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Abstract

Neuromuscular disorders (NMD) are a heterogeneous group of genetic conditions, with autosomal dominant, reces-
sive, or X-linked inheritance. They are characterized by progressive muscle degeneration and weakness. Here, we
are presenting our major contributions to the field during the past 30 years. We have mapped and identified several
novel genes responsible for NMD. Genotype-phenotype correlations studies enhanced our comprehension on the
effect of gene mutations on related proteins and their impact on clinical findings. The search for modifier factors al-
lowed the identification of a novel “protective” variant which may have important implication on therapeutic develop-
ments. Molecular diagnosis was introduced in the 1980s and new technologies have been incorporated since then.
Next generation sequencing greatly improved our capacity to identify disease-causing mutations with important ben-
efits for research and prevention through genetic counseling of patients’ families. Stem cells researches, from and for
patients, have been used as tools to study human genetic diseases mechanisms and for therapies development. The
clinical effect of preclinical trials in mice and canine models for muscular dystrophies are under investigation. Finally,
the integration of our researches and genetic services with our post-graduation program resulted in a significant out-
put of new geneticists, spreading out this expertise to our large country.

Keywords: genetic diseases, genetic counseling, neuromuscular disorders, stem cells, therapies.

Received: January 28, 2016; Accepted: March 29, 2016.

Introduction

Neuromuscular disorders (NMD) include a wide

group of genetic conditions that affect about 1 in 1000 indi-

viduals worldwide. They are characterized by progressive

muscle degeneration and weakness due to genetic muta-

tions which primarily or secondarily impair skeletal muscle

function. Most of these mutations display autosomal reces-

sive, autosomal dominant or X-linked inheritance. The on-

set can occur in childhood and have a severe progression or

later in life with a slower course. A complete list of dis-

eases/genes/phenotypes is available at

http://www.musclegenetable.fr/.

Our group, at the Institute of Biosciences, at the Uni-

versity of São Paulo, was pioneer in establishing a center

for diagnosis, genetic counseling and research in neuro-

muscular disorders in the late 1970s. In the 1980s, we

founded the Brazilian Muscular Dystrophy Association,

which has recently joined with a larger entity for handi-

capped patients, the AACD. In 2000, the Human Genome

Research Center was founded, and in 2005 stem cells re-

search was introduced, to the now called Human Genome

and Stem Cells Research Center (HUG-CELL). To date,

we have attended about 26,000 patients with NMD and

at-risk relatives at the HUG-CELL. Here, we will summa-

rize our main contributions to the field.

Mapping and identification of new genes

Although the human genome project was declared

completed in 2003, it has been recently estimated that only

50% of the 7.315 Mendelian phenotypes, usually repre-

sented by rare disorders, have been associated to given

genes (Chong et al., 2015). This scenario is even more com-

plex and challenging for disorders with multifactorial in-

heritance, in which multiple variants, genes, environmental

effects and epigenetic phenomena may be involved and are

usually highly heterogeneous. Therefore, the identification

of putative causative variants of clinical phenotypes is still

an important approach in human genetics, providing a di-

rect link between a particular phenotype and a given gene.

We have mapped eight loci responsible for neuro-

muscular disorders and identified for the first time five of

their mutational gene mechanisms. We have also collabo-

rated with the identification of another five genes.

Large families with many affected members, as well

as isolates with high degree of consanguinity were very im-
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portant to identify new disease genes (Figueiredo et al.,

2015).

Duchenne Muscular Dystrophy

In 1981, we described a case of a girl affected by Du-

chenne muscular dystrophy (DMD), carrying an X-auto-

somal translocation with a breakpoint at Xp21 (Zatz et al.,

1981). This case, together with similar cases reported in the

literature, was key to confirm the mapping of the Duchenne

locus at Xp21, leading to the identification of the DMD

gene in 1988 by the group of Louis M. Kunkel (Koenig et

al., 1998; Monaco et al., 1988).

Limb-girdle muscular dystrophies

Subsequently we focused on limb-girdle muscular

dystrophies (LGMD), a group of disorders that affect pri-

marily the pelvic and scapular limb-girdles. LGMD can be

transmitted through autosomal recessive (AR) and, less fre-

quently, autosomal dominant (AD) inheritance. Currently

there are 19 AR (LGMD2A-2T) and eight AD genes

(LGMD1A-1H) already identified. Affected patients can

have a mild disease course remaining ambulant until late in

life or have a severe phenotype, clinically very similar to

X-linked DMD. Among the severe forms, LGMD2C,

LGMD2D, LGMD2E and LGMD2F are sarcoglycano-

pathies, caused by mutations in the SGCG, SGCA, SGCB

and SGCD genes, coding for �-SG, �-SG, ß-SG, and �-SG,

components of the sarcoglycan (SG) complex. These trans-

membrane glycoproteins, together with sarcospan, dystro-

phin, dystroglycans, syntrophins and �-dystrobrevin, cons-

titute the Dystrophin-glycoprotein complex. This complex

acts as a linker between the cytoskeleton of the muscle cell

and the extracellular matrix, providing mechanical support

to the plasma membrane during myofiber contraction

(Yoshida and Ozawa, 1990). Among patients diagnosed

with AR LGMD (through DNA and/or muscle protein anal-

ysis) from 120 families in Brazil, the LGMD2A is the most

frequent form of sarcoglycanophaty (Zatz et al., 2003).

The first LGMD gene identified by our group is re-

sponsible for LGMD2F, caused by mutations in �-SG gene

coding for one of the four sarcoglycan proteins. This gene

causes a severe childhood form of muscular dystrophy

(Nigro et al., 1996; Passos-Bueno et al., 1996). Another

gene mapped and identified by our group is responsible for

AR-LGMD2G, caused by a mutation in the TCAP gene,

coding for the protein telethonin (Moreira et al., 1997,

2000). Although identified in compound heterozygous pa-

tients belonging to a family of Italian origin, LGMD2G has

been shown afterwards to be very rare, and few cases have

been reported outside Brazil. LGMD2G is characterized by

a variable phenotype, with onset in childhood or adulthood

(Vainzof et al., 2002).

The protein telethonin is a 19 kDa component of the

sarcomere Z-disk in striated and cardiac muscles (Valle et

al., 1997). Telethonin is the first example of a sarcomeric

protein, of which deficiency was associated with a form of

muscular dystrophy, without disruption of the sarcomere

structure (Vainzof et al., 2002).

More recently we have identified the gene for the AD

LGMD1G muscular dystrophy (Vieira et al., 2014), which

had been mapped by our group 10 years earlier (Starling et

al., 2004). Mutations in the RNA-processing protein

HNRPDL, a heterogeneous ribonucleoprotein family

member, which participates in mRNA biogenesis and me-

tabolism, were identified in two large, unrelated families:

one from Brazil and the other from Uruguay. The identifi-

cation of the LGMD1G gene revealed a novel association

between a muscular disorder and an RNA-related gene and

reinforces the importance of RNA binding/processing pro-

teins in muscle development and muscle disease.

We also collaborated in the identification of

LGMD2A (Beckmann et al., 1991; Richard et al., 1995;

Spencer et al., 1997), LGMD2B (Passos-Bueno et al.,

1995; Bushby et al., 1996; Bashir et al., 1998;), LGMD2C

(McNally et al., 1996b), LGMD2D and LGMD2E genes

(Bonnemann et al., 1996), responsible for several forms of

AR-LGMDs (Zatz et al., 2003).

Spastic paraplegia (SPG)

We have mapped and/or identified several genes re-

sponsible for pure spastic paraplegia, namely SPG8 (Rocco

et al., 2000; Valdmanis et al., 2007), SPG4 (Starling et al.,

2002b; Mitne-Neto et al., 2007a), or X-linked SPG (Star-

ling et al., 2002a). Our group also described a new compli-

cated autosomal recessive form of spastic paraplegia

named SPOAN (spastic paraplegia, optic atrophy, neuropa-

thy) (Macedo-Souza et al., 2005, 2009). SPOAN was iden-

tified in a geographically isolated region in the backlands of

Northeastern Brazil, known for a high incidence of consan-

guineous marriages. The mutation, recently identified

through whole genome sequencing, is a homozygous dele-

tion in the noncoding region of the kinesin light chain-2

(KLC2) gene, a novel mechanism, which reinforces the im-

portance of noncoded regions in human pathology (Melo et

al., 2015).

Motor neuron diseases

Motor neuron diseases are a group of neurodegene-

rative disorders with involvement of upper and/or lower

motor neurons, such as amyotrophic lateral sclerosis

(ALS), spinal muscular atrophy, progressive bulbar palsy,

and primary lateral sclerosis. A new locus for a recessive

X-linked juvenile form of distal muscular atrophy has also

been mapped in our lab (Takata et al., 2004).
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However, a more important contribution from our

group was the mapping and subsequent identification of the

amyotrophic lateral sclerosis gene 8 or ALS8 in a very large

Brazilian genealogy (Nishimura et al., 2004a,b). This gene

codes for the vesicle-associated membrane protein/sy-

naptobrevin-associated membrane protein B (VAPB) gene.

Members of the vesicle-associated proteins are intracellular

membrane proteins that can associate with microtubules

and that have been shown to have a function in membrane

transport (Mitne-Neto et al., 2007b). We have also shown

that the VAPB mutation, which is now identified in hun-

dreds of Brazilian patients, is due to a founder effect (Nishi-

mura et al., 2005). VAPB mutations have been

subsequently identified in patients with different origin –

from Japan and Europe (Funke et al., 2010). This finding

has attracted a lot of attention from researchers in the field

because VAPB seems to be involved in other forms of ALS

(Coatti et al., 2015; Teuling et al., 2007).

Genotype-phenotype correlations

Neuromuscular disorders are characterized by

marked phenotypic and genotypic heterogeneity, with a

similar clinical course caused by mutations in different

genes while several different phenotypes can be associated

with mutations in one particular gene (Zatz et al., 2000).

Our group has contributed with this characterization for

several forms of muscular dystrophies.

After the identification of the dystrophin gene as the

protein involved in DMD, a correlation between dystrophin

presence/quantity and the severity of the phenotype in dys-

trophinopathies was strongly suggested. Genotype, pheno-

type and protein analysis enabled us to pinpoint the

important functional domains of the dystrophin protein

(Vainzof et al., 1993; Passos-Bueno et al., 1994), and ques-

tion the previously suggested correlation (Vainzof et al.,

1990, 1991b, c, 1995b).

For most forms of autosomal recessive LGMDs,

missense mutations, on average, have been associated with

a milder phenotype as compared to null mutations. (Rich-

ard et al., 1999; de Paula et al., 2002; Starling et al., 2003).

We also observed that mutations in the LGMD2I genes,

first reported in severe congenital forms, could be also

found in adult forms with slow progression or even asymp-

tomatic cases (de Paula et al., 2003), associated with spe-

cific protein alterations in the muscle (Yamamoto et al.,

2008). Muscle protein characterizations have contributed

to elucidate the organization of the dystrophin-glycoprotein

complex (Vainzof et al., 1991a, 1996, 1999), for geno-

type-phenotype correlation studies and had an important

role in NMD diagnosis. After the introduction of next gen-

eration sequencing (NGS), molecular diagnosis is achieved

directly with DNA analysis and therefore muscle biopsies

have been obtained only for research purposes.

The search for modifier (protective)
variants/factors

Genotype-phenotype correlation studies revealed

that, for several disorders such as LGMD, facioscapulo-

humeral muscular dystrophy, the same disease mutation

usually associated with a severe phenotype could be also

found in individuals only mildly affected or even asymp-

tomatic (Bonnemann et al., 1996; de Paula et al., 2002,

2003; McNally et al., 1996a; Moreira et al., 2003; Starling

et al., 2003; Tonini et al., 2004; Ricci et al., 2014; Scionti et

al., 2012). Although rare, this has also been observed for

DMD (Zatz et al., 2014; Castro-Gago, 2015; Zatz, 2015).

Utrophin, an autosomal ubiquitously expressed protein

with structural homology to dystrophin, has been suggested

as a possible modulator of DMD severity and thus as a ther-

apeutic target for treating DMD. However, we observed

that utrophin expression does not differ between severely

and mildly affected DMD patients (Vainzof et al., 1995a,

2016).

Therefore, the search for protective variants or mech-

anisms continues to be a great challenge. Interestingly, the

identification of two golden retriever muscular dystrophy

(GRMD) dogs with a very mild phenotype and a normal

lifespan (Zucconi et al., 2010; Zatz et al., 2014) have been

the subject of much investigation. We have recently shown

that up-regulation of Jagged1, which is a known regulator

of the Notch pathway, is responsible for the milder course

in these two dogs (Vieira et al., 2015). In addition, in the

mdx mouse model for DMD, we observed a milder course

associated with less fibrosis and more regeneration when

the mutation was transferred to a different background (un-

published observations). Identifying what protects some

exceptional dogs, mice or individuals from the deleterious

effect of a disease-causing mutation is a great challenge

which could open new venues for treatment (Cohn and

Dubowitz, 2016).

Genetic testing

Research in human and medical genetics allied to ge-

netic counseling services in Brazil initiated in the late

1960s. During those years, the model implemented by

Oswaldo Frota-Pessoa in our Department consisted of re-

search associated with services to patients and families, in a

mutually beneficial scenario: patients contributed to new

findings, while those new findings helped patients. This

model has been maintained by the geneticists at the Human

Genome and Stem Cells Research Center. Genetic testing

and genetic counseling in our community, has been one of

the main activities of HUG-CELL with emphasis to the

group of disorders associated with research projects, in-

cluding: neuromuscular, neurodegenerative, craniofacial,
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deafness, intellectual disability, and Autism Spectrum dis-

orders.

From Southern blot to next generation sequencing

Molecular diagnosis for neuromuscular disorders was

introduced in our center in the late 1980s based on Southern

blot and PCR (polymerase chain reaction) analysis. The in-

troduction of these methods have largely contributed for

the development of research as well as for the prevention of

new cases, based on diagnosis of NMD families, carrier de-

tection in DMD/DMB families and genetic counseling. The

detection of deletions in the dystrophin gene (which ac-

count for 60–70% of the mutations responsible for Du-

chenne dystrophy) were first performed by Southern blot,

followed by multiplex analysis of the most common de-

leted exons by PCR. In the 1990’s, the use of microsatellite

markers throughout the genome led to the mapping of novel

NMD genes. In addition, microsatellite markers within and

flanking the dystrophin gene, allowed us to improve

DMD/DMB carriers detection tests by segregation analy-

sis, particularly in familial cases in which no deletion had

been detected in the dystrophin gene. In the mid 1990’s, ge-

netic testing for diagnosis of Myotonic muscular dystrophy

and Facioscapulohumeral disorder were introduced, both

based on Southern blot methodology. In 2000, with the in-

auguration of the Human Genome Center, a non-profit

DNA diagnostic lab was installed. The acquisition of a

semi-automated Sanger sequencing equipment opened the

possibility to again expand and improve genetic testing (by

allowing the larger scale use of Sanger sequencing method-

ology) and include other NMD, particularly the limb-girdle

muscular dystrophies. This expansion also enabled us to

reach a much wider public. In addition to benefiting pa-

tients/families seen at our center it allowed the performance

of updated molecular diagnosis in DNA samples from pa-

tients throughout Brazil. Our laboratory was also one of the

first core sequencing facilities at University of Sao Paulo, a

service that has been offered since then and which has been

continuously updated. A recent new improvement in

2013-2014 was the acquisition of next generation sequenc-

ing (NGS) equipment (MiSeq and HiSeq, Illumina) and

standardization of its methodology. NGS, based on a panel

of 80 genes, increased significantly the efficacy of NMD

diagnosis, with molecular alterations being identified in

~73% of the cases. In addition to decreasing the cost of

NMD testing, the use of a panel of genes avoids the ethical

issues associated to the identification of incidental findings

through exome sequencing. NGS has also imposed a great

challenge in bioinformatics training and expertise develop-

ment on how to deal, store and analyze large data sets.

Whole exome sequencing (WES) which was stan-

dardized in our center in 2014 has brought important contri-

butions to basic research, and to identification of new

disease loci and pathogenic mutations. WES also enables a

better characterization of the Brazilian population genetic

variability, which is crucial for interpreting sequence anal-

ysis and for obtaining accurate diagnosis (Zatz et al., 2012)

(http://laboratorio.genoma.ib.usp.br;

http://genoma.ib.usp.br).

Genetic counseling

Genetic counseling (GC) is of upmost importance for

the prevention of genetic diseases, especially for the un-

treatable ones. The process of GC includes diagnosis con-

firmation, identification of at-risk members, prenatal and

pre-implantation diagnosis, as well as family orientation on

management of affected patients.

Several ethical issues regarding the use of genetic

tests have been the subject of much debate since the pre-

molecular era, particularly regarding asymptomatic at-risk

relatives in late-onset disorders. In accordance with an in-

ternational consensus, we do not test asymptomatic chil-

dren at-risk for late-onset disorders for which there is no

treatment, such as cerebellar ataxias or myotonic dystro-

phy, as this decision should be taken solely by the subjects

themselves when they reach adulthood. On the other hand,

the identification of asymptomatic carriers for recessive

autosomal or X-linked diseases can be crucial for the repro-

ductive decisions of the parents.

Before offering genetic testing, several issues are dis-

cussed with patients or family members, such as which in-

dividuals should be tested, implications of test results, and

how to deal with unexpected findings, such as false pater-

nity.

More recently, the introduction of exome sequencing

has opened new ethical debates particularly related to inci-

dental findings. What should be disclosed? What is the ge-

neticist’s responsibility? Do patients and family members

understand all the possibilities when signing informed con-

sents about their willingness to be informed or not? As

there is still no Brazilian regulation on this matter, we have

adopted the criteria of: ACMG (American College of Med-

ical Genetics and Genomics) Board of Directors (2013).

We provide information to those who are interested about

the at-risk variants associated with disorders, to which pre-

ventive measures and/or treatment are available. Our expe-

rience has shown that there is no rigid rule and each case

has to be discussed by the genetic counseling team before

deciding how to better approach the patients’ family.

Most services in Brazil offer prenatal diagnosis

(PND) in spite of abortion not being allowed for genetic

disorders reasons (the only exception for a legal abortion is

the confirmation of anencephaly). In our service we de-

cided to perform PND in the 1990s for at-risk women, who

would otherwise interrupt their pregnancy, fearing that

their fetus could be affected by a genetic disorder (for ex-
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ample mothers or sisters of Duchenne muscular dystrophy

patients or parents at-risk for congenital muscular dystro-

phy 1A, (Yamamoto et al., 2004, Vainzof et al., 2005). In

the majority of cases referred for PND, the test results are

negative for the mutation present in the family, and as a re-

sult, more women are encouraged to continue their preg-

nancies and unaffected babies are saved. Moreover, since

many of our patients come from a poor social background,

orientation on management of the genetic disease has been

an important part of our service. This approach was the sub-

ject of a paper celebrating 125 years of Science magazine in

2005 (Zatz, 2005). More recently, psychoanalytical support

and follow-up for patients and at-risk relatives has also

been offered in our center, which has been very important

particularly for patients with degenerative disorders.

Finally, the integration of community services with our

post-graduation program results in a significant contribu-

tion in the training of a number of geneticists, enabling

them to start new Centers in other Brazilian cities and

spread out this expertise to our large country.

Stem cells: from patients and for patients

Stem cells from patients: IPSc cells

The groundbreaking discovery of induced pluripotent

stem cells (iPSCs) by Dr. Yamanaka’s group in 2006

(Takahashi and Yamanaka, 2006), demonstrating the possi-

bility to reprogram differentiated cells to an embryonic-like

stem cell, opened a new venue for research. While applica-

tions of iPSCs in cell therapy are envisioned but still in a

premature stage of development, the use of iPSCs as tools

to study human genetic diseases mechanisms boomed in

the last few years. With this in mind, we have established an

IPS cells bank from patients with different neuromuscular

disorders. One interesting result was obtained with patients

affected by amyotrophic lateral sclerosis type 8 which had

been identified by our group. We have successfully repro-

grammed fibroblasts from ALS8 patients and generated

motor neurons. Our results suggest that optimal levels of

VAPB may play a central role in the pathogenesis of ALS8,

which is in agreement with the observed reduction of

VAPB in sporadic ALS and SOD1 murine model (Mitne-

Neto et al., 2011).

The most recent gene editing CRISPR-cas9 technol-

ogy (Doudna and Charpentier, 2014) applied to different

cells derived from IPSCs will certainly bring important

contributions to functional studies, enhancing our compre-

hension on pathological mechanisms underlying neuro-

muscular disorders and providing new opportunities for

treatment.

Stem cells for patients: cell therapy

Preclinical trials in neuromuscular and neurodegenerative
disorders

The possibility to treat progressive muscular dystro-

phies, particularly DMD, with stem cell therapy has been of

great interest and the focus of many investigations. Before

starting therapeutic trials, several questions need to be ad-

dressed: What is the effect of stem-cell therapy for muscu-

lar dystrophies in animal models? What is the best source of

adult stem cells? Is immunosuppression necessary? Are the

experiments reproducible with different cell lines, or from

different donors? Should injections be local or systemic?

Most importantly, what is the safety level of non auto-

logous stem cell transplantation? This last issue is very im-

portant for genetic conditions such as neuromuscular

disorders where autologous stem cell transplantation is un-

likely to be beneficial. In order to address these questions

we have performed a series of pre-clinical experiments

with human-derived stem cells transplanted into different

murine models and GRMD dogs.

Comparison between different sources of stem cells

revealed that cord tissue is a much richer source of stem

cells than umbilical cord blood, and that mesenchymal stem

cells from blood and tissue have a different expression pro-

file (Secco et al., 2008a,b, 2009). The relevance of this ob-

servation, which resulted in a highly cited paper, was based

on the fact that umbilical cord blood banks (both public and

private) had been storing blood and discarding tissue. Next,

we also identified fallopian tubes as an important source of

stem cells, with potential to enhance bone regeneration

(Jazedje et al., 2009, 2012).

Several reports on stem cell transplantation have been

published by other groups in murine as well as canine mod-

els of muscular dystrophy using immunosuppressed ani-

mals (Di Rocco et al., 2006; Sampaolesi et al., 2006;

Rouger et al., 2011; Nitahara-Kasahara et al., 2012). This

approach may hinder the interpretation of clinical effects of

stem cell injections since immunosuppressant drugs have a

beneficial effect on muscular dystrophy (Davies and

Grounds, 2006). Therefore, we performed our xenotrans-

plantation experiments without any immunosuppression

therapy. We first analyzed the effect of human adipose-

derived stem cells (hASCs), which were injected in SJL

mice (the murine model for dysferlinopathy). Human cells

were well tolerated and treated mice performed signifi-

cantly better than untreated controls in functional tests

(Vieira et al., 2008). We next compared the effect of human

umbilical cord stem cells injected in SJL mice using the

same protocol. Differently from the experiment with

hASCs, injected mice did not show any functional im-

provement but untreated controls showed a decline in func-

tional tests (Vieira et al., 2010; 2012).
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The next question we wanted to answer was whether

observed discrepancies were due to donors’ different ge-

netic background or different stem cell sources. Therefore,

we compared the effect of pericytes (which are precursors

of mesenchymal stem cells, Caplan and Sorrell, 2015) de-

rived from different tissues (adipose tissue, endometrium,

abdominal muscle and fallopian tube) from a female donor

undergoing hysterectomy. Pericytes were injected intra-

peritoneally in double-knockout mdx/utrophin mice. We

observed a beneficial effect only in pericyte-injected ani-

mals, which lived significantly longer (~ 25%) (Valadares

et al., 2014).

The danger of stem cell contamination using Parkinson’s
disease as a model

Preliminary trials to treat highly prevalent neuro-

degenerative diseases, such as Parkinson’s disease (PD),

with mesenchymal stem cells have generated controversial

results. In a rat model of PD induced by the MPTP neuro-

toxin, we first observed a significant bilateral preservation

of dopaminergic neurons in the substantia nigra and pre-

vention of motor deficits typically observed in PD, follow-

ing intracerebral administration of human umbilical

cord-derived mesenchymal stem cells (UC-MSC) early af-

ter MPTP injury. However, surprisingly, administration of

fibroblasts -mesenchymal cells without stem cell proper-

ties, as a xenotransplantation control was highly detrimen-

tal, causing significant neurodegeneration and motor

dysfunction independently of MPTP administration. Our

pre-clinical study suggests that fibroblasts may be common

cell contaminants affecting the clinical outcome in stem

cell therapy protocols, which might also explain the dis-

crepant clinical results (Pereira et al., 2011). These obser-

vations should be widely disseminated, since many private

clinics claim to be injecting stem cells to treat many differ-

ent diseases while, in reality, it is unknown how well char-

acterized these injected cells are.

Safety of nonautologous stem cell transplantation: GRMD
dogs

To investigate the safety of nonautologous stem cell

transplantation, we injected hASCs in the best available an-

imal model for DMD: the golden retriever muscular dystro-

phy (GRMD) model. Affected animals carry a frameshift

point mutation resulting in the absence of the muscle pro-

tein dystrophin (Sharp et al., 1992). These dogs have a se-

vere disease course and most do not survive beyond two

years, despite some may have a variable phenotype. Al-

though no human dystrophin was found in muscles from re-

cipient dogs, a functional improvement was observed

shortly after a series of injections followed by an apparent

stabilization afterwards, without noticeable side effects. A

growing body of evidence indicates that although mesen-

chymal stem cells are partially defined by their ability to

differentiate into various tissues in vitro, it is their trophic,

paracrine and immunomodulatory functions that may have

the greatest therapeutic impact in vivo, decreasing inflam-

mation and fibrosis (Murphy et al., 2013; Caplan and Sor-

rell, 2015). This would explain the beneficial effect

observed in the injected GRMD dogs. In short, we showed

that repeated injections of hASCs, from different donors,

are well tolerated in immunocompetent GRMD dogs. We

also observed functional benefits in three dogs followed

from four to six years post-transplantation, without tumor

formation. This study has the longest follow-up of human

cells transplanted animals ever reported. These observa-

tions, which should be replicated in larger samples, might

have important applications for future therapy in patients

with different forms of muscular dystrophies (Zatz et al.,

2015).
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