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Abstract

Fusion protein RUNX1-ETO (AML1-ETO, RUNX1-RUNX1T1) is expressed as the result of the 8q22;21q22 translocation [t(8;21)],
which is one of the most common chromosomal abnormalities found in acute myeloid leukemia. RUNX1-ETO is thought to
promote leukemia development through the aberrant regulation of RUNX1 (AML1) target genes. Repression of these genes
occurs via the recruitment of the corepressors N-COR and SMRT due to their interaction with ETO. Mechanisms of RUNX1-
ETO target gene upregulation remain less well understood. Here we show that RUNX1-ETO9a, the leukemogenic
alternatively spliced transcript expressed from t(8;21), upregulates target gene Alox5, which is a gene critically required for
the promotion of chronic myeloid leukemia development by BCR-ABL. Loss of Alox5 expression reduces activity of RUNX1-
ETO9a, MLL-AF9 and PML-RARa in vitro. However, Alox5 is not essential for the induction of leukemia by RUNX1-ETO9a in
vivo. Finally, we demonstrate that the upregulation of Alox5 by RUNX1-ETO9a occurs via the C2H2 zinc finger transcription
factor KLF6, a protein required for early hematopoiesis and yolk sac development. Furthermore, KLF6 is specifically
upregulated by RUNX1-ETO in human leukemia cells. This identifies KLF6 as a novel mediator of t(8;21) target gene
regulation, providing a new mechanism for RUNX1-ETO transcriptional control.
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Introduction

Acute myeloid leukemia (AML) is the most prevalent form of

adult leukemia [1]. Chromosomal translocations are found in over

80% of AML, the most common of which is t(8;21), occurring in

up to 40% of AML cases categorized within the French-American-

British (FAB) subtype M2 [2–6]. This translocation results in the

expression of fusion protein RUNX1-ETO. Although sufficient for

in vitro immortalization, RUNX1-ETO requires additional coop-

erating mutations to induce leukemia in vivo [7–9]. RUNX1-ETO

also exists as C-terminally truncated forms due to alternative

splicing at exons 9 (RUNX1-ETO9a) and 11 (RUNX1-ETO11a)

[10,11]. Both isoforms lack the NHR4/MYND domain and are

expressed in human t(8;21)+ leukemia patient samples, and

RUNX1-ETO9a (RE9a) strongly promotes leukemia development

in mice [10,11].

RUNX1-ETO (RE) is known to be a transcriptional repressor

through its recruitment of the corepressors N-CoR and SMRT

and their associated histone deacetylases [12–14]. RE can also

activate promoters cell-specifically, however it is unclear whether

such gene activation occurs in a direct or indirect fashion [15].

The mechanisms by which RE upregulates its target genes have

been less thoroughly investigated, although recent studies have

utilized ChIP-chip and ChIP-seq to identify putative RE target

genes to examine their regulation and importance in leukemia

development [16–18]. One interesting recent finding is that RE

upregulates at least some of its target genes via its interaction with

the histone acetyltransferase p300, and that loss of this interaction

significantly delays leukemia onset [19]. Additionally, our group

recently reported that RE9a recruits PRMT1 to some RE9a-

activated genes, leading to H3K4 methlyation, H3K9/14 acety-

lation and transcriptional activation [20]. Further mechanisms of

gene upregulation remain to be investigated.

One gene strongly upregulated in t(8;21) leukemia is ALOX5,

encoding an enzyme required for the synthesis of leukotrienes,

which are small, lipid-derived signaling molecules that trigger

pathways implicated in both inflammation and cancer, such as

proliferation, cell survival and angiogenesis [21–24]. In fact,

inhibitors of the ALOX5 pathway have shown promise in treating

a number of epithelial cancers [25–27]. In addition, ALOX5 has

previously been shown to function in both normal hematopoiesis

and leukemia development. Using a human CD34+ cell model, it

has been demonstrated that leukotrienes both increase prolifera-

tion and exert an anti-apoptotic effect on human hematopoietic

stem cells [28]. More recently, it was further demonstrated that

ALOX5 is required for the induction of chronic myeloid leukemia
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(CML) by BCR-ABL, and a specific ALOX5 inhibitor is able to

significantly delay CML onset when used either alone or in

combination with the BCR-ABL kinase inhibitor imatinib [29].

Despite significant advances in our molecular understanding of

AML, frontline treatment for this disease is still induction and

consolidation chemotherapy, similar to the protocol established 30

years ago, and overall survival for older patients has not improved

over the same time period [30,31]. Furthermore, although t(8;21)+
AML is considered to have a favorable prognosis for chemother-

apeutic response, the 10-year overall survival for patients with this

cytogenetic signature is only 61% [32]. New molecular targets and

a better understanding of the mechanisms of RUNX1-ETO-

mediated transcriptional changes leading to disease development

are needed for safer and more effective treatment of this disease.

Here we investigate the role of ALOX5 in AML development,

establishing ALOX5 as an upregulated gene in t(8;21) leukemia that

is also important in cellular dysregulation by multiple oncogenic

fusion proteins. We further discover that RE9a upregulates Alox5

via the C2H2 zinc finger transcription factor Krppel-like factor 6

(KLF6), a protein critically required for early hematopoiesis [33].

Finally, KLF6 itself is upregulated by both RE and RE9a,

establishing a new mechanism for the upregulation of target genes

by t(8;21) fusion proteins and a new pathway to study in AML

development.

Results

Upregulation of ALOX5 in t(8;21)-associated acute
myeloid leukemia

In order to understand the mechanism by which RUNX1-ETO

(RE) contributes to t(8;21) acute myeloid leukemia (AML)

development, our group recently conducted gene expression

microarray and ChIP-chip analyses to identify potential disease-

related RE target genes [18]. One gene confirmed to be highly

upregulated and specifically detected by ChIP in the RE9a murine

leukemia model is Alox5. The detected ChIP peak is 47 kilobases

downstream of the transcription start site in intron 9. ALOX5 is

required for CML development due to the depletion of leukemia

stem cells in the absence of Alox5 expression [29]. To determine

whether ALOX5 is also upregulated in human t(8;21) AML, we

analyzed publicly available microarray data of AML M2 patients

with or without the 8;21 translocation [34]. As shown in

Supporting Figure S1A, ALOX5 expression is approximately 2.3

fold higher in t(8;21)+ patients than in patients not harboring the

translocation, and both patient groups had elevated ALOX5 levels

relative to normal CD34+ control samples. This upregulation

correlates very well to the Alox5 upregulation seen in the RE9a

mouse model (Figure 1A).

As an initial step in determining the molecular mechanism by

which Alox5 is upregulated, we cloned a ,1.9 kb Alox5 promoter

fragment (bp 21783 to +146) upstream of a luciferase reporter.

The vector backbone of this reporter contained 6 RUNX1

consensus binding sites which were mutated to prevent non-

specific regulation by RE9a due to binding at these sites [15]. In

promoter-luciferase transactivation studies, the Alox5 promoter is

strongly upregulated by RE9a (Figure 1B). This promoter

fragment contains two consensus RUNX1 binding sites

(TGTGGT), indicating that RE9a may bind directly to the

promoter at these sites to affect gene expression. However, when

these sites are mutated either individually or together, RE9a is still

able to upregulate the reporter (Figure 1B). Furthermore, when the

promoter region is truncated to exclude these two RUNX1

binding sites, there is no decrease in the activation of the Alox5

promoter by RE9a (Figure 1C), implying that RE9a either does

not upregulate Alox5 directly or functions via binding at a non-

canonical RUNX1 binding site.

RE9a cooperates with KLF6 to upregulate Alox5
To determine if RE9a upregulates Alox5 through an imperfect

RUNX1 binding site, we examined the truncated promoter from

Figure 1C and found 5 motifs that differ from the consensus

RUNX1 binding site (TGYGGT) by a single nucleotide

(Figure 2A). We then serially truncated this promoter fragment

to examine which regions are important for both the basal and

RE9a-inducible expression of Alox5. When truncated from 2366

to 286, we find a significant increase in the basal activity,

indicating the presence of a basal cis repressive element in this

region (Figure 2B). When truncated from 255 to 230, there is a

large reduction in basal activity, which is unsurprising as this

truncation removes an SP1 binding site (GGGCGG) known to be

important for Alox5 expression [35]. When examining inducible

activity, however, only the shortest truncation shows a significant

loss of promoter activation upon addition of RE9a (Figure 2C),

implying that sequences between 230 and +57, which is the

region typically considered to comprise the core promoter for gene

expression [36], play an important role in Alox5 regulation by

RE9a.

Upon closer examination of this region, we identified a

GGGTG motif (reverse complement: CACCC) which is known

to be a binding site for KLF6, a zinc finger DNA-binding

transcription factor that was previously identified as an important

cell-specific positive regulator of Leukotriene C4 Synthase (LTC4S)

expression, which functions downstream of ALOX5 in the

synthesis of certain leukotrienes [37]. Although the CACCC motif

is a binding site for most KLF family members [38], since KLF6 is

both an important hematopoietic regulator and induces expression

of another member of the ALOX5 pathway [33,37], we decided to

focus on KLF6 and hypothesized that RE9a may function through

KLF6 to regulate Alox5 expression. Interestingly, we found that

KLF6 is both independently capable of activating the Alox5

reporter and, when introduced in combination with RE9a, the

activation is greater than the sum of the effect of RE9a and KLF6

alone (Figure 3A). This demonstrates that RE9a can indeed

cooperate with KLF6 to upregulate Alox5 expression. To examine

whether KLF6 is required for RE9a regulation of Alox5, we

utilized two different shRNAs targeting KLF6 that decrease its

endogenous expression by approximately 50% (Figure 3B). Both of

Author Summary

The 8;21 translocation is one of the most common genetic
abnormalities present in acute myeloid leukemia (AML).
This translocation causes expression of the fusion gene
RUNX1-ETO and its splicing isoforms. RUNX1-ETO proteins
then reprogram the transcriptional landscape of the cell
and cooperate with further mutations to induce leukemia
development. In this study, we examine the transcriptional
control of the RUNX1-ETO target gene Alox5. Although
Alox5 appears to be dispensable for AML development in a
mouse model, it is required for some RUNX1-ETO
functions. In studying the regulation of Alox5 expression,
we have discovered a novel RUNX1-ETO partner protein,
KLF6, which is both upregulated by RUNX1-ETO and
participates in RUNX1-ETO gene regulation. This provides
new insight into the under-studied mechanisms of RUNX1-
ETO target gene upregulation and identifies KLF6 as a
potentially important protein for further study in t(8;21)
AML development.

RUNX1-ETO9a Mediates Alox5 Upregulation via KLF6
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these shRNAs are able to significantly reduce the ability of RE9a

to activate the Alox5 promoter, demonstrating that RE9a does

require KLF6 for full regulation of Alox5 (Figure 3C). Possible

explanations for an incomplete loss of reporter induction after

KLF6 knockdown include an incomplete loss of KLF6 expression

(Figure 3B) and that RE9a may function with other factors in

addition to KLF6 in the upregulation of Alox5. Furthermore, when

the KLF6 binding motif was mutated to a sequence previously

shown to disrupt KLF6-mediated gene activation [37], the

upregulation of Alox5 by both RE9a and KLF6 was significantly

reduced (Figure 3D). Interestingly, although the specific KLF6

binding site GGGTG found in the murine promoter is not

conserved in humans, a GC-box (GGGCGGG) is present at this

site, which also allows KLF6 binding [39]. Additionally, the

Figure 1. Upregulation of Alox5 in acute myeloid leukemia and by RUNX1-ETO9a. (A) Normalized log2 expression of Alox5 in control or
RE9a-leukemic murine lin2c-Kit+ bone marrow cells. mRNA transcript levels were normalized to Gapdh and control was set to 1. Data show averages
and standard deviations from 3 independent mice each. (B) RE9a regulation of mouse Alox5 promoter-luciferase reporter. Numbers indicate base pair
relative to transcription start site. Two RUNX1 binding sites (TGTGGT) were either wildtype or mutated to TGTtag to abrogate RE9a binding [54].
Indicated promoter-luciferase reporter was co-transfected with control (Ctrl) or RE9a plasmid and expression was normalized to Renilla luciferase.
Wildtype promoter+control set to 1. (C) RE9a regulation of truncated mouse Alox5 promoter-luciferase reporter. Luciferase assay performed as
described in (B), with 21783 to +146 promoter+control set to 1.
doi:10.1371/journal.pgen.1003765.g001

RUNX1-ETO9a Mediates Alox5 Upregulation via KLF6
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human ALOX5 promoter does contain 7 CACCC or GGGTG

motifs within 500 bp of the transcription start site, indicating that

KLF6 function in human ALOX5 regulation may be conserved

through these sites. Supporting this possibility, both exogenous

Flag-KLF6 and HA-RE9a display enrichment at the ALOX5

promoter region in K562 cells when examined by ChIP, although

endogenous RUNX1 does not (Figure S2). Finally, since RE9a

functions with KLF6 in the regulation of gene expression, we were

interested to determine whether RE9a and other RUNX1 proteins

were capable of interacting with KLF6 in the same complex.

Using coimmunoprecipitation, we find that KLF6 is indeed

capable of interacting with both RUNX1 and the fusion proteins

RUNX1-ETO and RE9a, which is the first report of such

interaction (Figure 3E). However, in all conditions tested we can

only detect over-expressed, exogenous KLF6 with available

antibodies and therefore could not confirm the interactions

between KLF6 and these proteins at the endogenous level. We

also confirm the previously reported interaction between KLF6

Figure 2. Analysis of Alox5 promoter regulation by RE9a. (A) Schematic of Alox5 promoter-luciferase reporter with motifs differing from
RUNX1 consensus binding site (TGYGGT) indicated. Bases differing from consensus site labeled in lowercase. Transcription factor SP1 binding site also
indicated. Numbers represent base pairs relative to transcription start site. (B) Basal regulation of Alox5 promoter-luciferase truncations. Indicated
reporters were transfected in the absence of RE9a and expression was normalized to Renilla luciferase and the 2507 to +146 construct was set to 1.
* = p,0.01 relative to 2507 reporter. (C) Inducible regulation of Alox5 promoter-luciferase by RE9a. Indicated reporters were co-transfected with
control or RE9a and expression was normalized to Renilla luciferase. Each control (Ctrl) transfection normalized to 1. p-value relative to 2507 reporter
+RE9a.
doi:10.1371/journal.pgen.1003765.g002

RUNX1-ETO9a Mediates Alox5 Upregulation via KLF6
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Figure 3. Alox5 regulation by RE9a and KLF6. (A) Coregulation of Alox5 reporter by RE9a and KLF6. Alox5 2507 to +146 reporter co-transfected
with RE9a, KLF6 or both. Expression was normalized to Renilla luciferase and control (Ctrl) was set to 1. (B) Knockdown of endogenous KLF6 via
shRNA. K562 cells were transfected with control or one of two independent shRNAs targeting KLF6 and analyzed by qRT-PCR for KLF6 expression.
Expression values were normalized to GAPDH and control transfected value was set to 1. Data show averages with standard deviations of 3
independent transfections. (C) Knockdown of KLF6 impairs ability of RE9a to upregulate Alox5 promoter-luciferase reporter. K562 cells pre-transfected

RUNX1-ETO9a Mediates Alox5 Upregulation via KLF6
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and endogenous SP1 [39]. Given that RUNX1-ETO is also able

to interact with SP1 via the Runt domain [40] (which is common

to wildtype RUNX1), this raises the possibility that KLF6, SP1

and Runt domain-containing proteins may function together in

gene regulation and provides direction for future transcriptional

studies.

KLF6 is specifically upregulated in t(8;21)+ cells
To determine whether KLF6 is also a target of RE gene

regulation in human AML, we again examined available patient

data and find that KLF6 expression is specifically higher in t(8;21)+
leukemia samples (Figure S1B and [34]). KLF6 is also upregulated

in K562 cells 24 hr after transfection with RE9a (Figure 4A),

supporting induction of KLF6 as a mechanism of Alox5 upregula-

tion by RE9a in the above luciferase studies. Furthermore, when

comparing mRNA levels in AML M2 human leukemia cell lines,

the t(8;21)+ cell lines SKNO and Kasumi-1 express significantly

higher levels of KLF6 than does the t(8;21)- cell line HL60

(Figure 4B). Finally, when RE or RE9a are introduced retrovirally

into HL60 cells, there is a significant and dramatic upregulation of

KLF6 (Figure 4C). This upregulation is greater for RE than RE9a,

which agrees with previous findings that RE more strongly

dysregulates gene expression than its leukemic isoforms [41,42].

Collectively, these data demonstrate that KLF6 is a target of t(8;21)

gene upregulation.

Lack of Alox5 impairs cellular dysregulation by multiple
oncogenic fusion proteins

To examine the potential functional implications of Alox5 in

t(8;21)-induced self-renewal, we performed serial replating assays

after retroviral transduction of wildtype and Alox5-/- murine bone

marrow cells. In this assay, wildtype cells transduced with

retrovirus encoding RE9a-IRES-Puror display increased self-

renewal and maintain replating capacity through at least 13

weeks in weekly replating culture, whereas control cells transduced

with a vector encoding the puromycin resistance gene alone (MIP)

rapidly lose colony forming ability and stop replating after about 3

weeks (Figure 5A). Alox5-/- cells transduced with MIP alone

behave similar to their wildtype counterparts and display limited

self-renewal. Interestingly, although RE9a-infected Alox5-/- cells

initially replate longer than MIP control cells, after approximately

5 weeks in culture they begin to produce far fewer colonies than

RE9a-infected wildtype cells and eventually lose replating capacity

altogether (Figure 5A). These Alox5-/- cells also form smaller

colonies as compared to wildtype (Figure 5B) and stain more

positively for the myeloid differentiation marker CD11b when

examined by flow cytometry (Figure 5C; Wildtype: 26–36%;

Alox5-/-: 56–64%). These data indicate that lack of Alox5 impairs

the ability of RE9a to increase murine hematopoietic cell self-

renewal, perhaps in part by altering cellular differentiation.

To determine whether the self-renewal defects observed in Alox5-/-

cells were specific to RE9a or were more broadly applicable, we

with control or KLF6 shRNA were co-transfected with Alox5 2507 to +146 reporter and RE9a. Expression was normalized to Renilla luciferase and
control +RE9a was set to 100. (D) Mutation of KLF6 binding site significantly decreases activation of Alox5 promoter by RE9a and KLF6. Wildtype or
KLF6 binding site (b.s.)-mutated (GGGTG to GATCG) Alox5 230 to +146 reporter co-transfected with RE9a or KLF6. Expression was normalized to
Renilla luciferase. Control (Ctrl) was set to 1. p-values are compared to wildtype reporter co-transfected with corresponding transgene. (E) KLF6 can
interact with RUNX1, RE and RE9a. KLF6 and RUNX1, RE or RE9a were co-transfected into K562 cells, and lysates were immunoprecipitated with
control or KLF6 antibody. Also shown is interaction with endogenous SP1. a-tubulin serves as a loading control for the whole cell lysate. After IP, KLF6
appears as multiple bands likely because KLF6 is expressed endogenously as multiple splicing isoforms which are enriched to more easily detectable
levels by immunoprecipitation [55].
doi:10.1371/journal.pgen.1003765.g003

Figure 4. Regulation of KLF6 by RUNX1-ETO and RE9a. (A) Expression of KLF6 in control- (Ctrl) or RE9a-transfected K562 cells. RE9a or empty
vector was co-transfected into K562 cells along with a GFP-expressing vector to determine transfection efficiency. KLF6 mRNA levels were normalized
to GAPDH with Ctrl set to 1, and samples were then normalized to account for transfection rate by percent GFP-expressing cells as determined by
flow cytometry. Data show averages and standard deviations of three independent transfections. (B) Expression of KLF6 in HL60 [t(8;21)-negative] and
SKNO and Kasumi-1 [t(8;21)-positive] cell lines. KLF6 mRNA levels were normalized to GAPDH and HL60 was set to 1. Data show averages and standard
deviations of 3 independent RNA isolations. (C) Expression of KLF6 in control-, RUNX1-ETO- or RUNX1-ETO9a-transduced HL60 cells. Following 2
rounds of retroviral transduction, KLF6 levels determined as in (B), with control-transduced cells (Ctrl) set to 1. Data display averages and standard
deviations of 3 independent transductions.
doi:10.1371/journal.pgen.1003765.g004

RUNX1-ETO9a Mediates Alox5 Upregulation via KLF6
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Figure 5. Alox5 involvement in hematopoietic cell self-renewal. (A) Alox5 required for long-term self-renewal of hematopoietic cells by RE9a.
Colony numbers from wildtype or Alox5-/- bone marrow cells transduced with control (MIP) or RE9a retrovirus and serially replated in methylcellulose.
Data shown are averages with standard deviations of a representative dataset. Four independent assays were performed. (B) Typical colony images
after 9th replating from (A) taken using Nikon Eclipse TS100 microscope with 26/0.06 objective lens and Nikon DS Camera Control Unit DS-U2 system.
(C) Flow cytometric analysis of replated cells from (A). Cells from 3rd, 6th and 9th replatings were stained for myeloid lineage markers Gr-1 and CD11b.
Representative data from four independent assays shown. (D) and (E) Lack of Alox5 decreases colony formation potential of hematopoietic cells
transduced with MLL-AF9 and PML-RARa. Wildtype or Alox5-/- bone marrow cells were transduced with MIP and MLL-AF9 (D) or PML-RARa (E)
retrovirus and serially replated in methylcellusose. Data shown are averages and standard deviations of representative datasets. Three independent
assays were performed.
doi:10.1371/journal.pgen.1003765.g005

RUNX1-ETO9a Mediates Alox5 Upregulation via KLF6
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performed similar replating assays using the oncogenic fusion proteins

MLL-AF9, resulting from t(9;11) and most frequently occurring in

acute monoblastic leukemia (AML M5) [43], and PML-RARa,

resulting from t(15;17) and observed in acute promyelocytic leukemia

(APL/AML M3) [44]. Notably, decreases in colony numbers as

compared to wildtype were observed after transduction of Alox5-/-

cells with both MLL-AF9 and PML-RARa (Figure 5D–E), demon-

strating that loss of Alox5 impairs the increased self-renewal capability

induced by multiple fusion oncoproteins.

It was previously reported that although Alox5 is required for

induction of CML by BCR-ABL, lack of Alox5 in hematopoietic

stem cells in the absence of BCR-ABL did not result in any

significant hematopoietic defects [29]. Having observed that lack

of Alox5 also impaired increased self-renewal induced by RE9a,

MLL-AF9 and PML-RARa, we next examined whether exoge-

nous expression of Alox5 itself had any effect. To test this, we

transduced wildtype bone marrow cells with retrovirus encoding

murine Alox5 and performed serial replating assays. As shown in

Supporting Figure S3, exogenous Alox5 expression conferred no

replating advantage relative to MIP-transduced control cells,

demonstrating that while ALOX5 aids in increased self-renewal by

multiple oncogenes, it is incapable of inducing this increase on its

own.

RE9a-expressing Alox5-/- cells are capable of leukemia
induction

Alox5-/- hematopoietic cells transduced with multiple fusion

oncogenes showed clear defects in self-renewal in vitro (Figure 5). It

is important to determine whether these defects are also present in

vivo. To investigate this possibility, we harvested wildtype and

Alox5-/- fetal liver cells, retrovirally transduced them with virus

encoding either RE9a-IRES-GFP or GFP alone (MigR1) and

transplanted them into lethally irradiated recipient mice. As

expected, neither wildtype nor Alox5-/- cells transduced with

MigR1 induced leukemia (Figure 6A). In contrast, both wildtype

and Alox5-/- cells expressing RE9a induced leukemia in recipient

mice, with a median latency of approximately 30 weeks

(Figure 6A). Both wildtype and Alox5-/- cells were also able to

induce secondary and tertiary leukemias in further rounds of

transplantations to new recipient mice (data not shown).

Additionally, leukemic mice of both genotypes displayed similar

blast cells in the peripheral blood, bone marrow and spleen

(Figure 6B).

We have previously observed that RE9a-leukemic mice display

a phenotype in their myeloid progenitor populations, in which the

normal distribution of common myeloid progenitors (CMPs),

granulocyte/monocyte progenitors (GMPs) and megakaryocyte/

erythroid progenitors (MEPs) is lost, and a single population arises

that is similar in immunophenotype to MEPs, but has increased

expression of Fcc receptors II/III (FccRII/III) by flow cytometry

[10]. Similar leukemia cells were also reported in an Inv(16) AML

mouse model and termed abnormal myeloid progenitors [45]. To

determine whether Alox5-/- leukemic cells also display this

aberrant progenitor profile, we first examined untreated, non-

leukemic bone marrow cells from wildtype and Alox5-/- mice and

observed normal distributions of the 3 progenitor populations

(Figure S4). We next checked the progenitor populations from

leukemic mice. Although there were variations among both

wildtype and Alox5-/- leukemic mice in terms of mean fluores-

cence intensity of GFP expression and percent of cells that were

Sca-1 positive, we found that leukemic mice transplanted with

either genotype of RE9a-infected cells displayed a similar

abnormal myeloid progenitor immunophenotype (Figure 6C) as

compared to controls (Figure S4). Some Alox5-/- leukemic mice

displayed smaller GMP compartments than their wildtype

counterparts (Figure 6C), but as the differences varied from

mouse to mouse and had no effect on leukemia development

(Figure 6A), we do not interpret this as being an important

functional difference.

These results demonstrate that although loss of Alox5 results in

self-renewal defects in vitro, other factors exist in vivo that allow

RE9a to overcome these defects and promote leukemia develop-

ment.

Discussion

In order to design better and more specific treatments for AML,

we need a more thorough understanding of the underlying

molecular mechanisms of cellular transformation that lead to

disease. The 8;21 translocation that causes expression of the

RUNX1-ETO DNA-binding fusion proteins is highly associated

with AML M2, but its mechanisms of gene dysregulation are not

completely understood. This is especially true for upregulated RE

target genes. Here, we demonstrate that Alox5 is an upregulated

t(8;21) target gene and establish for the first time that KLF6

cooperates in transcriptional dysregulation with leukemia fusion

proteins during target gene upregulation. Although the Alox5

promoter is activated only weakly by wildtype RUNX1, both full-

length RUNX1-ETO and its splicing isoform RUNX1-ETO9a

strongly induce promoter activity, demonstrating that Alox5 is

upregulated by multiple t(8;21) fusion proteins (Figure S5).

ALOX5 is a promising molecular target for the treatment of

CML, as it has been demonstrated that a small molecule inhibitor of

ALOX5 significantly delays leukemia onset in mice [29]. We show

here that lack of ALOX5 also leads to in vitro defects in

hematopoietic cells transduced by RE9a, MLL-AF9 and PML-

RARa, all of which are oncogenes involved in AML development.

However, these results did not translate in vivo, as Alox5-/- cells

infected with RE9a are still able to induce leukemia in mice

(Figure 6A), and a similar result was obtained in a pilot experiment

using an MLL-AF9 model of AML (data not shown). Additionally,

no significant differences were observed in the differentiation states

of wildtype and Alox5-/- leukemia cells, either in analysis of their

progenitor populations or expression of lineage markers Gr1,

CD11b, CD4 and B220 or progenitor markers c-Kit and Sca-1

(Figure 6C and data not shown). It is not entirely clear why the

importance of ALOX5 demonstrated in vitro is not observed in vivo,

although this difference in phenotype between the two systems has

been observed previously. One such example is RUNX1-ETO

itself, which induces a significant increase in hematopoietic self-

renewal yet requires cooperating mutations to induce leukemia in

vivo [46]. Additionally, lack of Stat5 expression blocks the replating

potential of the AML-inducing oncogene MOZ-TIF2 but only

delays the onset of AML in vivo [47]. We observe a similar

discrepancy for the requirement of Alox5 between the in vitro and in

vivo systems, for which multiple mechanisms may exist. One

possibility arises from the fact that there are a limited number of

factors present in the in vitro culture conditions. Additional factors or

different concentrations of factors present in vivo may allow for

Alox5-/- cell survival and transformation. In a CML model, BCR-

ABL-expressing Alox5-/- leukemia stem cells (LSCs) display an

increased apoptotic rate as compared to wildtype LSCs, indicating

the potential importance of the stem cell population for Alox5 and

leukemia development [48]. Given this importance, it is possible

that interactions between RE9a-infected stem cells and the niche in

vivo allow them to survive and self-renew, whereas this interaction is

absent in vitro. Another possible cause is cell-specific differences, as

total bone marrow cells were used in vitro and fetal liver cells were
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used for the transplantation experiments. Recent studies indicate

that the fetal liver and adult bone marrow contain differing ratios of

hematopoietic stem cells (HSCs) with unequal differentiation

potential, with the fetal liver specifically enriched for HSCs with

long-term myeloid differentiation potential [49]. It is possible that

different subtypes of HSCs respond differently to the introduction of

RE9a, leading to the observed results. In addition, it is also possible

that ALOX5 is required more by RE than RE9a in leukemia

development, especially given that RE more strongly upregulates

KLF6 expression. Other plausible possibilities also exist. Therefore,

the available evidence suggests that ALOX5 is not a suitable

molecular target for the treatment of t(8;21) AML alone. Based on

our replating data, it appears that ALOX5 does play a role in RE-

induced increases in self-renewal. However, as this does not

translate to a delay in leukemia onset in vivo, targeting ALOX5

alone is likely insufficient to generate therapeutic benefit, although

its inhibition in combination with other treatments may show

efficacy and this remains to be examined.

Figure 6. Loss of Alox5 does not block RE9a leukemia induction in vivo. (A) Survival of mice receiving wildtype or Alox5-/- fetal liver cells
transduced by control (MigR1) or RE9a retrovirus. Number of mice in each cohort shown at right. WT median survival: 30.71 weeks; Alox5-/- median
survival: 29.43 weeks; p = 0.39. (B) Presence of hematopoietic blast cells in tissues of mice transplanted with RE9a-transduced wildtype or Alox5-/-
cells. Peripheral blood smears and cytocentrifugation of bone marrow and spleen cells were stained with Wright-Giemsa solutions. (C)
Immunophenotype of myeloid progenitor cells in wildtype and Alox5-/- leukemias. Distribution of EGFP+Lin2Sca-12c-Kit+ leukemic cells harvested
from spleen shown based on expression of CD34 and Fcc receptors II/III (FccRII/III). At least 4 mice analyzed per genotype, with representative
distributions shown.
doi:10.1371/journal.pgen.1003765.g006
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It is well established that RE represses target gene expression via

the interaction of the ETO domain with N-CoR and SMRT and

their associated histone deacetylases [50]. The mechanism by

which RE upregulates gene expression is less well understood,

although it was recently reported that the interaction between RE

and p300 accounts for increased expression of at least some RE

target genes and leukemogenicity [19]. Our current study has

identified RE and RE9a as a novel positive transcriptional

regulators of Alox5. Interestingly, the data indicate that regulation

of Alox5 by RE9a is indirect, as no peak of RE9a binding was

observed in the Alox5 promoter region when performing ChIP-

chip on RE9a-leukemia cells [18], and no RUNX1 binding motifs

are present in the RE9a-responsive region of the Alox5 promoter

(Figure 2). We further demonstrate that KLF6 is a critical factor

for induction of the Alox5 promoter in cooperation with RE9a. To

the best of our knowledge, this is the first report demonstrating

both KLF6 regulation of Alox5 expression and the involvement of

KLF6 in gene upregulation by t(8;21) fusion proteins. It will be

important to examine whether this effect is specific to Alox5 or if

KLF6 more broadly participates in t(8;21)-mediated transcription-

al alterations. If future work determines that KLF6 does in fact

participate in the regulation of disease-related RE and RE9a target

genes, KLF6 itself may become an interesting target for future

study in the treatment of AML.

The involvement of KLF6 here is especially interesting in light

of the fact that KLF6 expression, like ALOX5, is also significantly

upregulated in human AML M2 t(8;21)+ patient samples (Figure

S1 and [34]). Therefore, KLF6 should be widely available in these

leukemia cells to participate with t(8;21) fusion proteins in

transcriptional regulation. We further demonstrate that increased

KLF6 expression is induced by introduction of both RE and RE9a

into the non-t(8;21) AML M2 cell line HL60 (Figure 4).

Interestingly, according to published ChIP-seq data, RUNX1-

ETO binds multiple sites within and nearby the KLF6 gene,

indicating it may be a direct RUNX1-ETO target gene and this

should be more closely studied in the future [16,17].

Finally, we demonstrate for the first time that KLF6 interacts

with RUNX1 and the Runt domain-containing t(8;21) fusion

proteins. It is intriguing to note the potential implications of this

interaction since, as with Runx1, knockout of Klf6 in mice results in

embryonic lethality with severe defects in differentiation across all

hematopoietic lineages [33]. It will be interesting to examine a

potential role of RUNX1 and KLF6 cooperation in early

hematopoietic development. For instance, does RUNX1, like

RUNX1-ETO9a, also co-regulate gene expression with KLF6 and

if so, what are the functions of these genes in early hematopoiesis?

Do KLF6 and RUNX1 function partially redundantly in

hematopoietic development? Furthermore, KLF6 is only 1 of at

least 9 KLF family members with important roles in blood cell

function and disease development. KLFs 4, 5 and 10 are

important in T-cell activation and trafficking and KLF4 may

function as a tumor suppressor in adult T-cell leukemia, KLF2

promotes memory B-cell differentiation and KLF3-deficient mice

display a myeloproliferative disorder [38]. It will be interesting

then to determine whether RUNX1 or t(8;21) fusion proteins work

with any of these other KLF family members in gene expression

and normal or disease-related blood cell development.

Materials and Methods

Ethics statement
C57BL/6J wildtype and Alox5-/- mice used in this study were

housed in a pathogen-free facility. All procedures were performed

in strict accordance with the recommendations of the Institutional

Animal Care and Use Committee of the University of California,

San Diego, CA, and every effort was made to minimize suffering.

Human and mouse gene expression
Human AML patient data [34] was analyzed using GraphPad

Prism4 (GraphPad Software). For human cell line KLF6 expres-

sion, total RNA was harvested from 106 untreated HL60, Kasumi-

1 and SKNO cells using the RNeasy Mini Kit (Qiagen).

Retrovirally transduced HL60 cells were infected twice with virus

produced by co-transfection of packaging vector and MSCV-

IRES-Puror control or containing RUNX1-ETO in 293T cells.

Infected HL60 cells were selected 2 days in 2 mg/ml puromycin to

enrich for infected cells. 1 mg of RNA was used to generate cDNA

using oligo (dT) and random primers (qScript cDNA SuperMix,

Quanta Biosciences), and subject to qPCR on an iCycler (BioRad)

using KAPA SYBR FAST Universal 2X qPCR Master Mix

(KAPA Biosystems). KLF6 primer sequences: forward: TTCT-

CGGCGCTGCCGTCTCT, reverse: TCGCCAATGGGGT-

CGGAGGTA. For mouse Alox5 expression, lin2c-Kit+ hemato-

poietic cells were enriched from wildtype or leukemic mice using

the Lineage Cell Depletion Kit and CD117 MicroBeads (Miltenyi

Biotec) RNA extraction, cDNA synthesis and qPCR performed as

above. Alox5 primer sequences: forward: CTCTTCCAAGCTC-

GAAGTGC, reverse: TGATGCTACCGAGTGACGAG.

Luciferase reporter assay
The indicated Alox5 promoter regions were cloned into pGL2

vector (Promega) with the six consensus RUNX1 binding sites in

the vector backbone mutated from TGTGGT to TGTtag

(pGLX2) to prevent binding of RE9a to the vector [15]; 106

K562 cells were nucleofected (Lonza) with 5 mg promoter-firefly

luciferase DNA, 100 ng Renilla control luciferase DNA, and 2–

3 mg p3xFlag-CMV-7.1 vector (Sigma-Aldrich) alone or contain-

ing RUNX1-ETO, RUNX1-ETO9a or KLF6 cDNA and

analyzed 24 hr-post nucleofection using the Dual-Luciferase

Reporter Assay System (Promega) on a Monolight 3010 (BD

Biosciences). Unless otherwise stated, luciferase data show

averages with standard deviations of 3 independent experiments,

each performed in duplicate. For knock-down studies, 106 K562

cells were first transfected with 6 mg pSUPER.retro.puro (Oli-

goengine) containing shRNA, selected 2 days in 2 mg/ml

puromycin, and then transfected and analyzed as above. Hairpin

sense-strand sequences: shKLF6#1: CGGCTGCAGGAAAGTT-

TAC; shKLF6#2: GGAGAAAAGCCTTACAGAT. Significance

was determined by Student t-test.

Immunoprecipitation and antibodies
K562 cells were nucleofected with 5 mg each p3xFlag-CMV-

7.1-KLF6 and pcDNA6-HA-RUNX1, RUNX1-ETO or

RUNX1-ETO9a. Pre-cleared lysates were incubated with rotation

overnight at 4uC with 1 mg control or KLF6 antibody (Santa Cruz

Biotechnology) and washed 5 times with lysis buffer [51] prior to

SDS-PAGE. Antibody suppliers: a-tubulin (Covance), HA

(Roche), SP1 (Santa Cruz), ALOX5 (Abcam).

Retroviral transduction and replating assay
Alox5-/- mice[52] were purchased from Jackson Laboratory.

Retroviral transduction and replating assays were performed as

previously described [20]. Briefly, total bone marrow cells from

wildtype or Alox5-/- mice were transduced with retrovirus MSCV-

IRES-Puror (MIP) [53] vector control or MIP containing HA-

RUNX1-ETO9a, murine HA-Alox5, MLL-AF9 or PML-RARa
cDNAs, as indicated. Infected cells were selected 1 week in 1 mg/
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ml puromycin in M3434 (STEMCELL Technologies). Ten

thousand cells from each transduction were replated in duplicate

every 7 days after colony and cell counting.

Fetal liver cell isolation, transduction, transplantation and
flow cytometry

These assays were performed as previously described [10].

Briefly, fetal liver cells were harvested from day E13.5–16.5

wildtype or Alox5-/- mouse embryos and transduced twice with

MigR1 or MIG-RUNX1-ETO9a retrovirus. Lethally irradiated

(900 rad) wildtype recipient mice were intravenously transplanted

with the transduced fetal liver cells. Gr-1, CD11b, Sca-1, c-Kit,

CD34 and FccRII/III fluorescently conjugated antibodies were

purchased from eBioscience. Staining and analyses were per-

formed as previously described [10]. Kaplan-Meier survival curves

and statistical analyses were performed using GraphPad Prism4.

Chromatin immunoprecipitation
ChIP assay was performed as described previously [20]. Cell

lines were generated by retroviral transduction of K562 cells with

MIP-HA-RE9a or MIP-Flag-KLF6. Each ChIP reaction con-

tained chromatin from 107 cells and 5 mg antibody. Antibodies

used were: HA (Santa Cruz) for RE9a, Flag (Sigma-Aldrich) for

KLF6, and N-terminal RUNX1 [10] for endogenous RUNX1 in

the absence of exogenous RE9a and KLF6. Following immuno-

precipitation, enrichment of regions of the ALOX5 promoter was

measured by qPCR using the following primers (numbers indicate

nucleotides relative to transcription start site): ALOX5-A (2522 to

2234) forward: AGCCTCTGTGCTCCAGAATCCATC, re-

verse: CGTTCACTCGTTCTCTCCTGAATTG; ALOX5-B

(2259 to 279) forward: CAATTCAGGAGAGAACGAGT-

GAACG, reverse: GCAGTACTTCTCTCCCACTCTTCACG;

ALOX5-C (+149 to +596) forward: CACTGACGACTACATC-

TACCTCAGCCTC, reverse: ATCTTGAAGTGGAGGG-

GAAACCTTG, and enrichment was normalized to IgG control.

Supporting Information

Figure S1 ALOX5 and KLF6 expression in human AML

patients. (A) Normalized log2 expression of ALOX5 in human

blast and mononuclear cells from bone marrow aspirates of AML

subtype M2 patients with or without t(8;21) and in normal patient

CD34+ samples. Patient data is from Valk et al [34]. Each point

represents an individual patient sample. (B) Normalized log2

expression of KLF6 in human AML subtype M2 patients as

described in (A). n.s. = not significant. Patient samples were 80–

100% blast cells at the time of analyses.

(PDF)

Figure S2 RE9a and KLF6 bind the human ALOX5 promoter.

Following ChIP, exogenous HA-RE9a and Flag-KLF6 show

enrichment compared to IgG control at three locations within the

ALOX5 promoter. Endogenous RUNX1 shows no enrichment.

Locations of three PCR amplicons relative to transcription start

site of ALOX5: ALOX5-A 2522 to 2234, ALOX5-B 2259 to 279,

ALOX5-C +149 to +596.

(PDF)

Figure S3 Alox5 in cellular self-renewal. Exogenous ALOX5 is

insufficient increase cellular self-renewal on its own. Wildtype

bone marrow cells were transduced with control (MIP), HA-

ALOX5 or HA-RE9a retrovirus and serially replated in

methylcellulose. Data shown are averages and standard deviations

of a representative dataset. Three independent assays were

performed. Expression of ALOX5 and RE9a in bone marrow

cells after selection is shown by western blot (right). Tubulin serves

as a loading control.

(PDF)

Figure S4 Myeloid progenitor profiles in untreated wildtype and

Alox5-/- mice. Distribution of Lin2Sca-12c-Kit+ bone marrow

cells harvested from untreated mice shown based on expression of

CD34 and Fcc receptors II/III (FccRII/III). Three mice analyzed

per genotype, with representative distributions shown.

GMP = Granulocyte/Monocyte Progenitor; CMP = Common

Myeloid Progenitor; MEP = Megakaryocyte/Erythroid Progeni-

tor.

(PDF)

Figure S5 Both RUNX1-ETO and RE9a strongly activate the

Alox5 promoter. Inducible regulation of Alox5 promoter-luciferase

by RUNX1 (A), RUNX1-ETO or RE9a (B). 2507 to +146

reporter was co-transfected with control (Ctrl), RUNX1, RUNX1-

ETO (RE) or RE9a and expression was normalized to Renilla

luciferase, with Ctrl transfection normalized to 1. n.s. = not

significant.

(PDF)
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