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Abstract

The computational reconstruction of genome sequences from shotgun sequencing data has

been greatly simplified by the advent of sequencing technologies that generate long reads.

In the case of relatively small genomes (e.g., bacterial or viral), complete genome

sequences can frequently be reconstructed computationally without the need for further

experiments. However, large and complex genomes, such as those of most animals and

plants, continue to pose significant challenges. In such genomes, assembly software pro-

duces incomplete and fragmented reconstructions that require additional experimentally

derived information and manual intervention in order to reconstruct individual chromosome

arms. Recent technologies originally designed to capture chromatin structure have been

shown to effectively complement sequencing data, leading to much more contiguous recon-

structions of genomes than previously possible. Here, we survey these technologies and

the algorithms used to assemble and analyze large eukaryotic genomes, placed within the

historical context of genome scaffolding technologies that have been in existence since the

dawn of the genomic era.

Background

The increased availability and lower cost of DNA sequencing have revolutionized biomedical

research. Thousands of humans have been sequenced to date, and genome sequencing is

increasingly used in clinical practice, particularly in the context of cancer [1, 2]. Despite the

long length of sequences generated by third-generation sequencing technologies (tens of thou-

sands of base pairs), the automated reconstruction of entire genomes continues to be a formi-

dable computational task, in no small part because of genomic repeats—ubiquitous features of

eukaryotic genomes [3]. Recently, new genomic technologies have been developed that can

"bridge" across repeats or other genomic regions that are difficult to sequence or assemble.

We refer to technologies originally developed as a tool for interrogating the structure of

genomes by cross-linking adjacent genomic segments and capturing these adjacencies through

sequencing. These technologies are increasingly used to help improve genome assemblies by

"scaffolding" together large segments of the genome. We survey here recent advances in this

field, placed within the context of the technologies and algorithms that have been used for scaf-

folding throughout the entire genomic revolution. Note that our primary focus is on
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reconstructing the genome sequence of organisms rather than the structure of their chromo-

somes. Readers interested in the latter are referred to, e.g., [4].

Genome assembly (Fig 1)—the computational process used to reconstruct genomes from

the relatively short DNA fragments that can be sequenced—is complicated mainly by genomic

repeats [5–9]. These DNA segments that occur in two or more nearly identical copies within

genomes induce ambiguity in the reconstruction of a genome, ambiguity that cannot be

resolved with the information contained in the reads alone. Furthermore, genomes also con-

tain regions with unusual base pair composition that are difficult to sequence. As a result, typi-

cal genome assemblies of eukaryotic genomes are highly fragmented, comprising tens to

hundreds of thousands of contiguous genomic segments (contigs). This fact was recognized

from the early days of genomics, and scientists have developed techniques that can generate

information complementary to that contained in the reads. The assembly of the first living

organism to be sequenced (Haemophilus influenzae [10]) relied on paired-read data that linked

together relatively distant segments of the genome, allowing the assembled contigs to be

ordered and oriented into a "scaffold" of the H. influenzae main chromosome [11–14].

Genome assembly approaches have been extensively reviewed [11–17], including recently

[18]. Missing from this extensive body of literature is a focus on the algorithmic considerations

underlying the use of long-range linking data in the assembly process. In this review, we high-

light recent developments in the technologies used to generate long-range linking information

and describe the computational algorithms that use this information to scaffold together the

genomic segments generated by assembly algorithms. We place recent advances within the his-

torical context of genome scaffolding technologies and algorithms and show how these tech-

nologies and algorithms have moved the field forward toward assembling larger and more

Fig 1. Overview of the genome assembly process. First, genetic material is sequenced, generating a collection of

sequenced fragments (reads). These reads are processed by a computer program called an assembler, which merges the

reads based on their overlap to construct larger contigs. Contigs are then oriented and ordered with respect to each

other with a computer program called a scaffolder, relying on a variety of sources of linkage information. The scaffolds

provide information about the long-range structure of the genome without specifying the actual DNA sequence within

the gaps between contigs. The size of the gaps can also only be approximately estimated. contig, contiguous genomic

segment.

https://doi.org/10.1371/journal.pcbi.1006994.g001
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complex eukaryotic genomes. We conclude with a survey of recent projects that demonstrate

the effective combination of sequencing and scaffolding technologies to generate high-quality

genome reconstructions.

Sources of information for genome scaffolding

Broadly speaking, any type of information that hints at the relative location of genomic seg-

ments along a chromosome can be used to drive the scaffolding process. In most cases, the

information used derives from genomic technologies specifically designed to interrogate the

structure of chromosomes, though indirect inferences based on evolutionary arguments have

also been used effectively in genome scaffolding. Fig 2 shows the extent to which different

sequencing technologies can provide the linkage information for scaffolding. This linkage

information can span anywhere from several hundreds to tens of thousands of base pairs (Illu-

mina, Pacific Biosciences, and Oxford Nanopore) to hundreds of thousands of base pairs

(linked reads and optical maps) to millions of base pairs (Chicago and Hi-C).

The genomic range spanned by the linking information is directly tied to the effectiveness

of a particular technology to resolve certain classes of repeats [19]—to be effective, links must

be longer than the length of a repeat but short enough so that they do not span multiple repeat

units (which would increase the computational complexity of the scaffolding or repeat resolu-

tion process). Given the broad range of the lengths of repeats in most organisms, best results

are usually obtained from a mixture of technologies or from technologies that yield data span-

ning a broad range of distances (such as third-generation sequencing reads, optical maps, or

Fig 2. The genomic span covered by different technologies mentioned in this review. Reads and optical maps derived from the NA12878 sample (DNA

from a human individual sequenced as part of the 1000 Genomes Project) were mapped to the GRCh38 human genome reference. The histograms

represent as follows: Illumina—the separation between natively generated paired-end reads (SRX1049855); Pacbio—the length of the reads generated by the

Pacific Biosciences technology (SRX1607993); Oxford Nanopore—the length of the reads generated by the Oxford Nanopore technology (https://github.

com/nanopore-wgs-consortium/NA12878); optical maps—the length of the fragments mapped by the BioNano nanocoding technology (from BioNano

website); linked reads—the span of the region covered by reads originating from the same DNA fragment, as generated by the 10X Genomics technology

(SRX1392293); Chicago—the separation between read pairs generated by the Chicago chromosome conformation capture protocol (SRX1423027); and Hi-

C—the separation between read pairs generated by the Hi-C chromosome conformation capture protocol (SRX3651893).

https://doi.org/10.1371/journal.pcbi.1006994.g002
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Hi-C links). Sequencing reads can be viewed as providing linking information that spans any

distance within the length of the reads—as such, they provide valuable information for repeats

of a broad range of sizes, up to the length of the reads.

We structure our presentation around the key types of information that can be used to

organize genomic contigs into chromosome-wide scaffolds (Table 1).

Physical mapping

Physical-mapping technologies attempt to estimate the location of specific loci along genomic

chromosomes. The loci can be short DNA segments that are unique within the genome, as in

the case of sequence-tagged sites (STSs)[20], or the recognition sequence of a restriction

enzyme, as in the case of restriction mapping and optical mapping. The approximate location

of the markers along chromosomes can be identified through a number of techniques, from

fluorescence in situ hybridization (FISH)[21] to the analysis of the random breakage of DNA

being exposed to X-rays (radiation hybrid mapping [22]) to direct measurement of restriction

fragment sizes, as performed in restriction mapping [23]. The original use of restriction

enzymes to map chromosomes resulted in unordered information—simply the list of sizes of

the restriction fragments generated from the molecule—information that had to be converted

into an ordered map through a complex computational process. Optical maps are an enhance-

ment of restriction mapping, which provides the fragment order in addition to their size based

on imaging the fluorescence of DNA molecules immobilized on a glass slide [24] or within a

nanochannel [25] (the latter technology is called nanocoding).

Physical-mapping data is among the earliest technologies used to order genomic contigs

along a chromosome [26–28]. The computational approach used to perform this task simply

involves comparing experimentally derived maps to theoretical (in silico) maps generated

from the sequenced contigs (Fig 3). This process is easiest when the landmarks being com-

pared are distinguishable from each other (as is the case for STS and radiation hybrid maps)

and substantially more complex and error prone for restriction maps, in which all the land-

marks are identical in sequence, e.g., in the context of optical mapping [29].

The experimental maps themselves are often the result of assembling a collection of DNA

fragments (clones) that have been mapped separately, leading to similar analytical challenges

as those encountered in genome assembly [30]. In the case of unordered restriction maps, the

assembly process is guided by the probability that two clones overlap, which is computed by

Table 1. Comparison of different sequencing and mapping technologies.

Category Scaffolding Data Separation on the Genome Orientation Ordering Distance

Physical mapping Restriction maps 10–100 Kb Yes No Yes

Optical maps 10–100 Kb Yes Yes Yes

Subcloning 10x Genomics 100 Kb Yes Yes Yes

Illumina TSLR 100 Kbp Yes Yes Yes

Long-read data Pacific Biosciences 10–15 Kb Yes Yes Yes

Oxford Nanopore 15–20 Kb Yes Yes Yes

Paired read Paired-end reads 100–500 bp Yes Yes Yes

Mate pairs 1,000–10,000 bp Yes Yes Yes

Chromosome conformation Hi-C 30–100 Mb Yes Yes No

Chicago 3–100 Mb Yes Yes No

Synteny Reference genome(s) Up to genome size Yes Yes Yes

Abbreviation: TSLR, TruSeq Synthetic Long Read.

https://doi.org/10.1371/journal.pcbi.1006994.t001
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taking into account the number of restriction fragments shared by the clones [31]. The pair-

wise overlap probabilities are used to assemble the clones into a chromosome-wide structure

using a heuristic assembly algorithm (fingerprinted contigs [FPC]), which also allows for man-

ual intervention to inspect and correct the resulting layout.

Ordered restriction maps, as generated by optical or nanocoding mapping, can be aligned

using variants of dynamic programming alignment algorithms [32, 33]. In SOMA [34], frag-

ment-sizing errors are penalized through a chi-squared scoring function, and a variant of a

scheduling algorithm is used to determine the layout of contigs with ambiguous mappings.

The runtime of the alignment algorithm used in SOMA scales with the fourth power of the

number of restriction fragments, making the approach impractical for large genomes. Two

recent approaches address this limitation. TWIN [35] relies on an extension of the FM-index

[36] to speed up the alignment process, whereas Maligner [37] indexes the reference map

by simulating the effect of common mapping errors such as false cuts or missed restriction

sites.

Fig 3. Mapping-based scaffolding approaches. (a) Contigs (arrows) are aligned to a reference genome, and their order and orientation is inferred from

the alignment. (b) Long reads aligned to the ends of contigs imply their adjacency; (c) optical maps (tics represent location of restriction sites) can be

used to infer the order and orientation of contigs (arrows) by aligning the inferred restriction pattern (tics within arrows) to that of the experimental

map. contig, contiguous genomic segment.

https://doi.org/10.1371/journal.pcbi.1006994.g003
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Subcloning

Subcloning involves breaking up the genome into large fragments that are then sequenced sep-

arately, retaining the connection between the sequencing reads generated from the same frag-

ment (we refer to them as “linked reads” subsequently). The assembly process can then be run

for each fragment separately, and the resulting assemblies can be merged together to recon-

struct the full genome sequence. Initially, subcloning relied on bacterial artificial chromosomes

(BACs) grown in Escherichia coli, yielding fragments in the range of ~100 kbp in length. The

two ends of each BAC clone were sequenced first in order to construct a clone map [38] repre-

senting the relative relationship between individual BACs along the genome. From this infor-

mation, a minimal tiling path was identified in order to decide which fragments would be fully

sequenced. This strategy was used effectively in the early days of genomics, most notably dur-

ing the public effort to sequence the human genome [39].

Recently, new technologies have been developed that perform the subcloning process in vitro.

The technology from 10x Genomics partitions large DNA fragments into droplets, and the DNA is

sheared, and sequencing libraries are constructed within the droplets. The DNA within each drop-

let is tagged with a droplet-specific barcode, and these barcoded DNA molecules then undergo

sequencing, and a postprocessing algorithm parses the barcodes to group the reads originating

from the same large DNA fragment [40]. The Illumina TruSeq Synthetic Long Read (TSLR) tech-

nology [41] is based on fragmenting DNA into large segments of about 10 kb in size, which are dis-

tributed into pools such that each pool contains a relatively small number of fragments (~200–

300). Each pool is processed separately and barcoded with a unique barcode prior to sequencing.

When the original fragments have been sequenced deeply enough (which is usually the case

for the TSLR technology and most applications of BACs), the pooled reads can be assembled

together in order to create complete reconstructions of the individual fragments, effectively

generating long and highly accurate sequencing reads. Several approaches have also been

developed that rely on the unassembled pooled reads to guide the scaffolding process,

approaches that can be effective even at low depths of sequencing coverage. Fragscaff [42], a

method which was originally designed for contiguity-preserving transposition sequencing

data, creates links between the ends of contigs, which are represented in the set of reads from

the same pool. Within the resulting graph, Fragscaff then identifies a minimum spanning tree

by using as edge weights the number of pools shared between contigs. The longest path within

this tree is selected as the scaffold backbone. ARCS [43] maps the linked reads to the assembled

contigs and constructs intercontig links by identifying pairs of contigs whose ends share

sequences from the same read pool. Scaffolding is then performed with the LINKS scaffolder

[44], a tool originally developed for scaffolding assemblies with the help of long-read data. A

similar approach is used by ARKS [45], a tool that relies on k-mer matches instead of sequence

alignment to infer the assignment of the linked reads to assembled contigs. In Supernova, Wei-

senfeld and colleagues [46] relied on pool-specific barcodes to construct an adjacency graph in

which the nodes are the initial set of contigs or scaffolds and edges denote the number of pool-

specific barcodes shared between scaffolds. In this graph, Supernova finds linear paths consis-

tent with the links provided by barcodes and selects the highest-scoring path as the backbone

of the final scaffold. Linked reads have also been used to identify errors in the assembly. Tig-

mint [47] flags as misassemblies regions of contigs where the depth of coverage by read pools

(as inferred from the mapping of reads to assemblies) is lower than expected.

Long-read data

Sequencing technologies that generate long sequencing reads, such as Pacific Bioscience [48]

and Oxford Nanopore [49], can be seen as a special case of subcloning. Whereas genome
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assemblers such as CANU [50], FALCON [51], HINGE [52], MECAT [53], miniasm [54], and

Flye [55] are effective in reconstructing genomic contigs from long-read data to achieve high-

quality assemblies with only long-read data, the genome needs to be sequenced at considerably

high coverage, incurring significant costs. A more cost-effective strategy involves supplement-

ing a short-read assembly with a relatively low-coverage set of long-read data, effectively repre-

senting a collection of sparsely sampled genomic subclones. SSPACE-LongRead [56] was one

of the earliest methods able to leverage long reads for scaffolding. This approach used BLASR

[57] (an aligner tuned for the high error rates of third-generation sequencing technologies) to

align contigs to the long reads in order to infer orientation, ordering, and the distance between

contigs. SMSC [58] and BIGMAC [59] both start by using the long-read data to identify poten-

tial errors in the assembly, break the contigs at the boundaries of these errors, and then scaffold

the resulting data using linking information inferred from the long reads. Because the align-

ment of long-read data is computationally intensive, LINKS [44] proposes an alignment-free

approach that extracts pairs of k-mers separated by a predefined distance within long reads

and then treats these as if they were paired short reads, relying on traditional scaffolding

approaches. Unicycler [60] operates directly on the assembly graph generated by the SPAdes

assembler [61] from short reads, using the long-read data to disambiguate paths through the

graphs and generate longer, more accurate contigs. npScarf [62] leverages the real-time gener-

ation of data by nanopore sequencing devices to iteratively develop and improve the scaffold-

ing of a genome as more data become available. The scaffolding algorithm operates in a greedy

fashion, linking contigs together as soon as sufficient support is available in the set of reads

and breaking prior links if new ones that contradict them have stronger support. This iterative

greedy process can be stopped by the user once a sufficiently good assembly is generated,

allowing the dynamic selection of the depth of sequencing depending on the actual quality of

the resulting reconstruction.

Paired-read technologies

By far, the most common source of information for scaffolding is technologies that yield infor-

mation about the relative placement of pairs of reads along the genome being sequenced. Most

commonly, this information is derived by carefully controlling DNA shearing prior to

sequencing in order to obtain fragments of uniform sizes and by tracking the link between

DNA sequences "read" from the same fragment. Multiple protocols have been developed to

generate read-pairing information, and different names are commonly used to reflect the

experimental source: paired-end reads (pairings natively generated by Illumina sequencing

instruments, usually short range ~300–500 bp) and mate-pair or jumping libraries (pairing

information derived with the help of additional experimental assays, usually spanning thou-

sands to tens of thousands of base pairs). Here, we use these terms interchangeably, as the

information being generated is the same—pairs of reads with an approximately known relative

distance and orientation. The information provided by mate pairs can be used to link the con-

tigs and produce scaffolds [63] or to guide the assembly process itself, allowing the effective

resolution of repeats [19, 64].

The algorithms for using mate-pair data in scaffolding genomes all follow a similar work-

flow. First, mate pairs whose ends map to different contigs are used to link together the corre-

sponding contigs. Second, the pairwise linkage information is used to orient and order contigs

with respect to each other. Third, the size of the gap between adjacent contigs is estimated

from the experimentally determined size of the mate pairs, and a linear layout of the contigs

along a scaffold is generated (Fig 4). Because contig orientation and ordering are computation-

ally hard problems [7], scaffolders implement different greedy heuristics. Scaffolders such as
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MIP [65], SOPRA [66], and SCARPA [67] use integer programming to find the optimal orien-

tation and ordering of contigs. Bambus [68] and SSPACE [69] use multiple libraries in a hier-

archical manner to perform scaffolding, starting from libraries with smaller insert sizes (which

are more accurate and yield a simpler problem) and progressively expanding scaffolds using

libraries with larger insert sizes. OPERA-LG [70] uses a branch and bound search to determine

the relative placement of contigs along the chromosome. The authors show that the size of the

search space is bounded by the ratio between the library and contig size, implying that the

branch and bound heuristic is efficient for the data typically encountered in practical applica-

tions despite a theoretically exponential complexity. The scaffolder inGAP-sf [71] merges

information from both the assembly graph and paired-read data to construct scaffolds. In

addition, this scaffolder introduces a statistical model for estimating the support for a link

between two contigs, information that is used in constructing the scaffold. A number of tools

have also been developed that use RNA sequencing (RNA-seq) data for scaffolding. Because of

the long lengths of eukaryotic introns, such approaches can yield long-range genomic connec-

tions using standard short-length paired-end sequencing protocols, with the caveat that scaf-

folding is only effective in genic regions. Tools developed specifically for such data include

RNAPATH [72], L_RNA [73], Rascaf [74], AGOUTI [75], and P_RNA [76].

In the context of repeat resolution, the orientation and distance constraints imposed by

paired reads limit the number of possible traversals of the graph through a repeat region and

can link together the unique genomic regions surrounding each instance of a repeat. Assem-

blers such as Velvet [77], ABySS [78], ABySS 2.0 [79], and IDBA-UD [80] use paired-end

information to guide the walk through the assembly graph. SPAdes [81] and metaSPAdes [82]

Fig 4. Use of pairwise linkage information for scaffolding. (a) Paired-end reads are sequenced from the genome.

Depending on the technology, the approximate distance and/or relative orientation of the paired reads may not be

known. (b) The reads are aligned to contigs. Reads with their ends aligned to two different contigs provide linkage

information useful for scaffolding. (c) Linkage information is used to orient and order the contigs into scaffolds. Usually

not all constraints can be preserved, and algorithms attempt to minimize inconsistencies (marked with X).

https://doi.org/10.1371/journal.pcbi.1006994.g004
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use the ratio of expected to observed numbers of mate pairs connecting two nodes [83] in the

de Bruijn graph to check if the path traverses through a repetitive region. Wetzel and col-

leagues [19] explored the extent to which mate pairs can be used to resolve repetitive regions

in prokaryotic genomes and showed that mate-pair libraries are most effective if tuned to the

structure of the assembly graph.

Chromosomal contact data

A special type of paired-read data is generated by techniques recently developed to study the

three-dimensional structure of chromosomes inside a cell [84]. These techniques are collec-

tively referred to as chromosomal conformation capture (C3), which generate pairwise linking

information between reads that originate from genomic regions that are physically adjacent in

a cell. Unlike mate-pair data, the distance and the relative orientation between the paired reads

are not known a priori.

The two most commonly used protocols for capturing chromosome conformation are Hi-

C [84] and Chicago [85]. In the Hi-C protocol, DNA in the cell nucleus is cross-linked and cut

with a restriction enzyme. This process generates fragments of DNA that are distally located

but physically associated with each other. The sticky ends of these fragments are biotinylated

and then ligated to form a chimeric circle. The resulting circles are sheared and processed into

sequencing libraries in which individual templates are chimeras of the physically associated

DNA molecules. The Chicago protocol from Dovetail Genomics starts not with cells but with

purified DNA so that any biologically associated interactions are eliminated. Artificial nucleo-

somes with random specificity are then used to condense the DNA into chromatin, which is

then processed through the standard Hi-C protocol. The result is a collection of fragments that

is enriched for sets of paired reads that capture long-range interactions between segments of

DNA that were in contact within the artificial chromatin.

Because Hi-C and Chicago protocols do not provide estimates of the distance between the

paired reads, the data can only be used to estimate the relative order and orientation of contigs

and not the size of the gaps separating them. The scaffolding process starts by filtering the data

to eliminate artifacts such as reads aligning to multiple locations or chimeric reads derived

from the ligation junctions. Several tools have been developed for this purpose, including

HiCUP [86], HiCPro [87], Juicer [88], Juicebox [89], and HiFive [90]. These tools align reads

to the assembly using standard alignment programs [91, 92] and filter the alignments to

remove experimental artifacts, yielding the “true” alignments, which imply the contact infor-

mation. The number of paired reads linking two genomic regions (contact frequency) strongly

correlates with the one-dimensional distance between the corresponding regions, thereby

yielding an estimate of the relative placement of these segments within a genome. Further-

more, the contact frequency is much higher within a chromosome than across chromosomes,

making it possible to infer chromosome structure directly from the genome assembly. Most of

the algorithms developed to use Hi-C data for scaffolding use these properties to group contigs

into chromosome-specific bins and then orient and order the contigs within each chromo-

some by maximizing the concordance with the experimentally derived contact frequencies. A

major confounding factor in using Hi-C data for scaffolding is the nonrandom association

between topological domains [93]. DNA-to-DNA interactions within the nucleus are orga-

nized in a domain structure in which interactions are much stronger within a domain than

across domains. As a result, the Hi-C contact patterns exhibit a modular structure that can

confound the estimate of distance between contigs during the scaffolding process.

DNATri [94] and LACHESIS [95] were the earliest methods developed to use Hi-C datasets

for scaffolding. DNATri relies on a limited-memory Broyden–Fletcher–Goldfarb–Shanno
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optimization algorithm to identify the placement of contigs that best matches the contact fre-

quencies derived from the Hi-C data. LACHESIS first clusters the contigs into chromosome

groups using hierarchical clustering, matching a user-specified number of chromosomes.

Then, it orders and orients contigs in each chromosome group/cluster separately by formulat-

ing the problem as identifying the "trunk" of a minimum spanning tree of the graph that

encodes the Hi-C links between contigs. GRAAL [96] models the Hi-C data by distinguishing

between cis- contacts (occurring within the same molecule) and trans- contacts (occurring

across molecules). The contact frequency for the former are distance dependent, whereas the

latter are drawn from a uniform probability distribution. The contigs are ordered and oriented

to maximize the fit with this modeled data using a Metropolis optimization algorithm [97].

SALSA [98] relies on Hi-C data to correct misassemblies in the input contigs and then orients

and orders the contigs using a maximal matching algorithm [98]. 3D-DNA [99] also corrects

the errors in the input assembly and then iteratively orients and orders uniquely assembled

contigs (unitigs) into a single megascaffold. This megascaffold is then broken into a user-speci-

fied number of chromosomes, identifying chromosomal ends based the on a Hi-C contact

map. Putnam and colleagues [85] proposed a method called Hi-Rise that was specifically

designed for handling Chicago libraries (based on artificial chromatin). They rely on a likeli-

hood function that matches the characteristics of these data and use dynamic programming to

identify a layout of contigs that maximizes the fit with the experimental data. Recently, Zhang

and colleagues developed an approach for scaffolding polyploid genomes using Hi-C data in

an approach called ALLHIC [100]. This approach relies upon the LACHESIS algorithm

applied to Hi-C data that have been filtered to remove contacts that connect across haplotypes,

thereby yielding haplotype-specific scaffolds.

Practical considerations

The scaffolds generated with the help of the data described previously simply organize contigs

along a genome without specifying the actual DNA sequence represented within the gap

between adjacent contigs. Once the relative location of contigs is known, however, it is fre-

quently easy to reconstruct the sequence within the gaps, a process that is commonly referred

to as gap filling. Most commonly, mate-pair information is used to identify which reads could

be placed within a gap, and then those reads are assembled to fill in the sequence within the

gap, extending or even joining the adjacent contigs. Variants of this process are included in

virtually all genome assemblers, e.g., ABySS [78], ALLPATHS-LG[101], and EULER [102],

and several stand-alone solutions were also developed: GapFiller [103], SOAPdenovo GapClo-

ser [104], and Sealer [105]. The latter approach relies on Bloom filters [106] to reduce memory

usage, thereby enabling gap filling in large draft genomes. When long reads are available, gap

filling can be performed with the help of reads that could not previously be incorporated in the

assembly. The relatively higher quality of the contig sequences allows gap filling software to

identify alignments that were missed during the assembly process. This principle is used by

PBJelly [107] and GMCloser [108], approaches specifically developed for Pacific Biosciences

data. GMCloser relies on a likelihood ratio test to determine the quality of alignments and

remove poor-quality alignments that could lead to misassemblies.

Each of the data types used for scaffolding contain errors and have specific biases. Incorrect

insert size estimates in mate-pair data can lead to ordering and gap estimation errors in scaf-

folds [109]. Hi-C data cannot provide accurate orientation information at small genomic dis-

tances, yielding small inversions within the scaffolds [110]. Optical mapping data have fairly

low resolution and contain many errors, including incorrect estimates of fragment sizes and

missed or spurious restriction cuts [111]. To reduce the impact of such errors on the ultimate

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006994 June 5, 2019 10 / 20

https://doi.org/10.1371/journal.pcbi.1006994


quality of the assemblies, most studies rely on a combination of data sources. Long-read Pacific

Biosciences data scaffolded with the help of nanocoding maps from BioNano Genomics were

used by Pendleton and colleagues [112] to assemble a human genome and by Du and col-

leagues [113] to reconstruct the indica rice genome. Short-read data (Illumina) combined with

10x Genomics linked-read data and with optical maps were used by Mostoyov and colleagues

[40] to generate a high-quality, haplotype-phased de novo assembly of a human genome. A

combination of Pacific Biosciences, BioNano Genomics nanocoding maps, and Hi-C data

were used to reconstruct the genome of the domestic goat [110]. Pacific Biosciences, BioNano

Genomics nanocoding maps, and 10x Genomics linked-read data were effective in recon-

structing a haplotype-phased version of the genome of a human individual [114]. A complex

mixture of technologies, including BAC-based sequencing through short-read Illumina data,

genetic map information, Hi-C data, and nanocoding maps, was used by Mascher and col-

leagues [115] to reconstruct the barley genome. Most recently, Jiao and colleagues [116] com-

bined BioNano Genomics nanocoding maps, Hi-C data, and Pacific Biosciences long-read

data to produce high-quality reconstructions of the genomes of three relatives of Arabidopsis
thaliana. Recently, Moll and colleagues [117] used the model legume Medicago trunculata as a

basis for critically evaluating the impact of different technologies and their combinations on

the quality of the resulting genome reconstruction. Their analysis revealed the effectiveness of

Dovetail Chicago data followed by the use of BioNano Genomics nanocoding mapping infor-

mation in improving the original assembly generated from Pacific Biosciences reads.

Leveraging synteny—A missed opportunity

Synteny refers to the colocalization of genes or genomic loci along a chromosome. In many

cases, whereas the DNA sequence itself may diverge significantly during evolution, related

organisms often preserve synteny and gene order. The conservation of synteny can thus be

used to help order contigs along a chromosome by inferring their placement based on the loca-

tion within a related genome of the orthologs of the genes found in the contigs. Despite the

rapid increase of complete and draft genomes in public databases, the use of synteny informa-

tion in genome reconstruction has not been widely adopted. Here, we provide a brief overview

of the approaches that have been developed in this field in hopes of spurring increased use of

these data in genome projects.

Synteny-based methods first map contigs onto the reference genomes using a whole-

genome aligner [118, 119]. The orientation and ordering of contigs are then inferred from the

alignment data (Fig 3). Methods such as OSLay [120], ABACAS [121], Mauve Aligner [122],

fillScaffolds [123], r2cat [124], and CAR [125] use only one reference genome for scaffolding

draft assemblies. They are primarily based on mapping the assembly to a complete or incom-

plete reference genome and attempt to identify the ordering and orientation of contigs that are

most consistent with the reference genome.

The main challenges in using synteny data to guide genome reconstruction involve recon-

ciling true differences with the reference genome as well as handling incomplete reference

genomes. Such approaches may lead to mistakes if the reference genome is rearranged with

respect to the genome being assembled or if the two genomes are too distant in phylogenetic

terms. To address such challenges, MeDuSa [126] and Ragout [127] use multiple reference

genomes along with the phylogenetic tree of these genomes as a reference to scaffold contigs.

MeDuSa models the problem of using multiple reference genomes for scaffolding as an

instance of maximum weight path cover problem [128], which is known to be NP-hard

(computational problem for which no known polynomial time algorithms exist), and proposes

a greedy heuristic to find an approximate solution. Ragout [129] and Ragout 2 [130] represent
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the target and reference genomes as a multicolored breakpoint graph with nodes representing

the conserved synteny blocks and edges representing the adjacency of these blocks. In this

graph, Ragout finds the missing adjacencies by solving a half-breakpoint state parsimony prob-

lem on the given phylogenetic tree and then orients and orders synteny blocks to reconstruct

the target genome. Multi-CAR [131] starts by processing each reference genome separately

using CAR. Multi-CAR then reconciles the different contig orderings by constructing a graph

in which nodes are contigs and edges are the adjacencies given by different reference genomes.

A maximal weight perfect matching [132] within this graph defines the final set of scaffolds.

Perspective

As we have shown, technological advances on both the experimental and computational sides

have dramatically improved the ability of reconstructing the genomes of complex eukaryotic

organisms, including repeat-rich plants such as rice and barley. Most of the technologies used

today are evolved versions of approaches developed decades ago during the dawn of the geno-

mic era. Although read lengths have increased, the accuracy of optical and nanocoding maps

has improved, and subcloning approaches are now performed in vitro without the need for

culturing the DNA in an E. coli host; the fundamental properties of the data being generated

have not changed in a meaningful way. The exceptions are the technologies used to interrogate

the structure of chromosomes through sequencing—Hi-C and related approaches. The paired

reads generated by these technologies no longer provide per-pair distance constraints; rather,

distance information can only be reconstructed from the frequency of "contacts" between dis-

tant sections of the genome being reconstructed. In return, however, these technologies pro-

vide much longer-range linking information than provided by any other technology. Just as

long-read technologies have dramatically advanced our ability to reconstruct genomes, the

long-range linking information provided by Hi-C and similar technologies has made it possi-

ble to link together complete chromosome arms [99, 110].

In the near future, it is likely that many previously intractable genomes will be recon-

structed with the help of long-read sequencing data coupled with paired-read information

from chromosome conformation capture technologies, augmented by short-read and short

mate-pair technologies aimed at resolving the small-scale structure of genomes. This opportu-

nity is particularly relevant to scientists studying the complex genomes of plants [133] or

insects [134] for which few genomic resources are currently available.

As we have already mentioned, a largely unused source of information is the sequences of

the many genomes already sequenced and deposited in public databases. This vast source of

data can be a valuable addition to the other types of genomic data being used in genome recon-

struction, particularly in projects aiming to more densely sample particular regions of the tree

of life (e.g., the genomes of cereal crops [133, 135]).

In our review, we have omitted a discussion of experimental challenges or cost, in part

because our primary focus has been on algorithmic considerations and in part because of the

rapid changes in technologies that would make any cost estimates obsolete even before the ink

has dried on the paper. In general, such practical aspects are insufficiently discussed in current

literature, and the community would benefit from a review focused on the technical challenges

and costs of the available technologies.

Generating haplotype-phased chromosome-scale assemblies of eukaryotic genomes with

the mix of sequencing technologies has been the driving force behind the development of the

newer genome assembly methods. Koren and colleagues [136] proposed a method called “trio-

binning” that uses short and accurate Illumina reads from two parental genomes to partition
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long and noisy reads from an offspring into a haplotype-specific set of reads, and each haplo-

type is then assembled independently.

It is conceivable that in the very near future, further developments in genomic technologies

will make the automatic reconstruction of mammalian genomes possible. Recent advances in

nanopore sequencing devices are already yielding longer reads than all prior technologies,

potentially leading to the ability to assemble complete eukaryotic genomes from nanopore

data alone. Rather than the end of a road, such developments will create the opportunity for

scientists to tackle even harder challenges, such as the complete reconstruction of individual

haplotypes, particularly in the context of heterogeneous mixtures such as tumors or microbial

mixtures or polyploid genomes. Some progress is being made in haplotyping human genomes

with the help of pedigree information (specifically trios comprising two parents and a child)

[136]; however, the solution to the more complex problems posed by mixtures and polyploidy

will require further developments in both genomic technologies, such as those outlined in our

review, as well as in the design of algorithms and tools able to effectively leverage the informa-

tion provided by these technologies.
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