

summation of daily 
recovered 

summation daily 
deaths 

parameters coefficient 

0.1 P1 0.773 0.772 0.773 1.322 1.322 1.322 P1 10 
P2 0.438 0.432 0.438 1.285 1.285 1.285 P2 
P3 0.341 0.334 0.341 1.263 1.263 1.263 P3 
P4 7.774 7.831 7.773 0.701 0.701 0.702 P4 
P5 0.226 0.226 0.225 2.543 2.448 2.539 P5 
P6 1.484 1.576 1.415 0.801 0.738 0.738 P6 
P7 1.017 1.089 1.109 0.786 0.723 0.715 P7  
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• Contact Dynamics (P5): Adhering to health guidelines, including mask usage and physical distancing, curbs infection probabilities 
by modifying interpersonal contacts.  

• Healthcare Centers’ Role in Recovery (P6): Bolstering medical facilities enhances patient recovery rates, accentuating the 
healthcare system’s pivotal role.  

• Healthcare Centers’ Impact on Mortality (P7): Similarly, healthcare centers play a crucial role in mortality rates, shedding light on 
their indispensable contribution. 

These unknown parameters Pi i∈ (1,…,7) are meticulously estimated to harmonize the final model with observed data. Each 
parameter is assigned a coefficient of 1 in normal scenarios, wielding distinct effects on the model (The coefficients of Pi are 1 in normal 
situation). However, these parameters have different effects on the proposed model and their intricate relationships render separate 
analysis complex. Hence, to showcase sensitivity, we assign two distinct coefficients (0.1 & 10) to each parameter, unveiling their 
impact across all subsystems. Table 7 displays the cumulative changes in new cases, recoveries, and deaths over simulation, under
scoring the model’s responsiveness. 

In the presented model, a set of parameters plays a pivotal role, with seven among them standing out as the most influential. 
Manipulating these parameters yields diverse impacts on the model’s outcomes, a concept exemplified through the subsequent table. 
Our exploration begins with the initial entry of Table 7, where all parameters hold a coefficient of 0.1. Notably, the inaugural column 
(P1) exhibits a 0.773 alteration in the summation of daily new cases—an insight into the sway of patients or new cases on demands 
when assigned a 0.1 coefficient. This underscores the pronounced disparities in parameter effects. Remarkably, the paramount 
sensitivity lies with P4 (pertaining to private transportation), while P5 (associated with contacts) emerges as a noteworthy influencer 
of infection dynamics, particularly in the Iranian context. 

5.2. Different scenarios and simulation results 

This paper presents five scenarios aimed at identifying potential COVID-19 trends within a specific country. The scenarios are as 
follows:  

• Scenario 1: In this scenario, it is assumed that half of the population will maintain their regular routines with slight adjustments due 
to government-imposed restrictions, while the other half will drastically alter their lifestyles. The government’s response involves 
increasing medical center capacity by 50 %, imposing restrictions on both public and private transportation, and enforcing the 
closure of numerous businesses.  

• Scenario 2: Here, it is assumed that most people will adhere to government regulations while continuing their usual activities with 
minor alterations prompted by restrictions. The government’s measures include expanding medical center capacity, regulating 
public and private transportation, and closing several businesses.  

• Scenario 3: This scenario envisions a complete change in people’s daily lives, characterized by strict adherence to announced 
warnings and a reduction in high-risk behaviors. The government gains control over various situations, manages businesses, and 
addresses the economic needs of society.  

• Scenario 4: Individuals make lifestyle changes, but the government is unable to bolster hospital capacity and supply chains. 
Consequently, most government actions focus on prevention.  

• Scenario 5: Assuming people continue their normal routines and the government remains unable to enhance hospital capacity and 
supply chains. In this scenario, the government is compelled to reopen 50 % of schools and universities by the end of September 
2022 due to the perceived inadequacy of virtual education. 

Fig. 12. Number of contacts (left axis) and private vehicle’s share in transportation (right or secondary axis) based on different scenarios.  
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The current discourse among experts in Iran revolves around two alternatives: domestically producing vaccines or importing them 
from other countries to usher in a new vaccination phase. As such, three distinct situations are identified in conjunction with the 
aforementioned scenarios:  

o In the first situation, simulated results indicate no new vaccination phase.  
o In the second situation, a new phase of vaccination processes commences from summer (July 2022).  
o In the third situation, a new phase of vaccination processes initiates in fall (October 2022). 

Uncertainty is factored into this model through a specified equation. The behavioral dynamics of functional variables differ across 
scenarios due to societal behaviors. People’s responses to daily COVID-19 case counts are categorized as follows:  

❖ High sensitivity: Individuals are acutely responsive to government warnings, adjusting their behaviors accordingly.  
❖ Sensitive: People are responsive to government advice, modifying their behaviors as needed.  
❖ Low sensitivity: Individuals minimally adjust their behaviors in response to government warnings.  
❖ Insensitive: People do not significantly alter their behaviors despite government advisories.  
❖ Unresponsive: Individuals continue their routines without heeding government warnings. 

To facilitate comprehension, Fig. 12 illustrates changes in contact rates and the proportion of private vehicle usage in trans
portation relative to daily new case counts. Additional functional variables are presented in Table 8. 

Table 8 
Classes of different functional forms variables for every scenario.  

Subsystem functional forms variables Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

The spread subsystem rate of exposed low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

rate of infection symptomatically low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

rate of infection asymptomatically low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

rate of new cases symptomatically low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

rate of recovery symptomatically low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

rate of recovery asymptomatically low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

rate of death symptomatically low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

rate of death asymptomatically low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

The healthcare subsystem allocated beds for patients of COVID-19 low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

effect of healthcare centers on recovery low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

effect of healthcare centers access low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

effect of healthcare centers on mortality low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

Vaccination low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

The transportation subsystem effects of COVID-19 on private 
transportation 

low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

transportation for schools low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

transportation for universities low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

The food/drug network 
subsystem 

effect of patients on demands low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

effects of shortage on contacts low 
sensitivity 

sensitive high 
sensitivity 

insensitive unresponsive 

The contacts subsystem effect of contacts low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

effect of funerals on contacts low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

frequency of contacts low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive 

number of contacts low 
sensitivity 

insensitive high 
sensitivity 

sensitive unresponsive  
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Based on the outcomes of the suggested model, each individual has an estimated average of around 50 contacts in the absence of 
daily new cases. With an increase in daily new cases, this average number of contacts per person declines. A heightened sensitivity to 
fluctuations in the daily new case count corresponds to a reduction in daily interactions. Similarly, distinct variables in various sce
narios exhibit fitting degrees of sensitivity. Across the range of scenarios, individual responses are most sensitive to the number of daily 
new cases in scenario 3 and least sensitive in scenario 5. 

Fig. 12 and Table 8 provide an overview of the variables encompassing various functional forms within each scenario. These 
functional variables wield influence over other interconnected variables, operating under distinct active and inactive rules, ultimately 
culminating in the alteration of final values for the level variables. Table 8 details the functional variables, each assigned specific 
values in accordance with the scenario-specific assumptions outlined in this case study. In the context of COVID-19 cases, these 
functional variables are categorized as highly sensitive, sensitive, low sensitivity, insensitive, or unresponsive. Consequently, diverse 
combinations of these variables are deliberated within each scenario. It’s essential to emphasize that sensitivity analyses can serve as a 
compass for modifying critical variables, thereby yielding results that exhibit reduced losses. 

Subsequently, the identified variable constellations are subjected to modeling using the proposed framework to derive pertinent 
outcomes. This methodology can be extended to examine diverse scenarios, thus illuminating their potential impacts prior to 
execution. In the third scenario, effective collaboration between the populace and the government leads to the most favorable outcome 
compared to alternative scenarios. This involves aggregating daily new cases, daily recoveries, daily deaths, and other pertinent 
factors. Comparable adjustments are made for other relevant parameters, harmonizing them with the unique conditions of each 
scenario and their respective assumptions. The model is subsequently employed to simulate a span of 1302 days, ranging from 
February 1, 2020, to August 25, 2023. The outcomes of this simulation are encapsulated in Table 9 and illustrated in Figs. 13–15. 

Based on the results, vaccination demonstrates significant effectiveness across all scenarios. Commencing vaccination at the earliest 
opportunity can further diminish mortality rates within communities. The scenario outcomes underscore that individual behaviors 
wield the greatest influence on reducing casualties within society. Moreover, the populace’s engagement with government initiatives 
stands out as the subsequent most pivotal factor in casualty reduction. Scenario 3 portrays a society exhibiting heightened sensitivity in 
behavior and seamless collaboration with governmental measures. After 1302 days of simulation, this scenario registers approximately 
3,777,741 new cases and 58,811 deaths. Conversely, Scenario 5 depicts a society characterized by unresponsive behaviors and 
inadequate government cooperation. In the same 1302-day simulation period, scenario 5 records around 28,837,330 new cases and 
436,689 deaths. Notably, the losses incurred in Scenario 5 are nearly 7 times greater than those in Scenario 3. 

6. Discussion 

Numerous studies have explored various methodologies to simulate infectious diseases in order to model realistic behaviors. As 
elucidated in the literature review, system dynamics models have gained widespread usage in predicting disease transmission. 
Therefore, integrating the SEIAR model with a system dynamics approach holds promise for capturing the intricate complexities and 
sociodynamic factors that influence disease prevalence. This study introduces key innovations, focusing on the incorporation of un
certain variables and diverse effective subsystems into the SEIAR system dynamics framework for respiratory diseases. Additionally, 
the inclusion of scenario-based and sensitivity analyses enhances the practical applicability of this research in addressing real-world 
issues. Illustrated through a comprehensive case study of the COVID-19 outbreak, the proposed model effectively demonstrates its 
advantages. The simulation encompasses daily metrics of new cases, recoveries, and deaths based on predetermined variables. The 
outcomes, as presented in Table 7, starkly underscore the significant impact of overlooking the influence of public transportation on 
mortality rates. Conversely, a deliberate focus on transportation yields a noteworthy reduction of 0.702 in daily new cases, whereas 
inadequate planning amplifies these cases by a staggering factor of 7.774 compared to the current daily rate. Furthermore, negligence 
in adhering to health protocols during interpersonal contacts can lead to an alarming increase of more than tenfold in the number of 
infections, exacerbating the daily case count. 

The results strongly affirm the efficacy of the proposed system dynamics model, which, rooted in its constituent subsystems, adeptly 
anticipates a spectrum of scenarios across various parameters. These findings underscore the pivotal role of interactions between 
individuals and government entities in shaping disease transmission dynamics. Effective governmental policies emerge as pivotal in 
mitigating costs and losses, while collaboration between citizens and authorities emerges as a potent force in disease control. More
over, the results emphasize that, while vaccines play a pivotal role in curtailing disease spread, the significance of human reactions and 
adept governmental management should not be underestimated. 

The methodologies presented in this study offer valuable applications beyond COVID-19 for infectious disease impact analysis. For 
instance, the advanced SEIAR framework with uncertainty mitigation techniques can be adapted to model and manage the spread of 
emerging respiratory viruses such as influenza strains or novel coronaviruses. The systematic integration of diverse subsystems allows 
for a nuanced understanding of disease dynamics in various contexts. The model’s adaptability makes it applicable to different in
fectious diseases with varying transmission characteristics. Additionally, the incorporation of real-time data sources and scenario- 
based analyses can aid in preparing for and mitigating the impact of future pandemics. This versatile approach, grounded in sys
tem dynamics, provides a robust foundation for proactive and tailored strategies in the face of diverse infectious disease challenges. 

6.1. Managerial, policymakers and theoretical implications 

The findings from the sensitivity analysis and the exploration of various scenarios within the presented case study underscore the 
critical necessity of complete collaboration between the populace and governmental authorities to effectively curb the transmission of 
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Table 9 
Simulated results of defined scenarios in the proposed model. 

Fig. 13. Simulated results of defined scenarios in the proposed model (no vaccine).  

Fig. 14. Simulated results of defined scenarios in the proposed model (vaccine summer 2021).  
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COVID-19. Referencing Tables 9 and it becomes evident that Scenario 3, involving widespread vaccination, emerges as the most 
favorable approach, while Scenario 5 represents the least desirable outcome. The outcomes demonstrate that the adoption of either 
Scenario 5 or Scenario 3 can lead to a range of annual fatalities, spanning from 436,689 to 40,497 respectively. 

The implications drawn from the sensitivity analysis robustly advocate for stringent control measures for human interactions and 
transportation. In this context, it is imperative for governments to establish the requisite infrastructure that mitigates disturbances to 
individuals’ daily routines. Moreover, the resumption of communal facilities such as sports clubs, schools, and universities carries the 
inherent risk of precipitating unmanageable circumstances. As a countermeasure, advocating for virtual education and solitary forms 
of entertainment within the community aligns with prudent managerial and policymaking strategies. 

Additionally, the reinforcement of healthcare systems demands significant governmental support. Containing the propagation of 
COVID-19 mandates the allocation of dedicated healthcare centers to treat afflicted patients, alongside ensuring continued services for 
other medical needs so as to safeguard overall quality of life. Although the existing infrastructure in Iran adequately addresses concerns 
related to food and pharmaceutical distribution, these subsystems should not be disregarded, given their potential impact on the 
virus’s transmission dynamics. 

Moreover, the efficacy of vaccination emerges as a consistent factor across all scenarios. Notably, in Scenario 3 where the synergy 
between the populace and government is most pronounced, the potency of vaccination surpasses that observed in other scenarios. This 
underscores the imperative of meticulous vaccination planning and execution, further highlighting its pivotal role in pandemic 
management. 

7. Conclusion 

In summary, this study addresses the critical challenge posed by respiratory viruses, recognizing them as a significant global health 
threat. The complex interplay of factors influencing respiratory diseases necessitates the use of simulations and predictive analyses to 
formulate effective containment strategies. Understanding the multifaceted nature of systems and subsystems governing disease 
transmission is crucial, prompting the development of a comprehensive system dynamics model. 

Our proposed model, rooted in the SEIAR framework and incorporating five essential subsystems—spread dynamics, healthcare 
infrastructure, transportation networks, food and drug distribution channels, and social contacts—offers a robust tool for assessing 
potential outbreak scenarios. Through an in-depth examination focused on COVID-19 in Iran, the model’s efficacy is demonstrated 
across five diverse scenarios, providing valuable insights into the dynamics of disease transmission. 

Iran, as the 19th nation grappling with COVID-19, faces unique challenges influenced by international constraints. The study 
utilizes Iran’s context to showcase the model’s utility, supported by sensitivity analyses encompassing various parameters. The 
exploration spans five scenarios, evaluating crucial metrics during Iran’s outbreak: daily new cases, daily fatalities, and daily re
coveries. Notably, the model incorporates the impact of vaccination, revealing key revelations that inform effective disease man
agement strategies. The study highlights the pivotal role of vaccination campaigns and collaborative governance in reducing fatalities. 
The model’s proficiency in identifying vulnerable populations and optimizing immunization strategies demonstrates its effectiveness 
in managing successive waves of contagion. Transportation and interpersonal contacts emerge as critical variables driving disease 
proliferation in the context of COVID-19 in Iran. 

To assess the model’s performance, we employ the NRMSD, revealing impressively low values of 0.2 % for daily new cases, 1.2 % 
for daily fatalities, and 0.6 % for daily recoveries when compared to real-world data. This attests to the model’s robustness, with an 
average error of less than 2 %. Looking ahead, the model holds promise for broader applications in other countries, offering adapt
ability to accommodate unique subsystems based on each nation’s context. The key findings underscore the importance of timely and 
widespread vaccination in curbing disease spread, with the potential to significantly reduce mortality rates. Collaborative governance 
emerges as a powerful force in effective disease control, emphasizing the need for cohesive efforts between citizens and authorities. 

Fig. 15. Simulated results of defined scenarios in the proposed model (vaccine fall 2021).  
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The study sheds light on the intricate dynamics of disease transmission, revealing the substantial impact of transportation and 
interpersonal contacts on the proliferation of respiratory viruses. 

In conclusion, this research contributes a valuable framework for anticipating and managing respiratory virus diseases. By offering 
a comprehensive system dynamics model, we provide a tool that not only addresses the challenges posed by COVID-19 in Iran but also 
holds broader applicability for global health management. The study’s insights have significant implications for policymakers, 
healthcare professionals, and researchers engaged in the ongoing battle against respiratory virus diseases, emphasizing the importance 
of a holistic and collaborative approach to disease control. 

7.1. Limitations or challenges 

While our study offers a promising model for respiratory virus dynamics, it acknowledges key limitations. The model’s effectiveness 
relies on precise input parameters, which are susceptible to uncertainties in rapidly evolving pandemics. Future research should 
prioritize refining parameters with updated data. Societal behavior complexity poses a challenge, as our model simplifies human 
interactions and compliance dynamics. Incorporating nuanced social factors could enhance realism. The study primarily focuses on 
COVID-19 in Iran, requiring careful validation for generalizability. Unique regional characteristics demand adaptation. The model 
assumes a constant environment, neglecting external shocks. Adapting to dynamic external factors could boost predictive capabilities. 
Acknowledging these limitations emphasizes areas for refinement, underscoring ongoing research needs for broader accuracy across 
diverse scenarios and regions. 

7.2. Future research 

Future research should enhance the model’s applicability by investigating its adaptability across diverse global contexts and 
assessing performance in countries with varying healthcare systems, demographics, and socio-economic factors. Integrating real-time 
data sources and advanced machine learning can boost predictive capabilities by incorporating information on population mobility, 
vaccination rates, and virus mutations. Exploring the model’s robustness under different epidemic scenarios, refining parameters 
based on scientific understanding, and involving interdisciplinary collaboration will strengthen its versatility. The focus should be on 
validating and extending the model’s utility, integrating real-time data, exploring robustness, refining parameters, and fostering 
interdisciplinary collaboration for a holistic understanding of respiratory virus dynamics globally. 
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