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Molecular analysis on the single-cell level represents a rapidly growing field in the life
sciences. While bulk analysis from a pool of cells provides a general molecular profile, it
is blind to heterogeneities between individual cells. This heterogeneity, however, is an
inherent property of every cell population. Its analysis is fundamental to understanding
the development, function, and role of specific cells of the same genotype that display
different phenotypical properties. Single-cell mass spectrometry (MS) aims to provide
broad molecular information for a significantly large number of cells to help decipher
cellular heterogeneity using statistical analysis. Here, we present a sensitive approach to
single-cell MS based on high-resolution MALDI-2-MS imaging in combination with
MALDI-compatible staining and use of optical microscopy. Our approach allowed ana-
lyzing large amounts of unperturbed cells directly from the growth chamber. Confident
coregistration of both modalities enabled a reliable compilation of single-cell mass spec-
tra and a straightforward inclusion of optical as well as mass spectrometric features in
the interpretation of data. The resulting multimodal datasets permit the use of various
statistical methods like machine learning–driven classification and multivariate analysis
based on molecular profile and establish a direct connection of MS data with micros-
copy information of individual cells. Displaying data in the form of histograms for indi-
vidual signal intensities helps to investigate heterogeneous expression of specific lipids
within the cell culture and to identify subpopulations intuitively. Ultimately,
t-MALDI-2-MSI measurements at 2-μm pixel sizes deliver a glimpse of intracellular
lipid distributions and reveal molecular profiles for subcellular domains.
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To understand the function and role of a specific cell type in a biological system,
in-depth information about its molecular composition is often of paramount impor-
tance. Typically, this information is derived from ensemble populations, such as cell
cultures or extracted and pooled cells of a certain phenotype. However, individual cells
of the same cell type can display different morphological and chemical phenotypes and
cellular heterogeneity on both a morphological and a molecular level is ubiquitous in
any population of cells (1, 2). This cell-to-cell heterogeneity can have several origins,
for example a varying cellular environment, the status within the cell cycle, age and dif-
ferentiation, genetic differences resulting from mutations (3, 4), or also stochastic
events in gene expression (5). Deciphering chemical heterogeneity on a single-cell level
can help to understand the function of cells of a particular type and also how they spe-
cifically respond to therapeutics or other stimuli (6, 7). To address these differences
between individual cells, molecular analysis on the single-cell level is necessary.
Fluorescence-based microscopic techniques are well-established and widely applied

for the identification and quantification of targeted proteins, glycosphingolipids, and,
in some cases, secondary metabolites from single cells using specific stains and dyes.
On the same basis, fluorescence-activated cell sorting (FACS) can be used to identify
and sort cells based on a specific molecular marker for consecutive mass spectrometric
analysis of certain groups of cells (8). The main advantages of fluorescence detection
include a high sensitivity and a generally high specificity as well as its nondestructive
nature and high-throughput capabilities (9). However, fluorescent tagging is highly tar-
geted and numerous important classes of biomolecules, in particular lipids, such as, for
example, phospholipids and sterols, are not amenable to the technique due to the lack
of specific chromophores. FACS as well as laser microdissection can also be used to sep-
arate cells for single-cell RNA sequencing. This technique is able to profile the whole
transcriptome of thousands of individual cells simultaneously and enables understand-
ing the expression of genes at the single-cell level, deciphering their heterogeneity
within a cell population, and revealing subpopulations within a cell culture (10, 11).
Similar to RNA sequencing, single-cell mass spectrometry (single-cell MS) can provide

for an untargeted and label-free approach based on molecular analysis. Here, complete

Significance

Single-cell mass spectrometry (MS)
provides molecular information
on a cellular level and enables the
analysis of cellular heterogeneity.
In this study, we demonstrate an
approach to single-cell MS that
utilizes a combination of state-of-
the-art MS imaging to generate
molecular information with
compatible staining and slide-
scanning microscopy for
segmentation of individual cells.
Both modalities are coregistered
to generate single-cell mass
spectra. Using statistical tools and
machine learning, single-cell MS
data are used to identify
subclasses within the cell culture.
On the level of individual lipids,
molecular heterogeneity is
displayed using histograms and
coregistration of MS imaging and
microscopy links of both
modalities in data analysis.
Beyond cellular resolution, the use
of 2-μm pixels enables the
molecular investigation of
intracellular domains.

Author contributions: T.B., K.K., and J. Soltwisch designed
research; T.B., K.K., J. Schwenzfeier, and J. Soltwisch
performed research; T.B., K.K., J. Schwenzfeier, and J.
Soltwisch analyzed data; and T.B., K.K., J. Schwenzfeier,
K.D., and J. Soltwisch wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1T.B. and K.K. contributed equally to this work.
2To whom correspondence may be addressed. Email:
jenssol@uni-muenster.de.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2114365119/-/DCSupplemental.

Published July 11, 2022.

PNAS 2022 Vol. 119 No. 29 e2114365119 https://doi.org/10.1073/pnas.2114365119 1 of 12

RESEARCH ARTICLE | CELL BIOLOGY

https://orcid.org/0000-0002-6080-548X
https://orcid.org/0000-0001-6321-4178
https://orcid.org/0000-0002-0795-2405
https://orcid.org/0000-0002-7619-808X
https://orcid.org/0000-0002-0258-1561
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jenssol@uni-muenster.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114365119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114365119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2114365119&domain=pdf&date_stamp=2022-07-09


molecular classes like proteins, metabolites and lipids can be inves-
tigated on the single-cell level (12–14). In this context, lipids are a
highly interesting group of analytes (15). Overall, the lipid com-
position of a cell impacts many biological processes and it also
strongly depends on microenvironmental cues, the cell cycle, and
even cell states (16–18). Naturally, lipid composition therefore
often expresses heterogeneity even in cell populations of the same
type. MS is the core analytical technique in lipidomic applications.
In particular, the combination of chromatography and electro-
spray ionization (ESI) is a routine tool for deciphering the lipid
composition from a pool of cells and occasionally even at the
single-cell level (19, 20). However, because of the limited sample
volumes, single-cell metabolomics/lipidomics remains challenging
(21). A typical eukaryotic cell, for example, contains only 4.2 pL
of volume, and even highly abundant lipids such as cholesterol are
then present at low-femtomole levels only (22).
Because of its capability to effectively generate intact molecu-

lar ions from minute sample volumes, matrix-assisted laser
desorption ionization (MALDI) has become increasingly popu-
lar in single-cell MS. In general, two modes of operation have
been described. In profiling approaches, single cells are isolated
on a target plate and the laser is focused to cell-specific coordi-
nates. Typically, the laser spot diameter used in these experi-
ments exceeds that of the target cells and the cell content is
completely sampled within repetitive laser shots. In cell profil-
ing, the target coordinates are either predefined by microarrays
(13, 23–28) or individual cells are randomly dispersed and
deposited on a surface like a glass slide and located using an
optical microscope (29, 30). This approach allows for the anal-
ysis of thousands of cells in a single experiment and a straight-
forward combination with immunocytochemistry (14, 31). To
avoid cross-contamination between single cells in a profiling
experiment, however, cells from culture or tissue have to be
separated and isolated. This isolation of the cells may limit the
investigation of long-range cellular outgrowth and changes
related to cell-to-cell signaling (32).
In contrast to the profiling approach, a typical MALDI-MS

imaging (MSI) experiment probes the entire sample surface in a
regular raster of pixels, independent of the cell coordinates.
Cells in the investigated area can either also be separated by
microarrays (33) or are directly grown on the sample slide. For
single-cell analysis, data from all pixels that are specific to an
individual cell are combined to yield single-cell mass spectra
either in a “manual” fashion (16) or by coregistering the pixel
position to microscopic images of the cells in the sampled area
(7, 34). For this, optical images of cells and tissue are recorded
pre– and/or post–MALDI-MSI analysis and MALDI ablation
marks and/or fiducial markers that are placed off the region of
interest are used for coregistration (34, 35). Although dedicated
algorithms have been developed to segment and identify indi-
vidual cells in the microscopy images with high accuracy, a pre-
cise coregistration is often described as a bottleneck, especially
for densely grown cell cultures or tissue samples. Next to
enabling single-cell MS analysis, the coregistration allows for a
direct comparison of MS data with the histological assessment
of cells based on light optical modalities, such as fluorescence
microscopy or morphometric analysis. These techniques typi-
cally exceed the abilities of MALDI-MSI with regard to spatial
resolution considerably (35, 36).
While in cell-profiling mode the isolation of cells permits the

use of relatively large laser spot sizes, single-cell analysis of
unperturbed cell culture using MALDI-MSI requires the use of
small pixels. To avoid intermixing of information from neigh-
boring cells, generally, the pixel size should be in the range of

the cellular dimensions, namely within 10 μm and below, a
value now in reach on some commercially available MALDI-
MSI instruments. More specialized ion sources can already
reach a pixel size of 1 to 2 μm for the analysis of cultured cells
(37–39).

To increase the analytical sensitivity for numerous classes of lip-
ids and further metabolites, a laser-based postionization strategy,
named MALDI-2, can be used (40–42). The technique reduces
ion suppression effects, typical in MALDI-MSI of lipids (43), and
increases ion yields by up to three orders of magnitude for a
number of lipid classes. MALDI-2 thereby enhances molecular
coverage and chemical depth significantly, especially for minute
sample amounts. Combining the method with transmission-mode
(t-)MALDI, we have demonstrated MALDI-MSI analysis with
pixel sizes of 1 to 2 μm for cell cultures (39, 44). Next to
improvements in irradiation geometry and ion boost, these high
spatial resolution experiments call for precise and optimized sam-
ple preparation. Particular care has to be taken to avoid changes
in cell morphology, diffusion of analyte molecules, and chemical
alteration. We have recently reported an optimized protocol
including MALDI-compatible formalin fixation, washing, drying,
and matrix application steps for the analysis of cell culture (44).

Here, we present a workflow to investigate intra- and intercellu-
lar heterogeneity in cultured cells by combining MALDI-MSI and
optical microscopy. Data from both modalities are spatially corre-
lated with high accuracy using simple overlay algorithms fed with
data from specific fluorescence staining and bright-field micros-
copy, on the one hand, and matching information derived from
selected MSI channels on the other, thereby omitting the use of
fiducial markers or coregistration based on ablation marks (34,
35). High-fidelity coregistration allows for the compilation of an
individual mass spectrum for each individual cell and enables sta-
tistical analysis of cell heterogeneity based on individual single-cell
mass spectra. This cellular heterogeneity can, in turn, be directly
correlated and compared with phenotypical observations for the
same cells based on optical microscopy. We further demonstrate
the use of machine learning (ML) to classify specific groups of
cells based on their molecular profile. The presented methods for
data acquisition and processing were validated using t-MALDI-2-
MSI with a pixel size of 2 μm to investigate the influence of spa-
tial resolution on coregistration and the compilation of single-cell
mass spectra. In two proof-of-concept applications, 1) a cocultiva-
tion of Vero-B4 and Caki-2 cells was used to demonstrate the
analytical capabilities of the method regarding classification of dif-
ferent cell types and visualization of intercellular heterogeneity,
and 2) changes in lipid profile were monitored during the differ-
entiation of THP-1 monocytes into macrophages. Both studies
were carried out at 8-μm pixel size using MALDI-2-MSI on a
modified timsTOF fleX (Bruker Daltonics) instrument. At high
spatial resolution, the use of single-pixel rather than single-cell
mass spectra for statistical analysis furthermore allowed for the
molecular analysis of intracellular structure.

Results and Discussion

Single-cell MS relies on the production of meaningful mass
spectrometric data and their confident and unambiguous corre-
lation to an individual cell. In MALDI-MSI approaches, this
correlation is often hampered by the available spatial resolution
because a pixel size exceeding 10 to 15 μm often does not allow
for an unequivocal assignment of every recorded pixel to a spe-
cific single cell. In contrast, histological techniques readily
enable the identification and segmentation of cells in cultures
and tissue. In combination with MALDI-MSI, most commonly
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the histological analysis is performed after the MSI step and
includes washing of the matrix, staining, and drying. However,
these protocols may lead to skewing or regionalized image
warping between MSI and histology, especially in the analysis
of fresh-frozen tissue sections (45). These effects can necessitate
cumbersome additional work steps that may include the genera-
tion of microscopic images pre– and post–MALDI-MSI, the
use of overlay of MALDI-MS ablation marks, or rely on fidu-
cial markers placed off the tissue region of interest (34, 35). To
determine the spatial correspondence between MSI and histo-
logical data with high fidelity, registration algorithms exist,
which use rigid registration of images, binarized by threshold
values, to separate tissue and background by total ion intensities
(46) or nonlinear and linear dimensionality reduction techni-
ques for summarizing MSI datasets like t-SNE or k-means clus-
tering (47, 48).
In order to simplify the coregistration between MSI and his-

tological data, we minimized adverse effects during sample han-
dling. Amending our previously developed optimized sample
preparation protocol for MALDI-MSI of cultured cells (44),
Hoechst stain 33342 (Hoechst from here on) and wheat germ
agglutinin (WGA) were used to stain cell nuclei and cellular
membranes, respectively. Notably, with regard to the chemical
integrity in the lipid domain, both stains are fully compatible
with MALDI-MSI of lipids. Advantageously, this allows
recording histological data prior to the dry sublimation-based
application of the MALDI matrix omitting any tissue warping
induced by washing or wetting and subsequent drying
in-between the two optical modalities. For coregistration, m/z
channels were selected to display homogeneous signal intensity
in all cells while being absent from the background. For all
investigated cell lines, the prominent signal at m/z 577.520,
tentatively assigned to diacylglycerol [DAG(34:1)�H2O+H]+,
was chosen. This m/z value most probably combines the result
of in-source fragmentation of a number of lipid species like
phosphatidylcholine PC(34:1), phosphatidylethanolamine PE(34:1),
and phosphatidylserine PS(34:1) (SI Appendix, Fig. S1). It shows low
intra- and intercellular heterogeneity and is, therefore, detected ubiq-
uitously throughout all investigated cells. These preconditions permit
a simple coregistration based on two-dimensional pixel correlation
between binarized MSI and microscopy data (see Materials and
Methods and SI Appendix, Fig. S2 for details). The global information
of both MALDI and microscopy images is used to determine three
parameters (x and y positions and angle of rotation) for the coregistra-
tion. Consequently, the approach does not account for tissue warping
but, given undeformed images, it is more precise and more robust to
local noise or overfitting than techniques that use all affine or even
nonrigid transformations. The capacity of the approach is demon-
strated in Fig. 1 and SI Appendix, Figs. S2 and S3, showing a high
correlation between the WGA stain (Fig. 1A) and the t-MALDI-2-
MSI data recorded from a Vero-B4 monoculture at a pixel size of
2 μm (Fig. 1B).
Furthermore, histological images based on Hoechst and

WGA stains enabled a segmentation of the data into back-
ground and areas associated with individual cells (see Materials
and Methods for details). This segmentation is displayed using
outlines around each cell in Fig. 1C overlaid with with the
mass spectrometric data, again demonstrating the high fidelity
of coregistration. The combination of coregistration and seg-
mentation now enables applying the workflow for single-cell
data extraction and further processing, as visualized in Fig. 2. It
allows generating sum mass spectra for each segmented area,
which include all MSI pixels identified to allocate to the respec-
tive individual cell. To avoid ambiguity in the resulting single-

cell mass spectra, all pixels allocated to more than one cell are
discarded from the sum. Resulting data now contain the spatial
information and position of each cell from the microscopy
modality, on the one hand, and a single-cell mass spectrum
from the MSI measurement, on the other. As outlined in Fig. 2,
this allows for the application of a wide range of statistical
tools or analysis using ML based on MS data on the single-cell
level and a direct correlation of the results with the optical
modality.

To evaluate a coregistration for pixel sizes larger than 2 μm,
as commonly available in commercially available imaging mass
spectrometers, we artificially upscaled the same MALDI-MSI
datasets by combining neighboring pixels. Considering the
original dataset as ground truth, correlation results for pixel
sizes of 4, 8, 16, and 32 μm demonstrate the suitability of
intensity-based coregistration for modalities even at significantly
larger pixel sizes (see SI Appendix, Fig. S4A and Table S1 for
the 32-μm pixel overlay). Whereas the MSI analysis of a large
number of cells is accelerated by increasing the employed pixel
size, the discarding of ambiguous pixels that allocate with more
than one cell sets a practical limit to this value. This limit will
strongly depend on the size of the cell line under investigation
and its degree of (sub)confluence of the culture’s growth. To
estimate this pixel size effect, a grid of varying theoretical pixel
sizes can be overlaid with the optical image of the cell culture.
Applied to our culture of Vero-B4 cells, at 2-μm pixel size,
more than 80% of all pixels completely fall within the area of a
single cell and only 2.3% touch more than one cell. At 16-μm
pixel size, most pixels (78.3%) only partially cover the cell sur-
faces and 17.4% have to be discarded. Next, to a summary of
this effect in Table 1, it is also demonstrated using pie charts in
SI Appendix, Fig. S4. Based on these data available from micro-
scopic images, it is possible to predefine a pixel discard rate
acceptable for the application at hand and derive the required
pixel size for MALDI-MSI. For all further experiments, a
discard rate of 10% was chosen that requires maximum pixel
sizes of 8 μm and permits a data acquisition rate of about
4.6 mm2/h at 20 pixels per second when performed on the
timsTOF fleX MALDI-2 instrument.

Coculturing and Classification. While both computer-aided
and manual cell sorting based on morphological phenotype or
fluorescence labeling are well-established tools in histology, it is
usually time-consuming and/or computationally expensive
(49). Additionally, the methods may miss molecular pheno-
types that are not targeted by the used fluorescent tag or that
are not reflected in morphological differences. Classification
based on single-cell mass spectra as generated by MSI, on the
other hand, can utilize hundreds of different m/z channels to
identify these “molecular phenotypes” and directly link them to
histological data.

To demonstrate the analytical potential for classifying cells based
on their single-cell mass spectra, we chose a coculture of two differ-
ent epithelial kidney cell lines, namely Vero-B4 and Caki-2, as a
model system. Additionally, the MSI-based classification results of
the cell lines can be compared with state-of-the-art optical classifi-
cation techniques. Using this model system, we conducted
MALDI-MSI on areas containing between 300 and 800 cells and
compiled a list of the most prominent peaks in the mass spectro-
metric datasets (about 500 peaks) of both monocultures and of the
coculture of both cell lines (see Materials and Methods and SI
Appendix, Methods for details). Single-cell mass spectra from the
experiments were reduced to centroid data containing only the
selected m/z channels and normalized to the total ion count (TIC)
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of the reduced spectra. This data reduction and normalization
ensured easy comparability across the different measurements and
reduced computational cost. Resulting datasets were used in two
complementary classification approaches based on ML (in the
form of a support vector machine; SVM) and multivariate statisti-
cal analysis (principal-component analysis; PCA), respectively.
For the ML approach, monocultivated cells were used as

labeled training data. The dataset contained 722 Vero-B4 and
312 Caki-2 cells and was randomly partitioned into five

groups of equal size for a fivefold cross-validation. A linear
SVM classifier was trained on all five training- and test-set
combinations and achieved an average classification accuracy
of 99.9% with only misclassifying a single cell in the entire
dataset. Our data suggest that training sets consisting of a few
hundred cells are sufficient for classification with high confi-
dence. Subsequently, the SVM was retrained on the complete
datasets of the monocultures and then used to predict the cell
types of the coculture.

Fig. 1. (A and B) Vero-B4 cell culture visualized in (A) a fluorescence microscopy image using WGA stain and (B) the corresponding ion signal intensity distri-
bution of [DAG(34:1)�H2O+H]+ registered at m/z 577.520 using t-MALDI-2-MSI. (C) Zoom-in of t-MALDI-2-MS image overlaid with the result of a single-cell
segmentation based on microscopy data (orange outlines). (Scale bars, 200 μm.)

Fig. 2. Illustration of the workflow for single-cell analysis by the combination of microscopy and high-resolution MALDI-MSI. Segmentation of the micros-
copy data are followed by a pixelwise coregistration with MALDI-MSI data. Mass spectra from pixels associated with a specific cell are summed to single-cell
mass spectra and are considered as the absolute single-cell intensities. Pixels that are associated with more than one cell are discarded. Single-cell data can
subsequently be used for ML classification or any desired method of statistical data analysis. (Scale bar, 50 μm.)
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An overlay of Hoechst and WGA staining of the coculture is
displayed in Fig. 3A. By using the established coregistration with
the microscopy data, the results of the classification were used to
label the cells accordingly in the bright-field image (Fig. 3B). To
compare these results with state-of-the-art histological methods,
artificial intelligence (AI)–driven classification provided by Olym-
pus deep-learning solution (50) was applied to the same set of
cells. It differentiates cells based on Hoechst and WGA fluores-
cence as well as bright-field microscopy and can provide high
fidelity for cells with distinctively different phenotypes (Fig. 3C).
While in general the microscopy-based classification results are
comparable to the MSI-based classification, a number of cells are
assigned differently by the two methods (compare the white
arrows in Fig. 3 B and C for examples). In general, Caki-2 cells
are larger and rounder, while the typical Vero-B4 cells are smaller
with irregularly spreading edges. Most discrepancies between the
two classifications are found where the cells’ morphology cannot
be clearly placed in either category.
To investigate the robustness and fidelity of the assignment pro-

duced by the SVM, the method was applied to a biological replicate
of the coculture sample system. To provide an independent ground
truth, Caki-2 cells were stained with a live-cell dye (CellTracker
Deep Red) prior to combining both cell lines. This allows for an
unambiguous identification of the respective cell type in the cocul-
ture based on fluorescence microscopy. SI Appendix, Fig. S5 shows
the stained image and Fig. 3E shows the resulting classification of
cells as Caki-2 in green (see SI Appendix, Methods for details).
Applying the SVM trained on the previous dataset, Caki-2 and
Vero-B4 cells are identified with a recall of 97 and 75%, respec-
tively, resulting in a total accuracy of 79% (compare Fig. 3 D
and G). While precision for identification of Vero-B4 is high
(99%), a comparably low recall for these cells in combination
with a substantially higher number of Vero-B4 than Caki-2 cells
in the sample, in turn, leads to a rather low precision in identify-
ing Caki-2 cells of 45% from this strictly binary system. From a
biological perspective, these variances may be explained by molec-
ular variation in the cells derived from independently produced
cell cultures (biological replicates from the same stock culture) at
differing culture times and passage. While the cancer-derived
Caki-2 cells are relatively stable with increasing numbers of pas-
sages, morphological and molecular changes have been reported
for noncancerous cell lines, such as Vero-B4, with increasing num-
bers of passages. Training the SVM on monocultures of the same
passage of cell lines leads to an accurate identification in the cocul-
ture of 91 and 92% recall with a precision of 74 and 98% for
Caki-2 and Vero-B4 cells, respectively, and a high total accuracy
of 92% (Fig. 3 F and H). While this underlines the necessity for

an optimal training set for the SVM, it also highlights the specific-
ity of the method for a certain molecular state of the investigated
cells. It is to be expected that training the SVM on a combination
of different biological replicates of different passages would result
in an improved generalization of the SVM, increasing the accuracy
to classify a specific cell type when compared with other cells,
while, at the same time, losing sensitivity for heterogeneities
between different passages and culturing times.

To visualize the separation of the two cell types in a two-
dimensional plane, we performed a PCA. Applied to the combined
datasets of two separately acquired monocultures, the PCA revealed
that 24% of the cell-to-cell variability is explained by the first two
PCs and that the two cell types split into relatively distinct clusters
(Fig. 3I). However, it cannot be excluded that the separation may
in part be caused by a systematic variance introduced between the
two measurements. Applied to a dataset acquired from cocultured
cells using the same coordinate system, the PCA produced two
clusters similar to those detected for monocultures, with less separa-
tion (Fig. 3J). Coloring each cell according to the classification
based on ML confirms that the clusters representing each cell type
are less distinct and partly overlap (Fig. 3K). This effect may be
explained by changes in the molecular profile of both cell types in
response to exposure to each other, or even as the result of a
molecular exchange between the two cell types.

The combination of the two approaches, SVM and PCA, pro-
vides for a clear separation and visualization of the results. While
the SVM utilizes the rich 500-dimensional information of the
mass spectra to classify all cells with high accuracy when using
an appropriate training set, the visualization in a PCA plot intui-
tively allows selecting single cells based on separation characteris-
tics (or, in other words, their position in the PCA score plot).
This feature can be used to individually study and compare his-
tological phenotypes with individual mass spectra of selected
cells that are assigned as distinctly different by the PCA.
Highlighted in Fig. 3K as two examples, Fig. 3 L and M provide
the optical images for two cells, color-coded in blue (Caki-2)
and red (Vero-B4), respectively. Fig. 3N displays differences in
their mass spectra. As this process is of a bidirectional nature, a
group of specific cells could also be selected based on histological
information (e.g., distance to cells of the other cell type) and a
resulting point cloud within the score plot of the PCA could be
examined for clustering. Additionally, mass spectra could be
extracted for these potential clusters and analyzed with regard to
molecular markers of the selected histological phenotype.

In case no monocultures of cells are available, training sets
can be compiled manually based on histological features or dis-
tinct m/z channels and applied to a much larger cohort of cells
within the same measurement.

Intercellular Heterogeneity. Next, we used the developed
workflow to characterize molecular heterogeneity in the same
datasets as analyzed above. Here, the cocultivation of Vero-B4
and Caki-2 served as a model system for a heterogeneous cell
population. MALDI-2-MSI data collected in positive-ion mode
from the sample system produced information-rich spectra.
Based on a comparison with comprehensive high-performance
liquid chromatography electrospray ionization ion mobility tan-
dem mass spectrometry (HPLC-ESI-IMS-MS/MS) lipidomics
analysis of cell extracts and linked by exact molecular mass and
isotopic pattern quality, a total of 99 different lipid species
from 8 lipid classes were tentatively assigned in the MALDI-2-
MSI data (cf SI Appendix, Methods and Table S3 for details on
ESI-based lipidomics and lipid assignments). In addition, for
selected lipid ion species, annotation was confirmed using

Table 1. Impact of MALDI pixel-size on full or partial
coverage of a single cell by the pixel area and the
possibility of ambiguous coverage of multiple cells

2 μm 4 μm 8 μm 16 μm 32 μm

One cell, 100% 83.5 57.9 26.6 4.3 0.0
One cell, 50 to 99% 9.5 19.0 28.0 24.3 9.1
One cell, 1 to 49% 4.8 17.3 34.6 54.0 61.9
Two cells (pixel discarded) 2.3 5.8 10.7 17.4 29.0

Percentage of pixels allocated with Vero-B4 cells in a t-MALDI-2-MSI measurement where
the full pixel covers a single cell (100%), more than half of the pixel area covers a single
cell (50 to 99%), less than half of the pixel area (1 to 49%) covers a single cell, and the
pixel area partially covers two cells and needs to be discarded from analysis. Data are
shown for the 2-μm pixel size measurements and the same measurements with
artificially upscaled pixel sizes of 4, 8, 16, and 32 μm. Pixels not hitting a cell based on
segmentation results are excluded.
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Fig. 3. Classification results for cocultured Vero-B4 and Caki-2 cells. (A) Microscopy overlay of the WGA and DAPI channels. (B) Classification results for the
cocultured system using an SVM based on single-cell mass spectra, trained with a set of a few hundred m/z values on the respective monocultures. (C) Clas-
sification of the coculture based on three microscopic images (bright-field, Hoechst stain, and WGA stain) using Olympus TruAI software, trained on the
respective monocultures. White arrows point to differences in the classification for individual cells. (D) Classification results for a biological replicate of the
cocultured system using the SVM trained on the original dataset. (E) Ground-truth identification of Vero-B4 (gray) and Caki-2 cells (green) based on live-cell
staining. (F) Classification results for the biological replicate of the cocultured system using the SVM trained on a dataset based on the same cell cultures.
Arrows are used to point to exemplary differences in classification in D and F: white arrows, cells correctly classified; yellow arrows, cells misclassified
according to the ground-truth data. (G and H) Numerical classification results of D (trained on a different biological replicate) and F (trained on the same bio-
logical replicate). (I–K) Unsupervised statistical analysis: PCA of pooled data from (I) both monocultures, (J) the coculture, and (K) the coculture, with cells col-
ored according to their classification by the SVM. (L–N) Microscopy images of individual Caki-2 (L; colored in blue) and Vero-B4 (M; colored in red) cells, as
selected and marked in the PCA plot with outlines, and (N) their respective MALDI-2 difference mass spectra. (Scale bar, 200 μm.)

6 of 12 https://doi.org/10.1073/pnas.2114365119 pnas.org



MALDI-2-MS/MS analysis directly from cell culture (SI
Appendix, Figs. S8–S20).
For analysis of heterogeneity, data collected from monocul-

tures of each cell line are compared using univariate statistics.
This allowed us to identify molecular species with the highest
fold change (FC) between the two cultures (see SI Appendix,
Fig. S6 for a volcano plot representation) that may carry useful
information on the origin and function of the specific cell types
(see SI Appendix, Fig. S7 for images). Signal intensities at m/z
values of 630.619 and 632.624 with an FC of 2.9 and 3.6 have
been assigned to [Cer(d18:1/24:1)�H2O+H]+ and [Cer(d18:
1/24:0)�H2O+H]+ ceramides, respectively. Signals at m/z
862.620 and 700.575 represent [Hex2Cer(d18:1/16:0)+H]+

and [HexCer(d18:1/16:0)+H]+ hexosylceramides and display a
respective FC of 0.42 and 0.40. While a detailed analysis of cell
biological implications is beyond the scope of this study, the
observed elevated concentrations of ceramide species found in
Caki-2 cells can be attributed to the cell line’s origin in cancer.
Cancerous cells have been reported to express elevated levels of
ceramides (51). Vero-B4 cells, on the other hand, are derived
from healthy tissue and have been described to be rich in glyco-
sphingolipids such as monohexosyl- and lactosylceramides as
part of their cell-to-cell signaling system (52).
Molecular heterogeneity within the full cell population, but

also within each individual group of cells, can be displayed in
the form of histograms (Fig. 4). Histograms can visualize signal
intensity distributions within a group of cells by sorting them
into bins according to the intensity of the corresponding ion
signal in their single-cell mass spectra. As a result, the histogram
displays the number of cells in each intensity bin in the form of
a bar chart. A single narrow Gaussian-type histogram describes
similar signal intensities generated for every cell. In our model
system, this type of distribution is, for example, found for
[DAG(34:1)�H2O+H]+ at m/z 577.520 (Fig. 4A) in all inves-
tigated cell cultures. As described above, this lipid ion species
most likely originates from fragmentation of several precursors
of different lipid classes with the same composition of acyl
chains. Broader peaks with wide distribution, on the other
hand, are indicative of heterogeneity within the cell population,
for example [HexCer(d18:1/16:0)+H]+ in Vero-B4 cells (Fig.
4B) and [Cer(d18:1/24:1)�H2O+H]+ in Caki-2 cells (Fig. 4C).
The occurrence of more than one signal intensity distribution,
separated in the histogram, points to distinctly different popula-
tions within the cell culture. In our model system, these two pop-
ulations are simulated by mixing two similar but different cell
lines. For the coculture, the respective histogram for [Hex-
Cer(d18:1/16:0)+H]+ presents a partly resolved bimodal distribu-
tion that can be interpreted as an overlay of the histograms
produced by the respective monocultures. However, in most cases,
these distributions show a substantial overlap and do not allow for
a clear separation based on a single histogram alone.
For a clearer interpretation, individual signal intensity distribu-

tions can also be compiled for the different groups of cells identi-
fied by classification. This enables the investigation of homo- and
heterogeneity within each individual class of cells within the cocul-
ture and the contribution of each individual cell class to the over-
all sum histogram. Applied to our model system, signal intensity
distributions of [HexCer(d18:1/16:0)+H]+ for the two monocul-
tured cell types reveal obvious differences. As expected from the
visible overlap of these two distributions, however, no clear bimo-
dality is discernable in the coculture. After sorting cells based on
their classification, histograms for both groups of cells can be pro-
duced for this molecular ion species, reproducing two distinctly
different distributions similar to those observed in the respective

monocultures. Interestingly, the presented signal intensity distribu-
tions of [Cer(d18:1/24:1)�H2O+H]+ reveal a change in expres-
sion and heterogeneity between mono- and coculture. The
ceramide signal intensity sizably increases for Vero-B4 cells when
cogrown together with Caki-2 cells. Again, a clear separation of
distributions in the histogram is facilitated by the use of informa-
tion from prior classification. In line with the literature, the
observed changes in ceramide signal intensity in Vero-B4 cells
could point to stress that is induced by the coculturing with Caki-2
cells (51). In this context, it may be speculated that tumor necro-
sis factor alpha, described to be up-regulated in Caki-2 cells, is
secreted, and induces the production of ceramides in the cocul-
tured Vero-B4 cells (53, 54).

Cellular Heterogeneity during Differentiation. In a second
example, we used THP-1 cells to investigate molecular changes
during differentiation from monocytes to macrophages by the
addition of phorbol 12-myristate 13-acetate (PMA) (55) (see SI
Appendix, Methods and Fig. S21 for more information). Cells were
harvested 24, 48, and 72 h after differentiation was induced and
analyzed using the workflow presented above. PCA of the result-
ing single-cell mass spectra reveals distinguishable molecular pro-
files between populations 24 h (monocyte) and 72 h (macrophage)
after stimulation (Fig. 5A) with little overlap. After 48 h, most
cells express a transiting molecular profile somewhat “in-between”
monocyte and macrophage. During this transit stage, some cells,
however, still express the molecular profile of monocytes, while
others are found to already fully resemble the lipid profile of mac-
rophages. In contrast to a bulk analysis, this heterogeneity in
differentiation between individual cells is only accessible using
single-cell data. To reveal lipid ion species that discriminate
between the stages of differentiation within the cell culture, we
used a volcano plot (SI Appendix, Fig. S22). Fig. 5 displays
intensity histograms for a triacylglycerol [TAG(50:1)+H]+ at
m/z 833.653 (Fig. 5B), [PE(38:2)+H]+ at m/z 772.583 (Fig. 5C),
and [PE(38:5)+H]+ at m/z 766.538 (Fig. 5D) (annotations are
based on MS/MS; SI Appendix, Figs. S18–S20). These histograms
reveal a gradual increase for TAG(50:1) and a gradual decrease for
PE(38:2) in the investigated cells over 72 h after stimulation.
TAG(50:1) signal intensities show a narrow and unimodal signal
distribution at low intensity values for the monocytes and stronger
heterogeneity visualized by a broad, possibly multimodal, distribu-
tion at a higher level of lipid expression, presumably representing
different stages of macrophage differentiation. While a detailed
biological analysis of these findings was beyond the scope of this
study, increasing levels of TAGs could point to an activation of
THP-1 cells via the proinflammatory pathway as described in the
literature (56, 57). For PE(38:2), this trend is reversed, revealing a
high and broadly distributed expression in monocytes and
decreased and narrowly distributed signal intensity after differenti-
ation. No change in lipid expression during differentiation was
observed for PE(38:5). The “molecular phenotypes” identified by
specific lipid expression can be compared with microscopic images
of representative cells. Typical examples are presented as insets in
Fig. 5. The selected cell with a high signal intensity for PE(38:2)
and a low expression of TAG is spherical with a smooth surface typ-
ical for monocytes. A characteristic cell with high levels of TAG
and decreased expression of PE(38:2) is larger and displays a more
spread-out morphology with folds and thin protrusions visible on
the surface, typical for macrophages. As expected from the data,
both selected cells show similar signal intensities for PE(38:5).

Intracellular Heterogeneity. Fig. 6 displays ion intensity distribu-
tions for a number of lipid species recorded at a pixel size of 2 μm.
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While 8-μm pixels enable the investigation of intercellular
heterogeneity, this reduced pixel size permits a glimpse at
the molecular distributions within individual cells. While
some signals are distributed evenly throughout the whole

cell culture (Fig. 6A), for others more regional differences
inside individual cells can be observed. This may include a
predominant localization close to the cell nucleus or in the
periphery of the cell membrane (Fig. 6B) or in discrete

Fig. 4. Histograms of selected ion signal intensities for mono- and cocultured Vero-B4 and Caki-2 cells. (A) Histograms for [DAG(34:1)�H2O+H]+ found with
a homogeneous distribution in both cell types with similar ion intensities. (B) Histograms for [HexCer(d18:1/16:0)+H]+ with a homogeneous distribution in
Caki-2 and heterogeneous distribution in Vero-B4 monocultures and a broad, overlapping distribution in coculture. (C) Histograms for [Cer(d18:1/
24:1)�H2O+H]+ displaying a heterogeneous distribution in Caki-2 and homogeneous distribution in Vero-B4 monocultures but a heterogeneous distribution
for both cell types in coculture. (Bottom) Overlay of histograms of subpopulations within the coculture based on classification results described in the text.

Fig. 5. (A) PCA based on single-cell mass spectra of THP-1 cells for three time points during differentiation from monocytes to M0 macrophages. (B–D) His-
tograms of selected ion signal intensities. Cells show (B) an increase of [TAG(50:1)+H]+ signal and (C) a decrease of [PE(38:2)+H]+ signal during differentia-
tion. (D) For [PE(38:5)+H]+, no change is observed. Differences in lipid expression profiles correlate with changes in morphology from typical monocyte cells
at 24 h (e.g., cell in blue square) to typical macrophage cells at 72 h (green square). Asterisks indicate the position of the selected cells in the histograms.
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clusters randomly distributed in the cell body (Fig. 6D).
Other lipid ion species show strong differences between individ-
ual cells as described above (Fig. 6C). Besides opening the door
to subcellular molecular imaging using t-MALDI-2-MSI, these
results demonstrate the importance of a complete sampling of
cell material in single-cell analysis. Sizable undersampling of the
cell may result in the random under- or overrepresentation of
molecular ion species with different subcellular distribution in
the resulting single-cell mass spectra that can artificially broaden
the resulting signal intensity distributions.
Extending this qualitative analysis, we studied the complex

interrelations between intracellular and intercellular heterogene-
ity by comparing intensity distributions on the single-cell level
with the single-pixel level. For this, the described workflow was
expanded by treating all pixels that are located on a cell individ-
ually to produce additional signal intensity distributions on the
pixel level. Applied to data acquired from Vero-B4 cells using
t-MALDI-2-MSI at a 2-μm pixel size, a total of 98 cells are
identified with 29,096 pixels connected to these cells. To visu-
alize the pairwise correlation between selected biologically inter-
esting phospho- and glycosphingolipids on a pixel as well as
single-cell level, we plotted the signal intensities in correlation
plots. Displayed in Fig. 6, every data point in these plots repre-
sents one cell or pixel, respectively, and signal intensities for the
two lipid ion species are plotted on the respective axis. By com-
paring the signal intensity of two different lipid ion species at

specific positions within the cells, it is possible to draw conclu-
sions on regional correlation at the spatial resolution dictated by
pixel size. While two lipid species may show a strong correlation
on the level of the whole cell, they may be expressed in different
parts of the cell, reflected in a low correlation on the level of single
pixels. On the level of complete cells, high intracellular heteroge-
neity has no impact on the correlation, while a strong intercellular
variation results in a low correlation index. A visible difference in
the correlation between the level of complete cells and individual
pixels therefore indicates intracellular heterogeneity.

For [PE(34:1)+H]+ and [PE(36:2)+H]+, single-cell data as
well as individual pixels show a high Pearson correlation coeffi-
cient (PCC) (Fig. 6A). Expression of these two lipid species is
highly correlated not only on the level of the complete cell but
also with regard to their distribution within the cellular body.
Comparing the abundant ion signal intensities of [PE(36:2)+H]+

and [PC(34:1)+H]+ reveals a similarly high correlation on the cel-
lular level with a PCC of 0.95 (Fig. 6B) yet a slightly different
spatial distribution within the individual cell is reflected in a
decreased PCC on the pixel level. As visualized in the MS images,
[PC(34:1)+H]+ is preferably detected from the inner cell and
near the nucleus, while [PE(36:2)+H]+ is also detected near the
edges of the cell. Stronger effects of the same sort are observed
for the pairwise correlation of [HexCer(d18:1/16:0)+H]+ and
[Cer(d18:1/16:0)+H]+ displayed in Fig. 6C. While a PCC of
0.88 indicates a loose correlation on the cellular level, much lower

Fig. 6. Visualization of inter- and intracellular heterogeneity for Vero-B4 cells of selected ions. (Left) t-MALDI-2-MS images of the respective m/z values at a
pixel size of 2 μm and a zoom-in of individual cells point to different characteristics of heterogeneity. (Right) Correlation plots for selected lipid ion pairs on
the single-cell and cell-associated pixel level. (A) [PE(34:1)+H]+ and [PE(36:2)+H]+. (B) [PE(34:1)+H]+ and [PC(34:1)+H]+. (C) [HexCer(d18:1/16:0)+H]+ and
Cer(d18:1/16:0)+H]+. (D) [HexCer(d18:1/16:0)+H]+ and [Hex2Cer(d18:1/16:0)+H]+. (Scale bars, 100 and 50 μm [zoom-in].).

PNAS 2022 Vol. 119 No. 29 e2114365119 https://doi.org/10.1073/pnas.2114365119 9 of 12



correlation is found in the pixel domain. Particularly pronounced
for the ceramide depicted on the ordinate of the correlation plot,
signal intensity distributions on the pixel level split up into dis-
tinctly separated groups. This indicates specific areas of high and
low levels of the investigated lipids within the cell. These areas are
also found in the respective MS images in the form of subcellular
domains, typically >4 to 6 μm in diameter. Corroborating these
results, ceramides have been described to form domains within
the cellular membrane of similar size (58). A different picture
is found for the pairwise correlation of the glycosphingolipids
[HexCer(d18:1/16:0)+H]+ and [Hex2Cer(d18:1/16:0)+H]+. In
this example, strong heterogeneity is visible already on the intercel-
lular level. Consequently, the PCC for the complete cell popula-
tion as well as individual pixels is low. Again, these findings are
corroborated by previous reports based on single-cell MSI describ-
ing a strong cell-to-cell variability in the expression of glycosphin-
golipids (16).

Conclusion

The combination of light microscopy and MALDI-MS imaging
of cultured cells at a pixel size below 10 μm enabled lipid MS
analysis on the single-cell level. In contrast to techniques that
rely on isolation and/or pooling of single cells, the presented
approach minimizes perturbance of cells prior to analysis and
produces single-cell mass spectra directly interconnected with
microscopy-based histological information for each individual
cell in its original surrounding. The application of streamlined
fixation and matrix preparation protocols as well as the use of
chamber slides minimized sample preparation time. The use of
state-of-the-art MS technology reduced time of analysis of hun-
dreds of individual cells to under an hour. While techniques
employing a larger pixel size may be even faster, our approach
includes 90% of all cell-related pixels with their full pixel area
omitting ambiguities in mass spectra introduced by undersam-
pling parts of the investigated cells.
Key elements of the presented workflow included segmentation

and coregistration of the two imaging modalities and subsequent
assignment of each MS pixel to a specific individual cell or to the
background. These steps were facilitated by staining protocols
compatible with MALDI-MSI analysis and optical analysis prior
to matrix application. While for cell cultures that were grown to
subconfluence, as presented in this work, simple and robust seg-
mentation algorithms are sufficient for segmentation and classifica-
tion, more sophisticated tools may be required in the analysis of
complex multicellular samples like organoids or full tissue sections
(35, 50). Here, the use of alternative MALDI-compatible staining
methods may also be of help.
Unambiguous assignment of pixels to specific cells allows the

compilation of datasets consisting of single-cell mass spectra that
can be analyzed and classified using ML as well as multi- and uni-
variate statistics based on their molecular profile. Using the direct
connection between the employed modalities allows evaluating
the resulting groups of molecularly similar cells regarding optical
features such as morphology, phenotype, and cellular
“neighborhood.” Signal intensity histograms based on single-cell
mass spectra are especially useful to investigate intercellular hetero-
geneity within the complete cell culture or to identify subpopula-
tions. In the future, such identified subpopulations with specific
changes in the lipidome may act as an important initial starting
point to investigate changes and differences in the up- and down-
stream metabolic pathways using complementary techniques such
as immunohistochemistry, single-cell messenger RNA sequencing,
or targeted protein analysis.

Furthermore, the use of t-MALDI-2-MS imaging employing
a pixel size of ≤2 μm enables the investigation of intracellular
heterogeneity on a molecular level. Analysis of molecular infor-
mation on the micrometer-sized pixel level allowed to identifying
subcellular structures common to a large number of cells. In this
regard, our results may be viewed as a promising step toward
developing a true subcellular analysis using MALDI-MSI.

Materials and Methods

Chemicals. All chemicals and organic solvents were from Merck (Sigma-Aldrich)
unless otherwise noted.

Cell Culture. Cells were cultivated and cultures were prepared for the subse-
quent microscopic and MALDI-MSI analyses as described before (44). Modifica-
tions in terms of a staining step have been added to the standard protocol. For a
detailed description, please refer to SI Appendix.

For cocultivation experiments, Caki-2 and Vero-B4 cells were grown as mono-
as well as cocultures in different chambers of the same slide. Two biological rep-
licates were generated with one containing Caki-2 cells stained with a live-cell
dye (CellTracker Deep Red, Fisher Chemical, 5 μM, 45 min) prior to cocultivation
to enable the assignment of the correct cell type in the coculture experiment.

THP-1 cells were differentiated to macrophages by stimulation of the mono-
cytes with 200 ng/mL PMA for 24, 48, and 72 h.

Microscopy. Bright-field and fluorescent microscopic images were acquired
with a digital slide scanner (SLIDEVIEW VS200, Olympus). For details, please
refer to SI Appendix.

MALDI-2-MSI. The mass spectrometer and respective methods for the analysis
of single cells employed for t-MALDI-2-MSI at a 2-μm pixel size have been
described in detail previously (39, 44). The mass spectrometer used for top illu-
mination was a timsTOF fleX with MALDI-2 (Bruker Daltonics) described else-
where (42). For a more detailed description, please refer to SI Appendix.

Data Processing. For both Orbitrap and timsTOF measurements, SCiLS Lab
MVS software (v. 2021a Pro, SCiLS Lab/Bruker Daltonics) was used to generate
ion images with a reduced-mass list of the most prominent peaks in the csv or
imzML format (59) for further processing in Python. For a more detailed descrip-
tion, please refer to SI Appendix.

Single-Cell Segmentation. For single-cell segmentation, local maxima in the
fluorescence microscopy DAPI channel were declared as cell seeds and a water-
shed algorithm (skimage 0.14.0) attributed each pixel to either a certain seed or
background based on the fluorescence microscopy fluorescein isothiocyanate
(FITC) channel. For a more detailed description, please refer to SI Appendix.

Coregistration of MALDI-MSI and Microscopy Data and Compilation of
Single-Cell Mass Spectra. For the coregistration, a correlation of binarized
MALDI and binarized microscopy images was used. The MALDI-MSI data were
imported to Python with pyimzML 1.3.0 or directly via csv files (60) and binar-
ized using a threshold signal intensity of anm/z value that is omnipresent in the
cells but absent in the background. The binarized MALDI images were then
resized to an artificial pixel size of 1 μm (e.g., a pixel with 2 × 2 μm would be
transformed into four 1 × 1 μm pixels with the same values). Likewise, the
microscopy images were binarized to cell area and background based on the
FITC channel, and resized to a pixel size of 1 μm as well. Pixels in both binarized
images were set to a value of 1 for MALDI signal/cell area and �1 for back-
ground. The binary MALDI images were used as the kernel for a two-
dimensional correlation (1-μm step size) with the binary microscopy images
(using scipy.signal.correlate2d). MALDI signal pixels matching cell-area pixels
contributed positively as well as background pixels matching background pixels.
Conversely, matches of MALDI signal pixels with background pixels and cell-area
pixels with background pixels contributed negatively to the correlation value.
The position with the maximum correlation was used for a preliminary coregis-
tration. Around this position, all combinations of a set of rotations (0.1° step size
between�2.5 and 2.5°) and positions (1-μm step size in a 50 × 50 μm rectan-
gle) were tested in a brute-force approach and the combination of rotation and
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position for which the correlation of binarized MALDI and microscopy images
was maximal was used for coregistration.

After the coregistration, the original MALDI images (original pixel size and nonbi-
narized) were used to retrieve the MALDI-based MS information for each individual
cell. MALDI pixels that touched two cells were discarded. Pixels that contained only
one cell but also background were treated as if the measured intensities stemmed
just from the cell. Finally, all pixels overlapping with a single cell were summed up
to retrieve a MALDI spectrum for that specific individual cell.

Cell Classification Ground Truth Based on Live-Cell Dye. Selective live-
cell staining of Caki-2 cells allowed the collection of a ground truth for the cocul-
tivated cell cultures based on the average fluorescence intensity per area of each
cell in the fluorescence microscopy Cy5 channel. For a more detailed description,
please refer to SI Appendix.

Statistical Analysis and SVM Classification. Single-cell mass spectra were
normalized to the TIC. Monocultivated cells were used as labeled training data
and randomly partitioned into five equal-sized subsamples for fivefold cross-
validation. The Python package scikit-learn 0.21.3 was used to create a pipeline
of mean centering, scaling to unit variance and a linear SVM with balanced class
weightings. After confirming precise classification accuracies, the pipeline was
retrained on all monocultivated cells and then used to classify the cocultivated
cells. For a description of other statistical tools, please refer to SI Appendix.

Data Availability. All study data and meta information as well as original code
are available from the authors upon request. Raw data for MALDI-MSI and

lipidomics studies are available as a vendor neutral imzML and/or proprietary
file format. In addition, some of the MALDI imaging data reported in this article
have been uploaded to the METASPACE annotation platform to be viewed
directly by the interested reader (https://metaspace2020.eu/project/bien_
cellular_heterogeneity?tab=datasets) (61).
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