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Abstract

Novel computational methods such as artificial neural networks (ANNs) can facilitate model-

ing and predicting results of tissue culture experiments and thereby decrease the number of

experimental treatments and combinations. The objective of the current study is modeling

and predicting in vitro shoot proliferation of Erysimum cheiri (L.) Crantz, which is an impor-

tant bedding flower and medicinal plant. Its micropropagation has not been investigated

before and as a case study multilayer perceptron- non-dominated sorting genetic algorithm-

II (MLP-NSGAII) can be applied. MLP was used for modeling three outputs including shoots

number (SN), shoots length (SL), and callus weight (CW) based on four variables including

6-benzylaminopurine (BAP), kinetin (Kin), 1-naphthalene acetic acid (NAA) and gibberellic

acid (GA3). The R2 correlation values of 0.84, 0.99 and 0.93 between experimental and pre-

dicted data were obtained for SN, SL, and CW, respectively. These results proved the high

accuracy of MLP model. Afterwards the model connected to Non-dominated Sorting

Genetic Algorithm-II (NSGA-II) was used to optimize input variables for obtaining the best

predicted outputs. The results of sensitivity analysis indicated that SN and CW were more

sensitive to BA, followed by Kin, NAA and GA. For SL, more sensitivity was obtained for

GA3 than NAA. The validation experiment indicated that the difference between the valida-

tion data and MLP-NSGAII predicted data were negligible. Generally, MLP-NSGAII can be

considered as a powerful method for modeling and optimizing in vitro studies.

Introduction

Erysimum cheiri (L.) Crantz, commonly named wallflower, is a biennial or perennial ornamen-

tal plant which belongs to the Brassicaceae family. Wallflowers are grown all over the world in

a variety of colors as an important bedding and garden flower [1, 2]. This species is widely

used as a popular landscape plant, flowering pot plant, and also as a rock garden flower [2]. A

number of cardiotonic glocosides have been detected from various organs of E. cheiri. It has
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also been extensively used as cardioactive, antifissure and anti-inflammation, emmenagogue,

fertilizer and anti-tumor in the traditional medicine [3]. Due to the increasing demands of the

market for the valuable ornamental plant, conventional propagation and breeding approaches

are no longer sufficient and it is necessary to establish high quality biotechnological methods.

Plant tissue culture is an important agricultural biotechnology technique that provides the pro-

duction of crops with uniform characteristics in a short time and cost-effective systems under

aseptic conditions [4]. There is no report for micropropagation of Erysimum cheiri so a robust

and efficient protocol has yet to be fully developed. Therefore, the use of breeding methods

and biotechnological techniques in this plant is encountered to some limitations. Several

intrinsic factors (e.g., genotype, organ type, and explant developmental age) and also external

parameters (e.g., vitamins, plant growth regulators (PGRs), carbohydrate source, temperature,

and light) delimit in vitro shoot growth and development [5].

PGRs play a vital role for in vitro organogenesis such as shoot proliferation [6, 7], shoots

organogenesis [8], somatic embryogenesis [9], and callus induction [8, 10]. Therefore, finding

the optimized amount of media compositions for achieving ideal results is a versatile challenge

for de novo plant micropropagation [4, 11]. Since the traditional analytical methods such as

linear regression are not suitable for non-linear biosystem [7, 12], artificial neural networks

(ANN) as the non-linear modeling techniques have become a reliable method to predict and

optimize the correlations between the input and output of a biological process [12, 13]. ANNs

include of numerous highly interconnected processing neurons that work in parallel to find a

solution for a specific problem [14]. ANNs are learned by examples. The examples should be

intently chosen otherwise the model might be working inaccurately [14, 15]. ANNs are able to

recognize the relationship between output and input variables and identify the inherent

knowledge existent in the datasets without previous physical considerations. Hence, ANNs are

considered as a “black box” [16, 17]. Multilayer Perceptron (MLP), is one of the common arti-

ficial neural networks (ANNs) applied for modeling and predicting in vitro culture processes

[4]. MLP is inspired by the neural structure of the human brain and consists of an input layer,

one or more hidden layers, and an output layer [14]. Like the human neural network, ANNs

contain nodes, each of which receives a number of input variables and produce a single target

variable that is a relatively simple function of the input variables [18]. The connections are

based on weights given by values that were defined in the training process so that the output

values will be as similar as possible to the values that were obtained from the training model.

Network fitting is conducted by means of the back-propagation algorithm, which estimates

the weights through the connections that are performed in the opposite direction of the subse-

quent layer [14, 16]. Recently, a number of reports have been published about the use of artifi-

cial intelligence models in plant tissue culture procedures [4, 12, 16, 18–23].

Evolutionary optimization algorithms are considered the powerful mathematic methods

for solving complex, multidimensional problems such as designating optimal factors for

micropropagation with high speed and accuracy [4]. There are different types of evolutionary

optimization algorithms and genetic algorithm (GA) has been applied to the vast majority of

plant tissue culture optimization studies relating to shoot proliferation [17], secondary metab-

olite production [23], and somatic embryogenesis [21]. GA is an optimization algorithms

based on the principles of genetic variation and natural selection. It evolves finding the best

solution for a specific problem [16]. Plant tissue culture is a multi-objective system may not be

optimized using GA as a single-objective function, therefore multi-objective algorithms are

necessary for the optimization of outputs [19]. Classical optimization methods, including

multi-criterion decision making methods, have established a model for converting multi-

objective optimization to a single-objective optimization issue through emphasizing one par-

ticular Pareto-optimal solution at a time. In this method, multiple runes are required to obtain
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different possible solutions [20]. One of the first evolutionary multi-objective optimization

algorithms, which is useful for finding the solution domain in order to detect Pareto-optimal

solutions within a multi-objective scheme is known as the Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) [20]. A few reports used ANN-NSGA-II for predicting and optimiz-

ing plant sterilization [20], shoot proliferation [19] and somatic embryogenesis [21] of

Chrysanthemum × grandiflorum. Hesami et al. (2019) [20] used MLP- NSGAII to achieve the

highest efficiency and optimum concentrations of disinfectants as well as immersion times to

minimize in vitro contamination frequency (CF) and maximize the explant viability (EV) of

Chrysanthemum. The R2 (over 94%) indicated that MLP-NSGAII was a powerful model for

optimizing and forecasting in vitro sterilization of chrysanthemum. They also suggested that

MLP-NSGAII can be employed as a precise method for different areas of in vitro culture. They

also applied the ANFIS linked to NSGAII to optimize the appropriate hormonal combinations

(2,4-D and BAP), carbohydrate (sucrose, fructose, and glucose) and light quality and further

maximize the embryogenesis frequency (EF) and number of somatic embryogenesis (NSE) in

chrysanthemum. They reported a high efficiency and accuracy of ANFIS- NSGAII on the

modeling of the somatic embryogenesis (R2> 0.92) [21]. In another study [19], RBF-NSGAII

was used to model and predict the optimal levels of BAP, IBA, PG and sucrose on shoot prolif-

eration parameters in order to maximize the shoot number and shoot length and concurrently

minimize the callus weight of chrysanthemum. High R2 (> 0.76) between observed and pre-

dicted values indicated that RBF-NSGAII can be considered as an efficient computational

strategy for modeling and optimizing in vitro organogenesis [19].

In this study, we tried to propose a model for shoot proliferation by using non-linear MLP-

NSGAII modeling and optimization procedure. In this way, making a strong link between the

MLP model and NSGAII was our first priority in order to find the highest efficiency and the

optimum concentrations of PGRs for significant in vitro shoot proliferation. Generally, the

objective of this study is to model and optimize the appropriate plant growth regulators’ com-

positions for maximum shoot proliferation of E. cheiri.

Materials and methods

Plant materials

Nodal segments (1.5 cm) were harvested from the tetraploid wallflower plants kept in the

greenhouse. After washing with tap water for 30 minutes, the explants were placed in a solu-

tion of detergent and water (1:1) and washed. Subsequent disinfection steps were performed

under a laminar airflow chamber by soaking the explants in 70% ethanol for 30 seconds fol-

lowed by 3% sodium hypochlorite solution for 7 minutes. The explants were washed three

times with sterile distilled water and then put in MS medium [24] containing 6% agar and 3%

sucrose. The pH was adjusted to 5.8 using 1 N HCl or 1 N NaOH before autoclaving at 121˚C.

The cultured flasks were exposed to 16/8 h (light/dark) photoperiod for 4 weeks with a light

intensity of 80 umol.m-2.s-1 and a temperature of 24 ± 2˚C.

Experimental design

This experiment was set up in a completely randomized design (CRD) with the factorial

arrangement and four replicates, each containing four explants. The explants were inoculated

in the proliferation medium including different concentrations of 6-benzyladenine (BA) (0,

0.5, 1, 2 mg.l-1), kinetin (Kin) (0, 0.5, 1, 2 mg.l-1), naphthaleneacetic acid (NAA) (0, 0.1 mg.l-1)

and gibberellic acid (GA3) (0, 0.2 mg.l-1). The shoots number (SN), shoots length (SL), and cal-

lus weight (CW) were determined after 8 weeks of culture.
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Multilayer perceptron (MLP) model

In order to construct the MLP model, four types of PGRs were used as inputs and SN, SL, and

CW were considered as outputs for the modeling of in vitro proliferation (Fig 1). MLP was

applied for obtaining the maximum rate of SN and SL as well as the minimum rate of CW.

Prior to modeling, the data were randomly divided into 80% training and 20% testing sets.

The datasets of input and output were normalized between -1 and 1 by mapminmax transfor-

mation. To detect outliers, principal component analysis (PCA) was used; however, no outlier

was identified. This model provides inputs and outputs to the network by a supervised training

procedure, while the training process continues until the following function would be mini-

mized:

E ¼
1

K

Xk

k¼1

yk � ŷkð Þ
2

Where K is the number of data, yk is the kth observation output, and ŷk is the kth predicted

output. In a three-layer MLP with m neurons in the hidden layer and n input variables, ŷ is cal-

culated as:

ŷ ¼ f
Xm

j¼1

wj:g
Xn

i¼1

wjixi þ wj0

 !

þ w0

" #

where wj: weight that connects the jth neuron of hidden layer and neuron of output layer, wji:
the weight connecting the ith input variable and jth neuron of hidden layer, xi: the ith input

variable, wj0: bias of the jth neuron of hidden layer, w0: bias related to the output neuron, g:
the transfer functions for hidden layer, and f: transfer functions for the output layer.

In this study, three-layer perceptrons (feed forward back-propagation network) was applied

with hyperbolic tangent sigmoid (tansig) and linear (purelin) for hidden and output layers

transfer functions, respectively. A Bayesian Regulation was used for training of the network

and determining the optimal weights and bias. Since the number of hidden units and the

Fig 1. The schematic diagram of the proposed MLP method.

https://doi.org/10.1371/journal.pone.0273009.g001
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number of neurons in each node play an important role in the efficiency of MLP, they should

be determined. There are some reports which show the optimal number of neurons in the hid-

den layer by means of some equations [4, 25], but they ultimately should be obtained by using

trial and error. The large or low number of them results in under-fitting or over-fitting, respec-

tively. In the current investigation, trial and error-based approach was used to detect the opti-

mal neuron number in the hidden layer.

Performance measures

Three MLP -model was trained for each of the three outputs including SN, SL, and CW. The

best fitness for each model was determined based on the mean bias error (MBE), root mean

square error (RMSE) and coefficient of determination (R2) as follows:

R2 ¼ 1 �

Pn
i¼1

yi � ŷið Þ
2

Pn
i¼1

yi � �yið Þ
2

0 � R2 � 1

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

ŷi � yið Þ
2

 !

=n

v
u
u
t 0 � RMSE � 1

MBE ¼ 1=n

Xn

i¼1

yi � ŷið Þ � 1 � MBE � þ1

Where n is the number of data, yi is the value of observed datasets, and ŷi is the value of pre-

dicted datasets and �yi is the mean of observed values. RMSE and MBE values closer to 0, and

R2 values closer to 1, show best performance of the constructed models [4, 12, 26]. The higher

R2 and lower RMSE and MBE indicated better performance of the designed models [15].

Optimization algorithm NSGA-II

The developed MLP model, as the fitness function, was subjected to additional practice using

NSGA-II to determine the optimum amounts and combinations of input variables to achieve

the best values of outputs (Fig 2). This algorithm first generates a number of random solutions

and then the objective function is calculated for each solutions. The search for optimal solu-

tions during NSGA-II implementation was limited to the lower and upper bounds of the input

Fig 2. The schematic diagram of NSGAII optimization process.

https://doi.org/10.1371/journal.pone.0273009.g002
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variables [20]. The binary tournament operator was used to select elite populations for cross-

over, based on two criteria: non-dominated sorting and crowding distance, which are two

characteristics of a good pareto front. A mutation operator was applied to protect the algo-

rithm from getting stuck in the local optimum. When the refining solutions are determined,

the objective function values were recalculated and continued until one of the terminated cri-

teria were attained [4]. In each generation, non-dominated solutions in objective space consti-

tute a Pareto front; any point on this front can be an optimal solution of the problem [4].

We considered SN, SL and CW as three objective functions to recognize the optimum val-

ues of inputs based on the results of MLP Model. In this study, 50 initial population, 800 gener-

ation number, 0.8 crossover rate and 0.01 mutation rate were set. An ideal point on the pareto

front is calculated so that while SN and SL were maximized and CW was minimized, the solu-

tion obtained from the following equation is minimized.

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

shn � nð Þ
2
þ SHL � lð Þ

2
þ CW � cð Þ

2

q

Where n and l are the maximum SN, and SL respectively, and c is the minimum CW in the

observed data. Objective function values were scaled between 0 and 1 before applying.

Sensitivity analyses

Sensitivity analysis was applied on the obtained ANN model to determine the importance of

input variables in the model. The sensitivity of SN, SL and CW against the applied PGRs) BA,

Kin, NAA and GA3) is recognized by criteria including Variable Sensitivity Error (VSE): over-

all performance of the developed ANN-GA model if the certain independent variable is not

available, and Variable Sensitivity Ratio (VSR) value: indicates the correlation between the

VSE and the error of the ANN model when all variables are available. A more important vari-

able indicates higher value of VSR. Input variables can be ranked based on their VSR value or

importance [26]. MATLAB software (Matlab, 2010) was employed to write codes and run the

model.

Validation experiments

In order to evaluate the efficiency of the MLP-NSGAII, optimized hormonal combinations of

shoot proliferation parameters (i.e., SN, SL, and CW) were tested experimentally.

Results

In this study, the effects of four PGRs on shoot number (SN), shoot length (SL), and callus

weight (CW) of E.cheiri were studied. The combination of two cytokinins BA and Kin showed

that the concentrations of 2 mg.l-1 BA+ 2 mg.l-1 Kin and 2 mg.l-1 BA+ 1 mg.l-1 Kin produced

the highest shoot length (3.90 cm and 3.86 cm, respectively), while the highest callus weight

(0.25g) was formed in 2 mg.l-1 BA+ 2 mg.l-1 Kin. Also the combination of 1 mg.l-1 BA + 2 mg.

l-1 Kin and 2 mg.l-1 BA + 1 mg.l-1 Kin produced more number of shoots (6.06 and 5.81, respec-

tively). No SN, SL and CW were observed on MS medium without PGRs (control treatment).

Applying 2 mg.l-1 BA + 0.1 mg.l-1 NAA in the absence of other hormones showed the highest

shoot length (3.39 cm) and callus weight (0.08 g). The most frequent shoot number (4.44 and

4.75) was obtained in 2 mg.l-1 BA alone, or in combination with 0.1 mg.l-1 NAA. Also the

interaction of BA as a cytokinin and GA3 was analyzed. The treatment 2 mg.l-1 BA alone and

along with 0.2 mg.l-1 GA3 produced highest shoot number (4.44 and 4.63, respectively). The

results of the combination of four used PGRs show that highest shoot number (6.5) and length

(3.99 cm) were achieved in MS medium supplemented with 1 mg.l-1 BA, 2 mg.l-1 Kin, 0.1 mg.l-
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1 NAA and 0.2 mgl-1 GA3 (Table 1). The highest weight of callus (0.3 g) was observed in 2 mg.

l-1 BA, 2 mgl-1 Kin, 0.1 mg.l-1 NAA and 0.2 mg.l-1 GA3 and minimum amount of callus (0 g)

was gained in the control treatments (Table 1).

ANN modeling and evaluation

MLP was used to model and predict the effect of BA, Kin, NAA, and GA3 on shoot prolifera-

tion parameters including SN, SL, and CW of E. cheiri. R2, RMSE, and MBE of this model

were presented in Table 2. Higher significant R2 value and lower RMSE and MBE values

proved the model’s capability. The regression graphs (Figs 3–5) that presented this correlation,

was efficient in predicting the outputs, and the values estimated by MLP were similar to the

results of the experimental data (Table 2).

Model optimization

The final aim of this study was to optimize the MLP model by NSGA-II for providing accurate

concentrations of PGRs and also obtain maximum SN, and SL and minimum CW. The opti-

mal SN (7.12), SL (3.99 cm), and CW (0.21 g) can be obtained from a medium containing 1.41

mg.l-1 BA, 1.17 mg.l-1 KIN, 0.04 mg.l-1 NAA and 0.14 mg.l-1 GA3 (Table 3).

Sensitivity analyses

The importance of each input was evaluated through the VSR achieved for every output (SN,

SL, and CW) (Table 4). The results of sensitivity analysis were indicated in (Table 4). Based on

the sensitivity analysis, shoot number and callus weight were more sensitive to BA, followed by

Kin, NAA and GA3 (Table 4). The most important factors which affected shoot length (SL),

were BA followed by Kin, GA3 and NAA (Table 4). In contrary with SN and CW, SL was more

sensitive to GA3 than NAA (Table 4).

Validation experiment

According to the validation experiment (Table 5), there was negligible difference between

experimental validation data and predicted data via MLP-NSGAII. The predicted hormonal

compositions via MLP-NSGAII resulted in 7.1 SN, 3.67 cm SL, and 0.19 g CW (Table 5) (Fig

6A–6C).

Discussion

The reliability and applicability of machine learning as one of the powerful computational

approaches have been recently reviewed in different areas of plant science such as in vitro cul-

ture [4], plant breeding [27], stress phenotyping [28], and system biology [29]. Moreover, the

accuracy of ANNs has been recently approved for modeling, prediction, and optimization of

different in vitro culture systems such as sterilization [20, 30], seed germination [5, 31], callo-

genesis [32, 33], shoot proliferation [19, 34–36], somatic embryogenesis [37, 38], androgenesis

[39], gene transformation [40, 41], and secondary metabolite production [42, 43].

There are many approaches for optimizing the culture medium for plant tissue culture, but

there is not a universal protocol that can be used to modify a micropropagation medium for a

large number of plants. Optimizing in vitro micropropagation as a multivariable and complex

system is a highly tedious, expensive, and time-consuming process and traditional statistical

methodology such as regression models alone are not reliable for approximation of these non-

linear variables [4]. Therefore, there is a serious need for the application of new computational
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Table 1. Effects of BA, Kin, NAA, and GA3 on shoot number (SN), shoot length (SL), and callus weight (CW) of E. cheiri. Values in each column represent means

±SE.

BA Kin NAA GA3 SN SL(cm) CW(g)

0 0 0 0 0.00 ± 0. 000 0.00 ± 0. 000 0.00 ± 0.000

0 0 0 0.2 0.00 ± 0. 000 0.00 ± 0. 000 0.00 ± 0. 000

0 0 0.1 0 0.00 ± 0. 000 0.00 ± 0. 000 0.00 ± 0. 000

0 0 0.1 0.2 0.38 ± 0.180 0.23 ± 0.104 0.00 ± 0. 000

0 0.5 0 0 1.37 ± 0.125 1.79 ± 0.006 0.00 ± 0. 000

0 0.5 0 0.2 2.38 ± 0.125 1.96 ± 0.004 0.00 ± 0. 000

0 0.5 0.1 0 2.25 ± 0.171 1.94 ± 0.003 0.00 ± 0. 000

0 0.5 0.1 0.2 2.50 ± 0.158 2.19 ± 0.006 0.00 ± 0. 000

0 1 0 0 2.69 ± 0.176 2.55 ± 0.007 0.00 ± 0.000

0 1 0 0.2 2.94 ± 0.193 2.76 ± 0.012 0.00 ± 0.000

0 1 0.1 0 3.00 ± 0.224 2.68 ± 0.007 0.00 ± 0.000

0 1 0.1 0.2 3.19 ± 0.164 2.89 ± 0.007 0.01 ± 0.003

0 2 0 0 4.38 ± 0.180 3.28 ± 0.004 0.04 ± 0.002

0 2 0 0.2 4.56 ± 0.128 3.43 ± 0.005 0.05 ± 0.002

0 2 0.1 0 4.38 ± 0.155 3.37 ± 0.004 0.06 ± 0.002

0 2 0.1 0.2 4.69 ± 0.176 3.50 ± 0.005 0.09 ± 0.002

0.5 0 0 0 1.31 ± 0.120 1.83 ± 0.004 0.00 ± 0. 000

0.5 0 0 0.2 2.63 ± 0.125 1.97 ± 0.007 0.00 ± 0. 000

0.5 0 0.1 0 2.38 ± 0.125 1.90 ± 0.008 0.00 ± 0. 000

0.5 0 0.1 0.2 2.69 ± 0.176 2.32 ± 0.009 0.00 ± 0. 000

0.5 0.5 0 0 2.81 ± 0.209 2.60 ± 0.007 0.00 ± 0. 000

0.5 0.5 0 0.2 3.25 ± 0.296 2.74 ± 0.005 0.00 ± 0. 000

0.5 0.5 0.1 0 3.19 ± 0.164 2.70 ± 0.006 0.00 ± 0. 000

0.5 0.5 0.1 0.2 3.50 ± 0.183 2.90 ± 0.008 0.00 ± 0. 000

0.5 1 0 0 3.81 ± 0.164 3.19 ± 0.006 0.05 ± 0.002

0.5 1 0 0.2 4.00 ± 0.204 3.38 ± 0.007 0.07 ± 0.003

0.5 1 0.1 0 4.13 ± 0.125 3.27 ± 0.005 0.10 ± 0.003

0.5 1 0.1 0.2 4.44 ± 0.157 3.39 ± 0.006 0.12 ± 0.002

0.5 2 0 0 4.56 ± 0.223 3.64 ± 0.005 0.15 ± 0.002

0.5 2 0 0.2 5.13 ± 0.155 3.72 ± 0.006 0.16 ± 0.002

0.5 2 0.1 0 5.31 ± 0.198 3.66 ± 0.006 0.18 ± 0.002

0.5 2 0.1 0.2 5.50 ± 0.129 3.81 ± 0.007 0.20 ± 0.003

1 0 0 0 2.75 ± 0.144 2.61 ± 0.006 0.00 ± 0. 000

1 0 0 0.2 3.19 ± 0.164 2.81 ± 0.006 0.00 ± 0. 000

1 0 0.1 0 3.31 ± 0.151 2.76 ± 0.006 0.00 ± 0. 000

1 0 0.1 0.2 3.56 ± 0.223 3.03 ± 0.013 0.00 ± 0. 000

1 0.5 0 0 4.19 ± 0.188 3.23 ± 0.005 0.08 ± 0.003

1 0.5 0 0.2 4.38 ± 0.180 3.41 ± 0.006 0.08 ± 0.003

1 0.5 0.1 0 4.44 ± 0.157 3.44 ± 0.004 0.10 ± 0.003

1 0.5 0.1 0.2 4.56 ± 0.182 3.53 ± 0.005 0.13 ± 0.003

1 1 0 0 4.50 ± 0.224 3.55 ± 0.005 0.11 ± 0.003

1 1 0 0.2 4.75 ± 0.112 3.65 ± 0.004 0.13 ± 0.002

1 1 0.1 0 4.81 ± 0.136 3.61 ± 0.007 0.14 ± 0.003

1 1 0.1 0.2 5.19 ± 0.136 3.68 ± 0.006 0.15 ± 0.003

1 2 0 0 5.81 ± 0.136 3.76 ± 0.005 0.21 ± 0.002

1 2 0 0.2 6.00 ± 0.158 3.90 ± 0.006 0.22 ± 0.003

(Continued)
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approaches such as ANNs to analyze and optimize this type of system more efficiently using

fewer treatments [14, 20].

MLP model as one of the most popular types of ANNs, is employed in many micropropaga-

tion studies and contains three main parts: one input layer, one or more hidden layers and one

output layer, which can be successfully employed for prediction, classification, signal process-

ing and error filtering [14, 18]. Training and designing of ANN encounter to several problems.

One of the most important problems is assigning the weights in ANN structure which demon-

strates the direct effect on model performance [14]. The genetic algorithm is applied to find

the optimal point of complex nonlinear functions in integrating with the artificial neural net-

work that has a lot of advantages such as increasing the accuracy of ANN by updating the

weights and bias values [14, 18]. Therefore, the hybridization of ANNs and multi-objective

optimization algorithms can be considered as an accurate and reliable methodology for pre-

dicting and optimizing in vitro culture [5]. High coefficient of determination between

observed and predicted values for both training and testing process indicated good perfor-

mance of the models for the studied parameters [19]. The high efficiency of MLP in plant tis-

sue culture has been shown by several studies. For instance, Arab et al. [22] employed MLP-

GA for modeling and anticipating the optimal hormonal combinations in G × N15 vegetative

rootstock proliferation. They reported the high accuracy of MLP-GA models (R2 > 0.81).

Table 1. (Continued)

BA Kin NAA GA3 SN SL(cm) CW(g)

1 2 0.1 0 6.19 ± 0.164 3.80 ± 0.006 0.24 ± 0.003

1 2 0.1 0.2 6.50 ± 0.129 3.99 ± 0.006 0.25 ± 0.003

2 0 0 0 4.44 ± 0.157 3.36 ± 0.004 0.06 ± 0.004

2 0 0 0.2 4.63 ± 0.125 3.47 ± 0.004 0.07 ± 0.003

2 0 0.1 0 4.75 ± 0.112 3.39 ± 0.006 0.08 ± 0.004

2 0 0.1 0.2 4.94 ± 0.143 3.58 ± 0.006 0.10 ± 0.003

2 0.5 0 0 4.69 ± 0.120 3.66 ± 0.005 0.18 ± 0.003

2 0.5 0 0.2 4.88 ± 0.180 3.80 ± 0.007 0.19 ± 0.003

2 0.5 0.1 0 5.25 ± 0.144 3.72 ± 0.004 0.21 ± 0.003

2 0.5 0.1 0.2 5.50 ± 0.129 3.90 ± 0.007 0.24 ± 0.004

2 1 0 0 6.06 ± 0.170 3.86 ± 0.004 0.22 ± 0.003

2 1 0 0.2 5.88 ± 0.180 3.89 ± 0.008 0.23 ± 0.003

2 1 0.1 0 5.75 ± 0.194 3.78 ± 0.007 0.25 ± 0.003

2 1 0.1 0.2 5.00 ± 0.183 3.91 ± 0.006 0.26 ± 0.003

2 2 0 0 4.00 ± 0.183 3.90 ± 0.005 0.25 ± 0.002

2 2 0 0.2 4.31 ± 0.120 3.89 ± 0.005 0.25 ± 0.003

2 2 0.1 0 4.56 ± 0.157 3.82 ± 0.006 0.27 ± 0.002

2 2 0.1 0.2 3.00 ± 0.183 3.71 ± 0.006 0.30 ± 0.004

https://doi.org/10.1371/journal.pone.0273009.t001

Table 2. Statistical information of MLP models for shoot number (SN), shoot length (SL), and callus weight (CW) of E. cheiri (training vs. testing values).

Item Shoot number Shoot length Callus weight

Training Testing Training Testing Training Testing

R Square 0.85 0.84 0.99 0.99 0.94 0.93

RMSE 0.62 0.68 0.08 0.08 0.02 0.02

MBE 0.0002 -0.005 0.00009 -0.007 0.0003 0.001

https://doi.org/10.1371/journal.pone.0273009.t002
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Fig 3. Scatter plot of predicted vs. observed values of shoot number (SN) obtained by MLP model. (A) Training set

and (B) testing set.

https://doi.org/10.1371/journal.pone.0273009.g003

Fig 5. Scatter plot of model predicted vs. observed values of callus weight (CW) obtained by MLP model. (A)

Training set and (B) testing set.

https://doi.org/10.1371/journal.pone.0273009.g005

Fig 4. Scatter plot of model predicted vs. observed values of shoot length (SL) obtained by MLP model. (A)

Training set and (B) testing set.

https://doi.org/10.1371/journal.pone.0273009.g004
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Zhang et al. [44] used MLP for modeling and predicting organogenic callus production of

melon and reported that MLP was able to accurately model and predict the system (R2 >

0.96). In another study, MLP was employed to model and predict in vitro root formation in

grapevine [45]. They reported the high accuracy of MLP-GA model (R2> 0.78). However, GA

as a single-objective algorithm cannot optimize multi-objective functions related to tissue cul-

ture problems simultaneously [19]. Therefore, a multi-objective evolutionary algorithms

(MOEAs) has been required to optimize the outputs [20]. The main benefit of MOEAs is that

they generate reasonably good approximations of the non-dominated frontier during a single

run and in limited computational time [46, 47]. NSGAII as a multi-objective evolutionary

algorithms generates a group of non-dominated solutions (identified as Pareto-optimal solu-

tions) to find an equivalent solution between different objective functions and improves each

of the objective functions without worsening other function values to guides the population

towards the Pareto front [4]. In this study, CW had a negative effect on micropropagation due

to the somaclonal variation and limitations of vascular system. Therefore, NSGAII algorithm

was hybridized with MLP model to find the accurate concentration of hormonal compositions

applied to obtain the maximum SN, SL as well as the minimum CW. Hesami et al. [20] applied

MLP-NSGAII to optimize different types and concentrations of disinfectants and immersion

time to minimize in vitro contamination and maximize the viability of Chrysanthemum

explants. They reported the high accuracy of MLP- NSGAII model (R2> 0.94). In this work,

we used MLP-NSGAII model to predict and optimize the hormonal combinations on shoot

proliferation of E. cheiri and to achieve a new insights into improving in vitro culture. High

coefficient of determination (0.84, 0.99 and 0.93 for SN, SL, and CW, respectively) between

observed and predicted values for both training and testing processes showed that this method

can be considered as an efficient method for analyzing and predicting in vitro growth condi-

tion for E. cheiri (Table 2). Therefore, validation experiments confirmed the results predicted

by this method (Table 5).

Both the type and concentration of hormonal combinations play a critical role in plants’

proliferation, therefore each plant species needs a special concentration of hormones accord-

ing to its internal hormones content [22]. Auxins and cytokinins, as the major plant hormones

affect the cell division and multiplication of plant tissues [32]. Among them, cytokinins are

Table 3. The optimal values of hormonal combination as input items and predicted values of shoot number (SN), shoot length (SL), and callus weight (CW) by

MLP-NSGA-II.

Input items Output items

BA (mg.l-1) Kin (mg.l-1) NAA (mg.l-1) GA3 (mg.l-1) Predicted SN Predicted SL (cm) Predicted CW (g)

1.41 1.17 0.04 0.14 7.12 3.99 0.21

https://doi.org/10.1371/journal.pone.0273009.t003

Table 4. Ranking the importance of hormonal compositions on shooting proliferation parameters according to

sensitivity analysis on the developed MLP model.

Output Item BA Kin NAA GA3

SN VSR 2.162 2.067 1.074 1.071

Rank 1 2 3 4

SL VSR 9.189 8.844 1.263 1.425

Rank 1 2 4 3

CW VSR 3.573 3.114 1.084 1.010

Rank 1 2 3 4

https://doi.org/10.1371/journal.pone.0273009.t004
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believed to be the most important plant hormone responsible for stimulation of cell divisions

and shoot proliferation [48]. In some cases, combination of cytokinins have proved more

effective leading to increased proliferation rate [48]. This is in the line with our results which

showed that increasing the concentration of two cytokinins BA and KIN up to 2 mg.l-1 and 1

mg.l-1 respectively, led to enhanced shooting parameters (Table 1). Further concentrations of

cytokinins’ combination reduced the shoot production and increased callus formation. Nowa-

kowska et al. [48] in the same way reported that too high cytokinin concentrations in the

medium inhibited shoot multiplication and negatively affected shoot length. Many other

researchers have also reported similar results [49, 50]. Auxins are the other vital plant hormone

that triggers many plant activities, such as root and shoot production, stimulation of callus cell

divisions, and inducing apical domination [51]. Low contents of auxins along with high con-

centrations of cytokinins affect cell divisions and are responsible for the in vitro regeneration

and shoot proliferation [52, 53]. Auxins are considered to exhibit synergistic, antagonistic and

additive interactions with cytokinins depending on the plant species and tissue type in the reg-

ulation of physiological responses [54]. In fact cytokinin acts as a positive regulator of auxin

biosynthesis and auxin as a negative regulator of cytokinin biosynthesis and both are con-

trolled by a homeostatic regulatory mechanism [55]. NAA is the only auxin that does not

require active uptake to easily pass through the plasma membrane into cells and has a synergis-

tic/additive effect on shoot proliferation [56]. In our experiment the combined use of BA and

NAA caused higher plant shooting than when using them alone (Table 1). These results are in

line with the findings of other species such as G × N15 rootstock [22], Daphne mezereum
‘Alba’ [48], Chinese ginger (Boesenbergia rotunda) [57], Cassia angustifolia [58], Magnolia sir-
indhorniae [59] and Santolina canescens [60]. However, high concentrations of hormonal

Table 5. Validation of the predicted data for shoot number (SN), shoot length (SL), and callus weight (CW). Values in each column represent means ± SE.

Treatment SN SL (cm) CW (g)

Ideal point in NSGAII process 7.1 ± 0.31 3.67 ± 0.23 0.19 ± 0.01

https://doi.org/10.1371/journal.pone.0273009.t005

Fig 6. Validation experiment: (A) In vitro shoot regeneration from nodal segment explants of E.cheiri on MS medium with

optimal values of hormonal combination containing 1.41 mg.l-1 BA, 1.17 mg.l-1 KIN, 0.04 mg.l-1 NAA and 0.14 mg.l-1 GA3, 30

days after culture. (B) In vitro development of multiple shoots after two months. (C) Callus induction in the predicted hormonal

medium.

https://doi.org/10.1371/journal.pone.0273009.g006
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combinations decrease shoot length and shooting rate and conversely increase callus develop-

ment [22, 61] which confirms our findings in E. cheiri (Table 1).

Gibberellins are other important plant growth regulators which its most active and popular

member, gibberellic acid (GA3) plays important roles in plant development, seed germination,

shoot elongation and flower induction [48, 62, 63]. Combinations of cytokinin and GA3 were

found to be the best for both shoot multiplication and shoot elongation [59, 64], which our

results are in accordance with these findings (Table 1). Contrary reports have shown less

shoots when BA was combined with GA3 compared to with BA treatment alone [48, 59, 65,

66]. The media not supplemented with cytokinins had a high GA3 absorption, suggesting that

the presence of cytokinins could negatively affect explant GA3 uptake [67]. High GA3 concen-

tration in combination with low BAP concentration was necessary for high shoot elongation

in kiwifruit (Actinidia arguta) [63]. Moreover, a number of researches have shown that combi-

nation of GA3 and NAA indicate a positive effect on in vitro shoot multiplication of plants [6,

56, 68]. Optimization of auxin concentration is regarded as a key factor in controlling plantlet

height [45]. Zhang et al. [69] suggest that the shoot length of potato explants was increased

when higher concentrations of IAA were used. However, the effect of IAA is improved by the

addition of GA3 [69]. Furthermore, combination of GA3 and NAA concentrations in a num-

ber of plants demonstrated increased shoot length [70, 71]. Several studies have shown that

high callus production also occurs due to increased concentrations of auxins in plants [72, 73].

In vitro plant regeneration is mainly dependent on exogenous and endogenous phytohor-

mones [4, 74]. Due to the high callus production rate of E. cheiri, it is considered that in addi-

tion to external growth regulators applied, the amount of internal auxin in this plant is also

possibly high. Based on the results of sensitivity analysis (Table 4), BA was found to be superior

than Kin, in terms of the overall number and length of shoots produced per explant, which is

in agreement with findings of Akbas et al. [75]. Finally, according to the validation experiment,

MLP-NSGAII as a new computational algorithm in analyzing data derived from in vitro cul-

ture, could be able to propose the optimal level of hormonal combinations to achieve the most

appropriate results of the investigated parameters.

Conclusion

Plant tissue culture is a complex process in which many diverse factors are involved. In order

to achieve an optimum protocol, several treatments with multiple replications and numerous

trials and errors are designed, which have proved to be very costly and time consuming.

Recently some computational techniques such as ANN models have been suggested to analyze

and optimize multi objective processes. In this study for the first time, MLP-NSGAII was

implemented for E. cheiri as a new computational tool for optimizing and predicting in vitro
shoot proliferation. Based on the results, MLP-NSGAII is an efficient method for modeling

and optimizing the hormonal combination for plant in vitro culture. We anticipate that it may

be applicable for other plant species and other features such as mineral compounds, light and

temperature as well. In future studies, MLP should be compared with other machine learning

algorithms.
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