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Abstract Mass cytometry (CyTOF) is a technology that has revolutionised single-cell biology. By

detecting over 40 proteins on millions of single cells, CyTOF allows the characterisation of cell

subpopulations in unprecedented detail. However, most CyTOF studies require the integration of

data from multiple CyTOF batches usually acquired on different days and possibly at different

sites. To date, the integration of CyTOF datasets remains a challenge due to technical differences

arising in multiple batches. To overcome this limitation, we developed an approach called

CytofRUV for analysing multiple CyTOF batches, which includes an R-Shiny application with

diagnostic plots. CytofRUV can correct for batch effects and integrate data from large numbers of

patients and conditions across batches, to confidently compare cellular changes and correlate

these with clinically relevant outcomes.

Introduction
Mass cytometry or Cytometry by Time-Of-Flight (CyTOF) (Bandura et al., 2009) is a high-throughput

technology that permits the simultaneous measurement of the expression level of more than 40 pro-

teins in millions of single cells. It uses antibodies, which are labelled with heavy metal ion tags to tar-

get the proteins of interest, and are in turn detected by time-of-flight mass spectrometry. CyTOF

has been a powerful tool for delineating cell subsets in heterogeneous tissues such as blood and

tumour, and for correlating single-cell differences with biologically relevant outcomes (Levine et al.,

2015; Qiu et al., 2011). This capability has been useful in understanding the mechanisms of resis-

tance that develop in certain blood cancers to a new class of anti-cancer drugs, termed BH3 mim-

etics, in early stage clinical trials of several blood cancers (Agarwal et al., 2019; Blombery et al.,

2019). Yet, a major challenge in the field is the high variation in the performance observed in the

CyTOF instrument, caused by both differences in instrument calibration and fluctuations in signal

strength.

To overcome this challenge, a normalisation method was created to improve the comparability

between measurements (Finck et al., 2013). Briefly, the method involves the addition of five types

of control beads mixed in with cells, each type tagged with a different heavy metal element, the col-

lection of the control beads throughout the run, and the application of a multiplicative correction at

the end of the run. For the multiplicative correction, the algorithm calculates smoothed intensities

from each control bead element, estimates a coefficient at each control bead acquisition time-point,

and corrects the instrument sensitivity at that specific time-point by computing a unique slope for all

the control bead elements, assuming that they vary at similar rates. To extend from control bead
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events to all cells, the value of the coefficient is linearly interpolated over all time-points of the

experiment by assuming that all cells (non-control bead events) have similar slopes to the closest

bead time-point. The final normalisation step involves applying the interpolated correction coeffi-

cient to all the protein measurements. The use of this normalisation to account for intra-instrument

time-drift variation has become common practice, but novel correction procedures are still needed

to address all other types of variation between samples between research centres, see for example

(Leipold et al., 2018) and within laboratories run on different days (see below).

In this study, a single CyTOF dataset, barcoded sample set, or run is referred to as a CyTOF

batch. We call the batch effects we seek to remove ‘unwanted variation’, and their causes include:

differential antibody staining across samples within a batch, different batches of reagents, different

machines or the inevitable lab differences found in multicentre studies. The ability to accurately dis-

tinguish true biological changes from technical artefacts like those just mentioned is critical, and has

already been done to an extent for flow cytometry assays (Finak et al., 2016; Maecker et al.,

2012).

Two methods have recently been published that aim to achieve consistency between samples

across batches which make use of shared reference samples across batches. BatchAdjust

(Schuyler et al., 2019) offers methods analogous to the control bead normalisation described

above, which include scaling all measurements by ratios of means or medians. With the scaling meth-

ods, a factor is computed for each protein and each batch to adjust the measurements on the refer-

ence samples replicated across batches. Similar adjustments are then applied to the samples within

a batch to achieve consistency with their reference samples. However, technical variation can impact

specific cell types differently (Van Gassen et al., 2019). To address this, CytoNorm (Van Gassen

et al., 2019) uses the clustering algorithm FlowSOM (Van Gassen et al., 2015) to identify clusters

prior to normalisation, and defines a cluster-specific goal distribution for the values of each protein

measurement using the means of quantiles. Their approach then uses splines to transform the origi-

nal protein values into new values, which have the goal distribution. This method relies on the strong

assumption that batch effects do not affect the clusters, and this is examined using coefficients of

variation. Both methods were shown to be effective in removing batch-to-batch variation in the data-

sets analysed. The observation that batch differences can affect clusters differently (Van Gassen

et al., 2019) suggests that it will not be sufficient to apply a single batch adjustment to the measure-

ments on all cells, as it is being done in BatchAdjust (Schuyler et al., 2019). However, a comparison

of the two methods assessing the performance and limitations of each method has not been per-

formed. Additionally, there are no tools or metrics to assess whether the post normalised CyTOF

data are more or less consistent across batches, not only at the protein expression level but also at

the cluster level.

In recent years, a class of methods called Remove Unwanted Variation (RUV) has been developed

to remove unwanted variation such as batch effects, from high-dimensional genetic and genomic

data. They have been applied to microarray (Gagnon-Bartsch and Speed, 2012), RNA-seq

(Risso et al., 2014), Nanostring nCounter gene expression (Molania et al., 2019) and single-cell

RNA-seq data (Lin et al., 2019). Here, for the first time, we adopt the approach and develop a

computational algorithm which permits the integration of data across CyTOF batches. Our method

is based on the RUV-III method (Molania et al., 2019), which uses technical replicates and negative

control genes to estimate unwanted variation. We applied RUV-III to CyTOF data by exploiting

pseudo-replicates to estimate the unwanted variation and remove it. It is implemented in the R pack-

age ‘CytofRUV’, which is available at the following link: www.github.com/mtrussart/CytofRUV. We

begin by examining the batch effects found when comparing CyTOF data from samples replicated

across batches. To do so, we built an R-Shiny application that exhibits any batch effects present in

such samples using four different diagnostic plots and their associated numerical metrics based on

protein expression distributions and clustering results. Then, we compare the unadjusted data with

the normalised data using either CytofRUV, BatchAdjust or CytoNorm, all on three different data-

sets. Our results suggest that not only does CytofRUV do better at removing unwanted variation

from measured protein expression, it also makes the distributions of these quantities more uniform

across batches, and enhances the detection of biologically important changes embodied in the data

across batches.
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Results

Batch effects include protein expression differences
A known source of unwanted variation in CyTOF datasets is the time-drift in signal intensity

(Finck et al., 2013). However, there can also be variation due to differences across batches in anti-

body conjugates or other reagents, as well as operators, machines and laboratories. To exhibit some

of the batch effects that can arise with CyTOF within one lab, we conducted an experiment using

samples replicated across batches. Replicated samples allow us to assess intra-site reproducibility

and systematic differences due to technical variation.

We created a dataset based on 24 samples in total, consisting of peripheral blood mononuclear

cell (PBMC) samples from three patients with chronic lymphocytic leukaemia (CLL) and PBMC from

nine healthy controls (HC), each replicated across two batches of 12 samples (Table 1). All samples

were stained with a 31-antibody panel targeting 19 lineage (Table 2) and 12 functional proteins

(Table 3) that were previously validated (Teh et al., 2020). After processing the data (Methods), we

applied an arcsinh-transformation defined as arcsinh (intensity/5) in all that follows.

The first class of diagnostic plots we use is based on median protein expression. The multi-dimen-

sional scaling (MDS) plot (Figure 1A) computed using median protein expression from all cells in

each sample as described in Crowell HL et al., 2017 and Nowicka et al., 2017, shows the dissimi-

larities between samples. The first dimension (MDS1) separates the CLL from the HC samples well.

Table 1. Samples descriptions.

The first column indicates the sample id, the second the patient condition, either healthy controls

(HC) or chronic lymphocytic leukaemia (CLL), the third column indicates the patient id and the last

indicates the batch number, 1 or 2.

Sample Id Condition Patient Id Batch

HC1_B1 HC VBDR996 1

HC2_B1 HC VBDR1089 1

HC3_B1 HC VBDR1090 1

HC4_B1 HC VDBR1098 1

HC5_B1 HC VDBR1108 1

HC6_B1 HC VDBR1103 1

HC7_B1 HC VDBR1105 1

HC8_B1 HC VDBR1107 1

HC9_B1 HC VBDR1111 1

CLL1_B1 CLL DG33-01 1

CLL2_B1 CLL DG23-01 1

CLL3_B1 CLL DG27-01 1

HC1_B2 HC VBDR996 2

HC2_B2 HC VBDR1089 2

HC3_B2 HC VBDR1090 2

HC4_B2 HC VDBR1098 2

HC5_B2 HC VDBR1108 2

HC6_B2 HC VDBR1103 2

HC7_B2 HC VDBR1105 2

HC8_B2 HC VDBR1107 2

HC9_B2 HC VBDR1111 2

CLL1_B2 CLL DG33-01 2

CLL2_B2 CLL DG23-01 2

CLL3_B2 CLL DG27-01 2
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The second dimension (MDS2) shows the batch differences, with samples that originate from batch

one placed at the bottom of the plot and samples from batch two at the top of the plot. This distinc-

tion clearly reveals that the protein expression measured in the samples is affected by batch. We

also carried out hierarchical clustering on the median expression across all cells in the samples of the

19 lineage proteins and 12 functional proteins detected, to highlight the proteins driving the

Table 2. Lineage surface proteins selected.

The first column indicates the transition element isotope (mass number, element name), the second

column indicates the antigen selected, and the last two columns indicate the clone name and vendor.

Metal Lineage (surface) protein antibody Clone Vendor

1 89 Y CD45 HI30 BioLegend

2 115 In HLA-DR L243 BioLegend

3 140 Ce CD27 M-T271 BioLegend

4 141 Pr CD235a/b HIR2 BioLegend

5 142 Nd CD19 HIB19 BioLegend

6 143 Nd CD5 UCHT2 BioLegend

7 144 Nd CD38 HIT2 BioLegend

8 145 Nd CD4 RPA-T4 BioLegend

9 146 Nd CD8 RPA-T8 BioLegend

10 147 Sm CD20 H1 BD

11 148 Nd CD16 3G8 BioLegend

12 151 Eu CD123 6H6 BioLegend

13 155 Gd CD56 B159 BioLegend

14 156 Gd CD14 HCD56 BioLegend

15 159 Tb CD11c Bu15 BioLegend

16 169 Tm CD45RA HI100 BioLegend

17 170 Er CD3 UCHT1 BioLegend

18 171 Yb CD66 CD66a-B1.1 DVS

19 209 Bi CD61 VI-PL2 DVS

Table 3. Set of intracellular functional proteins selected.

The first column transition element isotope (mass number, element name), the second column indi-

cates the antigen selected, and the last two columns indicate the clone name and vendor.

Metal Functional (intracellular) protein antibody Clone Vendor

1 140 Ce BAK 7D10 WEHI

2 153 Eu Bcl-xL E18 Abcam

3 154 Sm Bax 1B4 WEHI

4 157 Gd Bcl-2 100 WEHI

5 160 Gd Mcl-1 Y37 Abcam

6 161 Dy cMyc D84C12 CST

7 163 Dy BFL-1 SP435 Abcam

8 165 Ho Bim 3C5 WEHI

9 166 Er pRb [S807/811] J112-906 BD

10 172 Yb BCLW 16H12 WEHI

11 173 Yb cCaspase3 C92-605 BD

12 174 Yb p53 7F5 CST
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observed clustering of samples (columns) and proteins (rows) in the heatmap (Figure 1B). As with

the MDS plot, a grouping of samples by condition and by batch is observed.

We next examined the magnitude of the batch-to-batch differences in the distributions of the

protein expression across replicates, as our second class of diagnostic plots. We observed that batch

effects not only affect each protein differently (Figure 2—figure supplement 1) but also each sam-

ple differently (Figure 2—figure supplement 1). To assess the importance of the variation found

between samples replicated across batches, we compared them to expected, biologically relevant

differences within a single batch. To do this, we used another dataset of a replicated sample from

one index patient with CLL, and samples from six other patients with CLL. The one sample from the

index patient with CLL was replicated across eight different CyTOF batches, resulting in eight repli-

cated CLL datasets. We compared the variation in these datasets with that from six other patients

with CLL processed in a single CyTOF batch. We focussed on expression of BCL-2, an archetypal

pro-survival protein that is greatly upregulated in CLL cells compared to their normal B cell counter-

parts, yet still exhibits variation in CLL cells among patients (Majid et al., 2008). We found that the

variation in the distributions of the BCL-2 expression from a single sample across batches

(Figure 2A) is comparable to that observed in the BCL-2 expression for the six patients at screening

from a single CyTOF batch (Figure 2B). We conclude that batch effects due to unwanted variation

can occur over a range comparable to that due to actual biological changes among patients

(Figure 2A–B). An important repercussion in this example is that the impacts of treatments on dis-

tinct CLL cellular phenotypes would not be confidently detected without correcting for batch

effects.

Batch effects affect cell subpopulations differently
To assess how batch effects affect cell subpopulations, we used our first dataset of samples from 3

patients with CLL and 9 PBMC healthy controls (HC). We partitioned the entire collection of cells

into clusters using FlowSOM as described in Nowicka et al., 2017, which appeared among the fast-

est and best performing clustering approaches for CyTOF data (Weber and Robinson, 2016). In all

24 samples, we carried out this clustering using the 19 lineage proteins to identify 20 cell clusters

(Figure 3A and Figure 3—figure supplement 1). We performed the clustering using different num-

bers of clusters, and the choice of 20 clusters was determined based on the biological interpretation

of the cell subpopulations found. Here we refer to clusters as cell subpopulations, although in some

cases the clustering method might produce clusters that do not necessarily correspond to homoge-

neous cell subpopulations. The third class of diagnostic plots we display are based on the clustering

Figure 1. Visualisation of batch effects on the median protein expression across batches . (A) Multi-dimensional scaling plot of the 24 samples

computed using median protein expression. (B) Heatmap of the median protein expression of 19 lineage proteins and 12 functional proteins across all

cells measured for each sample in the dataset.
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Figure 2. Distribution of BCL-2 expression. (A) Distributions of BCL-2 expression in one sample from one treated CLL cancer patient, replicated across

8 CyTOF batches, coloured by batch. (B) Distributions of BCL-2 expression in one sample from each of 6 different CLL cancer patients at screening,

processed in a single CyTOF batch, coloured by patient.

Figure 2 continued on next page
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results. We used t-Distributed Stochastic Neighbor Embedding (t-SNE) as described in Crowell HL

et al., 2017 and Nowicka et al., 2017 to give a 2D representation of the single-cell data, with the

positions of cells reflecting their proximity in high-dimensional space. It was then possible to visualise

the impact of batch differences on cell subtypes identification in the datasets by examining the

t-SNE plot coloured by cluster (Figure 3A), which assumed different distributions across the repli-

cate CyTOF runs. Additionally, we highlighted the batch effect by overlaying the predominant CLL

cell subpopulation (cluster 9) coloured by batch (Figure 3B). The distinct positions of these clusters

on the second dimension (t-SNE2) suggested that substantial unwanted variation was altering cell

population measures across the two batches.

To optimise the dimensionality reduction and visualise the extent to which discrete subsets of

cells are separated from each other in the 31-dimensional space, we performed a linear discriminant

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Protein distributions before normalisation for the samples CLL2 and HC1 across batch 1 and batch 2.

Figure supplement 2. Protein distributions after CytofRUV normalisation with k = 5 for the samples CLL2 and HC1 across batch 1 and batch 2.

Figure 3. Cell clustering plots show batch effects in cells from the same cancer patient CLL1 sample replicated across 2 CyTOF runs. (A) Cell clustering

identification. t-SNE plot based on the arcsinh-transformed expression of the 19 lineage proteins in the cells. For display purposes, 2000 cells were

randomly selected from each of the samples. Cells are coloured according to the 20 clusters obtained using FlowSOM clustering stratified by batch 1

(left) or 2 (right) of the corresponding replicated sample. (B) Same as in (A) selecting only cluster 9 cells but coloured by the batch 1 or 2 of the

corresponding replicated sample. (C) Same as in (A) but after CytofRUV normalisation with k = 5. (D) Same as in (B) but after CytofRUV normalisation

with k = 5. (E) Linear discriminant analysis applied to data on two cell types from the same sample replicated across two batches, with shape indicating

cell type and colour indicating batch. (F) Cluster proportions. Barplot of the relative abundance (percentage) of the cells in clusters 2, 6 and 7 by batch.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Heatmap of the median lineage protein expression across clusters with the associated cluster percentages measured for all cells

and all samples in the first dataset of samples from 3 patients with CLL and 9 HC.

Figure supplement 2. BCL-2 median expression in the main CLL cluster from the 3 CLL samples replicated across 2 CyTOF runs.

Figure supplement 3. Linear discriminant analysis plot to show batch effects in cells from the same cancer patient CLL1 sample replicated across

batches after CytofRUV normalisation with k = 5.

Figure supplement 4. Boxplot of the differences of median protein expression differences across batches before and after CytofRUV normalisation (DD,

see Materials and methods) with k=5 within the main prominent cell subpopulation.
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analysis (LDA) on four subsets of cells: the predominant CLL cell subpopulation (cluster 9) and CD8

killer cell subpopulation (cluster 2) identified in the study from batches 1 and batch 2. The first

dimension (LD1) separates the cell types well, while the second dimension (LD2) embodies batch dif-

ferences: cells that originate from batch one are located at the top of the plot while cells from batch

two are at the bottom of the plot (Figure 3E).

CyTOF has the unique ability to provide a deeper understanding of the molecular changes

induced by targeted therapies at the single-cell level and how their efficacy is influenced by cancer

heterogeneity. However, the assessment of patient heterogeneity and its correlation with the clinical

outcome necessitates a reliable detection of changes in protein expression across patients. As such,

we compared the median expression of BCL-2 for the 3 patients with CCL in the main CLL cluster

nine and found that the variation from a single sample across batches is higher than that observed in

the BCL-2 median expression across patients (Figure 3—figure supplement 2A). To overcome this

limitation, the assessment of heterogeneity of patients with CLL requires a correction for batch

effects that would remove this unwanted variation.

Batch effects can induce differences in cell subpopulation abundances
In CyTOF studies, the analysis of cell subpopulation abundances as well as that of protein expression

can be used to identify sets of proteins that are associated with response to a treatment. Comparing

the proportions of inferred cell types across different drug treatments highlights the subpopulations

that change across experimental conditions. To assess whether batch differences affect cell subpop-

ulation abundances, we compared the cluster frequencies across replicates. We detected a notice-

able difference in the proportions of CLL cancer cells (cluster 2, cluster 6 and cluster 7) among cells

that originate from the batch one compared to those from batch 2 (Figure 3F). Our R-Shiny applica-

tion can also be used to visualise the cluster proportions across samples, and is our fourth class of

diagnostic plots (Figure 4). Such variation in cell subpopulation abundance is important when

batches have markedly different proportions. We need to be able to identify changes in subpopula-

tion abundance which are due to biology and not to unwanted variation between samples.

In summary, we examined the reproducibility of samples replicated across batches. To facilitate

the identification of batch effects across replicates, we developed an R-Shiny application that produ-

ces the four diagnostic plots previously mentioned: Median Protein Expression, Protein Expression

Distributions, Clustering Results and Cluster Proportions. We found that batch differences affect not

only the protein expression levels, but also the cluster proportions. Such differences are problematic

in large-scale studies with multiple patients, cell types and treatments, as they compromise the

detection of biologically important changes. The integration of datasets from multiple CyTOF

batches is therefore an important challenge to be addressed.

Using CytofRUV to remove batch effects in CyTOF data
To integrate data from multiple CyTOF batches, we have developed a normalisation method that

removes batch effects in CyTOF data. In order to estimate and adjust for such unwanted variation,

CytofRUV exploits the concept of pseudo-replicates (here cells) in the RUV-III method that has been

successfully applied to the Nanostring nCounter gene expression platform (Molania et al., 2019)

and to single-cell RNA-seq data (Lin et al., 2019). We cluster using FlowSOM, and we assume that

at least one cluster in the replicated samples is shared across the batches. We then consider the cells

of clusters shared across the batches to be pseudo-replicates (see Methods). To adjust for batch

effects, CytofRUV begins by averaging protein values across pseudo-replicates, and then forms

residuals. This leads to an estimate of one aspect of the unwanted variation (a) on each protein,

which in turn is used to estimate the other aspect (W) of the unwanted variation on each cell. Finally,

those estimates are combined into an estimate of the unwanted variation (Wa), and that is sub-

tracted from the data. The dimension (k) of the unwanted variation also needs to be determined. To

find a good value for k, we repeat the analysis with different values of k and then evaluate the quality

of each result using our diagnostic plots and the corresponding summary statistics.

We first used CytofRUV on data from the 12 samples replicated across two batches, using two

samples as our known replicated reference samples. Specifically, we used HC1 for the HC samples

and CLL2 for the CLL samples, defining all cells from those samples in any given cluster to be

pseudo-replicates. Assuming that all 20 clusters have cells from HC1 and CLL2 in both batches, any
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differences in protein expression between cells within the cluster but in different batches will repre-

sent unwanted variation. We summarized the performance of our CytofRUV normalisation method

on all the CLL samples using three metrics and compare them with the corresponding ones for

BatchAdjust (Schuyler et al., 2019) and CytoNorm (Van Gassen et al., 2019).

CytofRUV reduces batch effects from protein expression
To assess the quality of the our CytofRUV normalisation, we first compared the distributions of pro-

teins across the two batches for the designated replicated reference samples. We found that, for all

the proteins, these distributions become more similar across batches (Figure 2—figure supplement

1, Figure 2—figure supplement 2). Also, we observed that the variation in the median expression

of BCL-2 for the 3 patients with CLL in the main CLL cluster is reduced compared to that observed

in the BCL-2 median expression across patients (Figure 3—figure supplement 2B). We also

observed a decrease in the batch effects both on the t-SNE plots (Figure 3C and D) and in the linear

discriminant analysis (Figure 3—figure supplement 3). To quantify the batch differences between

these pairs of distributions, we computed the Earth Movers Distance (EMD) as described in

Van Gassen et al., 2019 for all the proteins and all CLL and HC samples for both the original data-

set and the normalised datasets (Figure 5A and D). For only the CytofRUV normalisation, we also

computed the EMD by cluster for all proteins to assess the reduction in batch differences within clus-

ter compared to the raw data, where batch effects are affecting protein distributions within cluster

differently (Figure 5—figure supplement 1). For all CLL samples, CytofRUV gave the lowest EMD

for all values of k = 5,10 and 15, not only compared to the raw data but also compared to both

Figure 4. CytofRUV’s R-Shiny application for the identification of batch effects in cluster proportions across batches. All diagnostic plots can be

obtained by the user selecting an option at the top left corner by from: Median Protein Expression, Protein Expression Distributions, Clustering Results

and Cluster Proportions. The selected option displays barplots of cluster proportions across samples before normalisation and by conditions CLL or HC

on a subsample of the whole dataset. Vertical black boxes contain the same replicated sample across batches one and batch2.
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BatchAdjust and CytoNorm (Figure 5A). Similarly, CytofRUV also gave the lowest EMD for 7 out of

9 HC samples compared to both BatchAdjust and CytoNorm (Figure 5D).

Altogether EMD revealed that CytofRUV is the method with the optimal reduction in batch differ-

ences from protein expression for 11 out of 12 samples. CytoNorm gave the lower EMD when com-

pared with BatchAdjust for 7 out of 12 samples (Figure 5A and D).

CytofRUV makes the cell subpopulation proportions more consistent
across batches
The proportions of the different cell subpopulations in replicates in different batches should be con-

sistent. This consistency among the replicates ensures that a differential analysis of their abundances

will confidently detect robust cellular changes across experimental conditions. To assess how well

CytofRUV corrects for differences in cluster proportions across batches, we computed the Hellinger

distance (see Methods) between the paired cluster proportions of all replicated samples. For the HC

samples, CytofNorm gave the lowest Hellinger distances for 4 samples out of 9 compared to both

CytofRUV and BatchAdjust. Two remaining samples are the ones where CytofRUV is able to make

those proportions more consistent across replicates (Figure 5E). For all the CLL samples, the lowest

Hellinger distances are found for the normalisation with CytofRUV methods (Figure 5B). Overall

CytofRUV is able to adjust the cluster proportions and make them consistent across replicates to a

greater extent than is achieved by the two others methods. CytoNorm also performs well in adjust-

ing those proportions, while BatchAjust generally leads to Hellinger distances similar to those in the

raw data (Figure 5B and E).

Figure 5. Metrics to assess the effectiveness of the normalisation methods. In all panels, the colour indicates either the raw data or the method used

for normalisation. (A) Boxplots of the Earth Movers Distances (EMD) between paired protein expression distributions across batches for each CLL

sample. (B) Hellinger distances between paired cluster proportions across batches for each CLL sample. (C) Mean Silhouette scores computed for all

CLL samples on the cluster types (bio) on the x-axis and on batch (batch) on the y-axis. (D) Same as (A) for the HC samples. (E) Same as (B) for the HC

samples. (F) Silhouette scores computed for all HC samples on the cluster types (bio) on the x-axis and on batch (batch) on the y-axis.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. EMD for all the proteins by cluster, before and after CytofRUV normalisation of the CLL2 sample, k = 5.
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Effective removal of unwanted variation leads to a better separation of
cell subpopulations
To evaluate whether CytofRUV not only removes batch effects but preserves biology, we compare

the cell-to-cell variation within clusters in relation to between clusters. We do this by computing Sil-

houette scores (see Methods), which are a combined measure of the degree of separation of cells

within clusters and that between clusters. We compute two Silhouette scores sbiology and sbatch,

based on the cell subpopulations defined by the clusters, and batch grouping, respectively. A nor-

malisation method that successfully removes batch effects should lead to adjusted data with a small

sbatch score, while one which preserves or enhances the biology should have high value of sbiology, at

least as high as that before adjustment. To assess this aspect of the performance of normalisation

methods, we combine the sbiology for clusters with sbatch for the batches in a single plot (Figure 5C

and F). When the raw data are found at the bottom left corner of the plot and a normalisation

method is found at the top right corner of the plot, this indicates that the method has successfully

removed batch effects and preserved or enhanced the biology. According to the mean Silhouette

scores of the CLL samples (Figure 5C), CytofRUV with k = 5 gives the best results, not only enhanc-

ing the biology i.e. cell sub-type definition across replicates (also on t-SNE plots Figure 3C and D),

but also removing the batch effects. For most of the HC samples, sbatch is similar for all methods and

in a few samples sbatch is higher than in the raw data for all methods (Figure 5F). Using CytofRUV

with k = 5 for the HC samples, we also obtained a higher sbiology for 8 out of the 9 HC samples

(Figure 5F) compared to the two other methods.

CytofRUV removes batch effects across multiple batches in two other
datasets
To expand our analysis, we also tested all methods on two other datasets containing replicate refer-

ence samples across multiple batches, taken from those used in Schuyler et al., 2019 and in Cyto-

Norm (Van Gassen et al., 2019).

The first dataset (Schuyler et al., 2019) is from peripheral whole blood samples from a single

healthy donor, processed at one time to include unstimulated and stimulated conditions (Lipopoly-

saccharide LPS+ and Resiquimod R848-), and aliquoted into 12 batches. We carried out the normal-

isation of all samples using BatchAdjust as explained in Schuyler et al., 2019. For CytofRUV and

CytoNorm, we used all the stimulated samples as replicated reference samples and identified 20

clusters with FlowSOM. CytofRUV used all clusters to define pseudo-replicates.

Our R-Shiny application can also be used to assess the ability of a normalisation method to cor-

rect for batch effects. Using our fourth diagnostic plot, we can visualise the ability of CytofRUV with

k = 10 to remove batch effects in cluster proportions across 12 batches (Figure 6C) compared to

that in the raw data (Figure 6A). We also summarized the performance of all three methods using

the same three metrics (Figure 6—figure supplement 1). Again, we observed the ability of Cyto-

Norm to correct for differences in cluster proportions in stimulated samples where the lowest Hellin-

ger distances are found (Figure 6—figure supplement 1B), and in unstimulated samples

(Figure 6—figure supplement 1E), followed by CytofRUV with overall lower distances than Batch-

Adjust. Likewise, we confirmed that, overall, CytofRUV gave lower EMD for both the stimulated (Fig-

ure 6—figure supplement 1A) and unstimulated samples (Figure 6—figure supplement 1D)

compared to the two other methods, which in some cases have some cases higher EMD than those

of the raw data. Again we observed improved Silhouette scores for CytofRUV compared with Batch-

Adjust and CytoNorm, which have higher sbatch (Figure 6—figure supplement 1C).

The second dataset (Van Gassen et al., 2019) comes from the FlowRepository FR-FCM-Z247

which is the validation cohort of an immunoprofiling study of women during pregnancy used in Cyto-

Norm (Van Gassen et al., 2019). The samples we analyse come from the blood of one healthy donor

which was replicated across 10 separately barcoded plates (i.e. batches). Each batch contained unsti-

mulated cells and cells stimulated with both Interferon a and LPS. Each stimulated and unstimulated

sample was duplicated (referred to as sample 1 and sample 2), giving four samples per plate. To

assess the limitations of the three normalisation methods, we carried out two analyses. The first nor-

malisation was only carried out on samples two using the stimulated samples two as replicate refer-

ence samples, while the second normalisation was done on samples 1 and 2 using both the

stimulated and unstimulated samples one as reference samples. We performed CytoNorm as
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explained in Van Gassen et al., 2019 and identified 25 clusters with FlowSOM and we used all clus-

ters to define pseudo-replicates for CytofRUV.

For the first normalisation using only the stimulated samples as replicate reference samples, Cyto-

fRUV gives lower EMD for all samples, followed by CytoNorm which overall gives lower EMD when

compared with BatchAdjust (Figure 6—figure supplement 2A, Figure 6—figure supplement 2C).

CytoNorm corrects some differences in cluster proportions only in stimulated samples compared to

the two other methods that give EMD generally similar to those in the raw data (Figure 6—figure

Figure 6. CytofRUV performance on two other datasets with multiple batches. (A) Barplot of proportions of clusters across 28 samples from the

BatchAdjust dataset (Schuyler et al., 2019) before normalisation, by samples and coloured by cluster. Vertical black boxes contain the same sample

(Stimulated or Unstimulated) replicated across 14 batches. (B) Protein expression distribution from the CytoNorm dataset (Van Gassen et al., 2019)

before normalisation of all cells from the stimulated samples across 10 batches and coloured by batch. (C) Same as (A) but after CytofRUV

normalisation with k = 10. (D) Same as (B) but after CytofRUV normalisation with k = 5.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Metrics to assess the effectiveness of the normalisation methods on the BatchAdjust dataset.

Figure supplement 2. Metrics to assess the effectiveness of the normalisation methods on samples two from the CytoNorm dataset using stimulated

samples two as replicated reference samples.

Figure supplement 3. Metrics to assess the effectiveness of the normalisation methods on samples two from the CytoNorm dataset using both the

stimulated and unstimulated samples one as replicated reference samples.
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supplement 2B). However, according to the Hellinger distance and Silhouette scores with sbatch
higher to that in the raw data, the unstimulated samples still have batch effects after normalisation

by all three methods (Figure 6—figure supplement 2C, Figure 6—figure supplement 2E). Simi-

larly, the Silhouette scores of the stimulated samples indicate that none of the normalisation meth-

ods is able to successfully remove batch effects (Figure 6—figure supplement 2C).

In our second normalisation, when using both stimulated and unstimulated samples one as refer-

ence samples, lower Hellinger distances are found on both unstimulated and stimulated samples

two for CytofRUV compared to BatchAdjust and CytoNorm, which have higher distances than those

in the raw data for most samples. Better Silhouette scores are found for both samples for CytoNorm

(Figure 6—figure supplement 3B, Figure 6—figure supplement 3E, Figure 6—figure supplement

3C) compared with the two other methods. Using our second class of diagnostic plots, we observe

that CytofRUV with k = 5 effectively eliminates batch differences from protein expression across the

10 batches (Figure 6B) compared to that in the raw data (Figure 6D). It also gives the lowest EMD

compared to both CytoNorm and BatchAdjust (Figure 6—figure supplement 3A, Figure 6—figure

supplement 3D).

Discussion
We have developed a new computational approach for analysing multiple CyTOF batches imple-

mented in the CytofRUV R package. We showed how CytofRUV can reduce batch effects in three

different datasets across multiple batches. Our method allows pooling of data from a large number

of patients and conditions run across multiple batches, thereby enabling the integration of multiple

CyTOF datasets.

Our approach adapts the RUV-III procedure to CyTOF by exploiting pseudo-replicates. We began

by examining the batch effects found in CyTOF by comparing data from samples replicated across

batches. To do this, we build an R-Shiny interface that highlights the presence of any batch effects in

replicated samples using four different diagnostic plots: Median Protein Expression, Protein Expres-

sion Distributions, Clustering Results and Cluster Proportions. Finally, we compare CytofRUV with

the two recently developed methods, BatchAdjust and CytoNorm, using three different datasets.

Our results suggest that not only does CytofRUV frequently do better at removing unwanted varia-

tion in measured protein expression, making the distributions of these quantities more uniform

across batches, but it also enhances the detection of biologically important differences embodied in

the data across batches.

Using replicated samples to assess intra-site reproducibility and differences due to technical varia-

tion, we first showed how batch differences in protein expression in CyTOF datasets consisting of

several CyTOF batches are comparable to biologically relevant differences within a single batch. In

that context, confidently detecting of the impact of diverse treatments on distinct CLL cellular phe-

notypes would not be possible without correcting for such batch effects.

We developed an interactive R-Shiny application that exhibits batch effects in CyTOF studies. Dif-

ferent diagnostic plots can be selected by the user to display any batch effects on CyTOF data

before and after normalisation.

We showed that not only are batch effects found in individual protein expression values which

was also found in Schuyler et al., 2019, but also that batch differences affect samples differently.

We observed the impact of batch differences on cell subtypes identification and how protein distri-

butions are affected differently within cluster, something that was also found by Van Gassen et al.,

2019. This suggests that it will not be sufficient to apply a single batch adjustment to the measure-

ments on all cells, as is performed in BatchAdjust (Schuyler et al., 2019). We also noticed changes

in the cluster abundances across batches.

RUV-III has been successfully applied to the Nanostring nCounter gene expression platform

(Molania et al., 2019) and to single-cell RNA-seq data (Lin et al., 2019). Here, we adapted RUV-III

to CyTOF data using as pseudo-replicates the cells of clusters in the different batches, and taking

the collection of all protein expression values as ‘negative controls’. We refer to the section ‘Selec-

tion of negative control genes’ (Molania et al., 2019) for this last point. Here, as there and in other

contexts, before/after normalisation comparisons indicate that this can be effective. Our method is

adaptable and flexible in that it allows the user to select different normalisations: it can be imple-

mented for one or several replicated reference samples, it can also normalise specific clusters or all

Trussart et al. eLife 2020;9:e59630. DOI: https://doi.org/10.7554/eLife.59630 13 of 20

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.59630


clusters, and the dimension (k) of the unwanted variation can vary. In all cases, the user can visualise

the diagnostic plots to assess the effectiveness of their normalisation. An important step of our

method is the identification of biological subpopulations prior to normalisation, as this guides the

selection of some or all clusters to define pseudo-replicates across batches.

To assess the abilities of CytofRUV, BatchAdjust and CytoNorm to remove batch effects, we com-

puted three statistical metrics. We first compared the distributions of proteins across batches for

replicated samples using EMD. Second, to assess how well each method corrects for differences in

cluster proportions across batches, we computed the Hellinger distance between the paired cluster

proportions of all replicated samples. Finally, to assess whether each method not only removes

batch effects but preserves the biology, we computed Silhouette scores that quantify the cell-to-cell

variation within cluster in relation to that between clusters.

Overall, CytofRUV had the best capability to make protein expression distributions more similar

across batches. When compared with BatchAdjust and CytoNorm on different datasets it has the

lowest EMD for all proteins for most samples in all three datasets and all four analyses performed,

followed by CytoNorm. We further saw that batch differences are reduced within clusters by com-

puting EMD by cluster for all proteins. We also saw CytoNorm’s ability to correct for differences in

cluster proportions as well as CytofRUV, both having the lowest Hellinger distances in two of the

four analyses performed. Silhouette scores also indicate that in most of our analyses (two out of the

three datasets) CytofRUV not only removes the batch effects but also improves biological accuracy

of the clusters compared to the two other methods. Likewise, CytoNorm is performing well accord-

ing to Silhouette scores in the second analysis of the third dataset. We also conclude that BatchAd-

just has the least ability to remove batch effects in the three datasets we have explored here,

according to those metrics. This conclusion might be a result the single batch adjustment performed

by BatchAdjust to the measurements on all cells, whereas CytoNorm and CytofRUV both take into

account the impact of batch differences at the cluster level.

We envisage that in some cases removing batch effects might lead to removal of clusters or to

the identification of new biologically relevant clusters. Some clusters could be artefacts of the batch

effects. We use sbiology to determine the tightness and separation of the clustering, as it provides an

evaluation of the clustering validity.

We observed that the B cell cluster (Figure 3A, cluster 16) is only present in the batch 1 of the

CLL1 sample, and CytofRUV normalisation leads to the presence of this cluster (Figure 3C, cluster 2)

in both batches. In practise, the user should examine and identify any new clusters post-normalisa-

tion, as some clusters might not be conserved after normalisation, and relate those to the clusters

that were selected as pseudo-replicates. We also recommend the exploration of different clustering

resolutions and how they change as the number of clusters increases, using clustering tree visualisa-

tion (Zappia and Oshlack, 2018) to relate the clusters pre and post-normalisation.

To further quantify the extend of batch effects in CyTOF datasets, it might be interesting to per-

form differential analyses of replicates across batches. Recent methods like diffcyt (Weber et al.,

2019) have been developed that also uses FlowSOM for clustering to define cell populations, and

empirical Bayes moderated tests adapted from transcriptomics for differential analysis. This method

could be adapted to test for differential abundances of cell subpopulations and differential expres-

sion of proteins in the replicated samples across batches. In our first dataset containing two batches,

differential analysis of protein expression is not suitable as we have too few replicates to permit a

useful statistical test. However, we computed the differences in median expression for all proteins

across batches before compared to that after CytofRUV normalisation for the CLL samples (DD, Fig-

ure 3—figure supplement 4.A) and the HC samples (DD, Figure 3—figure supplement 4.B). We

observed that DD > 0 for most proteins especially for the CLL samples indicating reduction in batch

differences. We did perform a differential analysis of the cluster abundances across batches using

diffcyt and compare the results before and after normalisation. We also observed a decrease in the

number of clusters that were found to have a significant difference in abundance across batches

before normalisation (13 out of the 20 clusters) compared to that in the data after CytofNorm (7 out

of 20 clusters).

One limitation of our method is that CytofRUV does rely on the assumption that at least one cell

subpopulation is shared across the batches that would be used as our pseudo-replicates.

In experiments where large batch effects occur and no cell subpopulation is shared between

batches, our method would not be applicable.
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In this study, we considered three different datasets containing up to 24 samples and up to 12

batches. RUV methods have already been applied to hundreds and thousands of samples with Nano-

string technology (Molania et al., 2019) and hundreds of samples with RNAseq. CytofRUV can also

handle larger studies, and no memory limitation has been reached so far on other datasets contain-

ing hundreds of samples across several batches with up to 43 milllion cells. We ran the current analy-

sis on a rstudio-server version 1.3.959–1 Professional for CentOS 6, taking about an hour per

dataset, and we also tested it on other rstudio versions. Future work will involve collecting data from

larger studies with more than dozens of batches to conduct further testing of memory limitations.

A requirement of the current CytofRUV method is the availability of enough material to have rep-

licated reference samples in each batch. As previously mentioned for CytoNorm, and as we also

observed for CytofRUV, in order to remove batch effects from all samples, it might be necessary to

include more than one set of replicated references samples in the batch, in particular including sam-

ples that are similar to each of the main types of samples. In future work, we plan to explore estimat-

ing the unwanted variation using different replicated reference samples, each present in only some

of the batches, to avoid the need for replicated reference samples in every batch. For example, the

use of a carefully designed ‘bridging’ set of replicated reference samples analogous to long term

reference samples in metabolomics (Broadhurst et al., 2018) should lead to the normalisation of

large studies that is just as effective as that achieved using the same replicated reference samples

throughout.

In summary, we proposed here a computational algorithm called CytofRUV that effectively ena-

bles batch effect reduction in mass cytometry with an adaptable normalisation method that detects

heterogeneity of cellular responses across large-scale studies with multiple patients, cell types and

conditions (e.g. treatment).

Materials and methods

CytofRUV
To remove the unwanted variation across multiple datasets and batches, we used fastRUV-III as pre-

viously described (Lin et al., 2019; Molania et al., 2019). Briefly, the data are first standardised

before being fitted to the RUV-III model underlying all RUV analyses:

Yij ¼ XibjþWiajþ "ij

Here, Yij is the standardised expression value (arcsinh(intensity/5)) for protein j in a cell i with

i¼ 1; ldots; m and j¼ 1; . . . ; n, of m cells and n proteins. The standardisation is to have zero mean and

unit standard deviation across all cells for all protein measurements.

XiN represents the factors of interest for the sample giving cell i. WiN represents the unwanted

factors for that cell. The dimension of the unwanted factors is being denoted by k; ajN represents

the coefficient of WiN for protein j in a cell i and "ij N is noise, typically "ij ~ NN(0, sj
2).

The data are normalised in six steps. First, all the data are clustered, typically using FlowSOM,

although other clustering methods can be used. Second, group of cells are defined to be pseudo-

replicates if they belong to the same subpopulation (i.e. cluster) but are in different batches, which

can be done either on specific clusters or on all clusters. Third, cell-level residuals are computed by

averaging all the protein measurements across those pseudo-replicates, and subtracting these aver-

ages from each measurement on each cell. In essence, differences of measurements on pseudo-rep-

licates are considered as unwanted variation. The quantities aj are then estimated from the singular

value decomposition (SVD) of the m x n matrix of these residuals. Next the k-vectors of Wi for the

cells are then estimated using all proteins as ’negative controls’. Finally, the estimates of Wi and aj

are multiplied to get an estimate of Wiaj; which is then subtracted from the Yij to get the final

adjusted data. Full details and a discussion of key issues can be found in Lin et al., 2019 and

Molania et al., 2019.
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BatchAdjust
For all the datasets, BatchAdjust was performed using the R code and usage instructions as

described in Schuyler et al., 2019. We used the option of scaling the 95th percentiles with no trans-

formation applied to the data before adjustment.

CytoNorm
CytoNorm was performed as described in Van Gassen et al., 2019 following the two steps provided

in the R library CytoNorm to normalise the data.

Earth Movers Distance
To quantify the similarity of protein expression distributions across batches, we computed the Earth

Movers Distance, also called the Wasserstein metric, as described in Van Gassen et al., 2019.

Briefly, the data are binned and we computed the pairwise EMDs across batches for the distribution

of every protein over all cells as well as over the cells in each cluster. This was done for both the orig-

inal dataset and the normalised datasets.

Hellinger distance
To quantify the differences between cluster proportions across batches, we computed the Hellinger

distances between the proportions found in samples replicated across different batches. This dis-

tance is defined for two probability p ¼ ðpiÞ and q ¼ ðqiÞ by H p; qð Þ, where

H p; qð Þ2¼ 1

2

P

n

i¼1

ffiffiffiffi

pi
p � ffiffiffiffi

qi
p� �2

:

We computed these distances for both the original and the normalised datasets.

Silhouette scores
To assess the extent to which the data are grouped based on the batch effects as opposed to bio-

logical signals, we computed batch and biology Silhouette scores. Given a partitioning of all cells

into groups, if ai denote the average Euclidean distance of the protein expression between the cell

i and all other cells in the group to which cell i is assigned, and bi is the minimum of the average dis-

tance between the cell i and any cells in other groups not containing cell i, then the silhouette coeffi-

cient of cell i is calculated as

s ið Þ ¼ bi� ai

max bi;aif g

The average of the silhouette values across cells using a particular grouping is called the silhou-

ette score for that grouping. Silhouette score ranges from �1 to +one where positive values (bi is

high and ai is low) indicate that cells are well matched to their own group. In this way, we computed

the silhouette score sbatch based on the batches as groups and the silhouette score sbiology based on

the grouping of the cells by subpopulation (i.e. clusters).

sbiology is used to quantify the cell-to-cell variation within cell subpopulations compared to other

subpopulations. Negative values mean that the data might be mis-clustered as it is more similar to a

neighbouring cluster. For example, if two different biological relevant clusters would be merged into

a single cluster, sbiology will reflect this merging with a lower sbiology value.

Differential analysis
To perform a differential analysis of the cluster abundances across batches, we used diffcyt with the

default method ’diffcyt-DA-edgeR’ and default parameters with batch as the factor of interest for

the differential tests. We performed this analysis both on the data before and after normalisation

and calculated the number of significant detected clusters at 10% false discovery rate as described

in the diffcyt workflow.

As the differential expression of proteins could not be performed with too few replicates, as with

a t-test, we computed the medians Mm,b for each marker m and each batch b across the 12 paired

samples in a given cluster. We then computed the difference of medians between batches

D ¼ Mm;2 � Mm;1 across the 12 paired samples. We computed those differences raw on the data
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before and D norm after normalisation and then plotted the difference of those values, that is

DD ¼ Draw� Dnorm in Figure 3—figure supplement 4.

R package CytofRUV
Our algorithm is implemented in the R package ‘CytofRUV’ and is available at: (www.github.com/

mtrussart/CytofRUV) (Trussart, 2020). Installation and R code usage instructions for both the R pack-

age and the R-Shiny application can be found on the GitHub page. Users are required to provide:

the FCS files from all samples in the study, a metadata file containing the details of each sample and

a panel file containing the details of all proteins used in the study. The R-Shiny application allows the

user to explore the data and identify batch effects across replicates using the diagnostic plots previ-

ously mentioned: Median Protein Expression, Protein Expression Distributions, Clustering Results

and Cluster Proportions using samples replicated across batches. It can be explored on all the data

or on a subsample of the data. The normalize_data function allow the user to adjust for batch effects

with parameter settings for the CytofRUV algorithm, such as which replicated samples to use and

the value of k. The pipeline and scripts used to generate the results described in this manuscript is

also available in the supplementary data.

PBMC samples from patient and healthy donor
Blood was obtained from healthy donors (via the Victorian Donor Blood Registry) and patients with

CLL (via the Royal Melbourne Hospital, Australia). All patients consented under Melbourne Health

HREC 2016.305 and samples were analysed under HREC 2016.066. PBMCs were isolated using stan-

dard Ficoll-based methods and cryopreserved.

Mass cytometry
Cells were thawed and stained for viability with cisplatin. Cells were then fixed with paraformalde-

hyde (PFA: Electron Microscopy Sciences, Hatfield, PA, USA) to a final concentration of 1.6% for 10

min at room temperature. Cells were pelleted and washed once with cell staining medium (CSM,

PBS with 0.5% BSA and 0.02% sodium azide) to remove residual PFA and stored at �80˚C.

Cells were barcoded using 20-plex palladium barcoding according to manufacturer’s instructions

(Fluidigm, South San Francisco, CA, USA). Following barcoding, cells were pelleted and washed

once with cell staining medium (PBS with 0.5% BSA and 0.02% sodium azide) to remove residual

PFA. Cells were stained with CD16/CD32 for 10 min and surface antibodies (Table 2) for 30 min at

room temperature. Cells were permeabilized with 4˚C methanol for 10 min. Cells were washed three

times with CSM and stained with intracellular antibodies (Table 2) for 30 min at room temperature.

Cells were washed with CSM, then stained with 125 nm 191Ir/193Ir DNA intercalator (Fluidigm, South

San Francisco, CA, USA) in PBS with 1.6% PFA at 4˚C overnight. Cells were washed once with CSM,

washed three times with double-distilled water and filtered to remove aggregates and resuspended

with EQ normalisation beads immediately before analysis using a Helios mass cytometer (Fluidigm,

South San Francisco, CA, USA). Throughout the analysis, cells were maintained at 4˚C and intro-

duced at a constant rate of ~300 cells/sec.

Processing data for mass cytometry
Data concatenation, normalisation and debarcoding are done using the R Catalyst package merging

the two batches (RUV_1B and RUV3B) when applying the Finck normalisation. The R script used to

generate this preprocessing (CytofRUV_preprocessing_dataset.R) is also available in the supplemen-

tary data.

Flow repository
The FCS files from this study are available at flow repository ID FR-FCM-Z2L2.
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Additional files
Supplementary files
. Supplementary file 1. Scripts to generate the CytofRUV figures from the dataset FR-FCM-Z2L2.

CytofRUV_preprocessing_dataset.R is the script that was used to generate the preprocessing on the

dataset: data concatenation, normalisation and debarcoding are done using the R Catalyst package

merging the two batches (RUV_1B and RUV3B) when applying the Finck normalisation. CytofRUV_-

Figures.R was used to generate the figures described in this manuscript and uses the CytofRUV R

package with the Metadata.xlsx and Panel.xlsx files. The package is available at: www.github.com/

mtrussart/CytofRUV. Installation and R code usage instructions for both the R package and the

R-Shiny application can be found on the GitHub page.

. Transparent reporting form

Data availability

The fcs files from this study are available at Flow Repository, ID FR-FCM-Z2L2.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Trussart M, Teh CE,
Tan T, Leong L,
Gray DHD, Speed
TP

2020 CytofRUV dataset http://flowrepository.
org/id/FR-FCM-Z2L2

FlowRepository, FR-
FCM-Z2L2

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Gassen S 2019 Immune Clock of Pregnancy
Validation - Controls

http://flowrepository.
org/id/FR-FCM-Z247

FlowRepository, FR-
FCM-Z247
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