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Orthology detection is critically important for accurate functional annotation, and has been widely used to facilitate studies on
comparative and evolutionary genomics. Although various methods are now available, there has been no comprehensive
analysis of performance, due to the lack of a genomic-scale ‘gold standard’ orthology dataset. Even in the absence of such
datasets, the comparison of results from alternative methodologies contains useful information, as agreement enhances
confidence and disagreement indicates possible errors. Latent Class Analysis (LCA) is a statistical technique that can exploit
this information to reasonably infer sensitivities and specificities, and is applied here to evaluate the performance of various
orthology detection methods on a eukaryotic dataset. Overall, we observe a trade-off between sensitivity and specificity in
orthology detection, with BLAST-based methods characterized by high sensitivity, and tree-based methods by high
specificity. Two algorithms exhibit the best overall balance, with both sensitivity and specificity.80%: INPARANOID identifies
orthologs across two species while OrthoMCL clusters orthologs from multiple species. Among methods that permit clustering
of ortholog groups spanning multiple genomes, the (automated) OrthoMCL algorithm exhibits better within-group consistency
with respect to protein function and domain architecture than the (manually curated) KOG database, and the homolog
clustering algorithm TribeMCL as well. By way of using LCA, we are also able to comprehensively assess similarities and
statistical dependence between various strategies, and evaluate the effects of parameter settings on performance. In
summary, we present a comprehensive evaluation of orthology detection on a divergent set of eukaryotic genomes, thus
providing insights and guides for method selection, tuning and development for different applications. Many biological
questions have been addressed by multiple tests yielding binary (yes/no) outcomes but no clear definition of truth, making
LCA an attractive approach for computational biology.
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INTRODUCTION
The rapid growth in the availability of genome sequence data,

from an ever-increasing range of relatively obscure species, places

a premium on the automated identification of orthologs to

facilitate functional annotation, and studies on comparative and

evolutionary genomics. Homologous proteins share a common

ancestry, and may be characterized as either orthologs (which

evolve by speciation only) or paralogs (which arise by gene

duplication) [1,2]. Orthologs typically retain similar domain

architecture and occupy the same functional niche following

speciation, while (functionally redundant) paralogs are likely to

diverge with new functions through point mutations and domain

recombinations [3,4].

The concepts of orthology and paralogy are well-established in

classical and molecular systematics [1], and have been extended to

describe more complicated situations associated with extensive

gene duplications commonly observed in eukaryotic species [4–6].

In- and out-paralogs are analogous to the phylogenetic concepts

in- and out-groups, denoting genes duplicated subsequent or prior

to speciation, respectively. Recent duplications yield in-paralogs

that may exhibit a many-to-one or many-to-many ortholog

relationship with genes in the other species (termed co-orthologs).

Several strategies have been employed to distinguish probable

(co-)orthologs from paralogs, as summarized in Table 1: phylog-

eny-based methods include RIO (Resampled Inference of

Orthology) [7] and Orthostrapper/HOPS (Hierarchical grouping

of Orthologous and Paralogous Sequences) [8,9]; methods based

on evolutionary distance metrics include RSD (Reciprocal

Smallest Distance) [10,11]; BLAST-based methods include Re-

ciprocal Best Hit (RBH), COG (Cluster of Orthologous Groups)

[12–15]/KOG (euKaryotic Orthologous Groups) [15], and

Inparanoid [5,16]. The problem of orthology detection is

particularly acute for eukaryotic genomes, because of their large

size, the difficulty of defining accurate gene models, the complexity

of protein domain architectures, and rampant gene duplications

[3,17]. To address these difficulties, we previously developed the

OrthoMCL algorithm [18], which improves on RBH by (i)

recognizing co-ortholog relationships (Figure 1), (ii) using a nor-

malization step to correct for systematic biases when comparing

specific pairs of genomes, and (iii) using a Markov graph clustering

(MCL) algorithm [19] to define ortholog groups. OrthoMCL and

Inparanoid exhibit similar performance when comparing two

species, but the former is extensible to cluster orthologs across
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multiple species. Analysis of independently assigned EC number

annotations suggests a high degree of reliability [18], and orth-

ology predictions for 55 genomes are available at OrthoMCL-DB

[20].

Despite the many ortholog identification methods now avail-

able, no comprehensive statistical comparison has yet been

reported, in part because the lack of a genomic-scale error-free

‘gold standard’ dataset makes it difficult to analyze performance.

Functional genomics data are often used as a surrogate for true

orthology, both for ortholog assignment (i.e. functional orthologs)

[21] and performance assessment [18], and have been used to

benchmark a small selection of orthology detection methods, and

transfer of functional annotations [22]. Such data are likely to

result in many errors, however, especially when applied across

large evolutionary distances [4].

Even in the absence of a reliable gold-standard, the comparison

of results from alternative methodologies contains useful in-

formation, as agreement enhances confidence (provided that the

methods employed are independent), and disagreement indicates

possible errors (either false positives or false negatives). Latent

Class Analysis (LCA) is a statistical technique that can exploit this

information, and has been widely applied to multivariate categorical

data in research of medical diagnostics, marketing, sociology, etc

[23,24]. For example, when no single, reliable diagnostic test is

available for determining the status (latent class) of individuals with

respect to a certain disease, LCA can be used to estimate the

accuracy (sensitivity and specificity) of multiple diagnostics.

We have applied LCA to the evaluation and optimization of

a comprehensive set of orthology detection methods, providing

a guide for selecting methods and appropriate parameters. This

study also provides an analysis of similarities and statistical

dependence between these methodologies. Two widely used

ortholog grouping methods – the manually curated KOG

database and the automated OrthoMCL algorithm – are further

compared with respect to the consistency of clustering, protein

function, and protein domain architecture. To illustrate the

relationships between orthology and homology detection methods,

some other methods BLASTP [25], SBH (Single-way or One-way

Best Hit) and TribeMCL [26] were also included in the analysis.

RESULTS

Agreement and disagreement between orthology

detection methods: input for Latent Class Analysis
A direct comparison of ortholog prediction methods requires

a unified dataset, which is difficult to generate due to differences in

the data types employed (see Table 1), and differences in the data

sources used by published analyses (see Methods). Because KOG

groups depend on manual curation, and are therefore not easily

updated or recompiled, BLASTP, SBH, RBH, RSD, Inparanoid,

OrthoMCL, and TribeMCL analyses were based on the KOG

sequence dataset. RIO and Orthostrapper make predictions based

on Pfam domains rather than full-length protein sequences; hence

proteins lacking Pfam domains were excluded. After mapping

Pfam domains to the KOG sequence set, the net result was

Figure 1. OrthoMCL graph construction between two species,
including the establishment of co-ortholog relationships. Solid lines
connecting A1 and B1 represent putative ortholog relationships
identified by the ‘reciprocal best hit’ (RBH) rule. Dotted lines (e.g. those
connecting A1 with A2 and A3, or B1 with B2) represent putative in-
paralog relationships within each species, identified using the ‘re-
ciprocal better hit’ rule. Putative co-ortholog relationships, indicated by
dashed gray lines, connect in-paralogs across species boundaries (e.g.
A3 and B2).
doi:10.1371/journal.pone.0000383.g001

Table 1. Various orthology/homology detection methods under study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods Strategy a Apply to Proteins
Grouping
Capability Parameters Analyzed b % Positive Protein Pairs

Total c
Sampling
Average d

RIO Phylogeny Pfam domains NO Orthology bootstrap cutoff 1.9 17.9

Orthostrapper Phylogeny Pfam domains NO Orthology bootstrap cutoff 5.7 39.9

RSD Distance YES NO BLASTP E-value cutoff, Divergence cutoff 2.8 28.8

RBH BLASTP YES NO BLASTP E-value cutoff 5.2 37.7

Inparanoid BLASTP YES YES (2 species) BLASTP E-value cutoff 9.0 43.6

OrthoMCL BLASTP YES YES BLASTP E-value cutoff, MCL inflation index 11.8 52.8

KOG BLASTP YES YES N/A 23.6 66.2

SBH Homology YES NO BLASTP E-value cutoff 11.8 56.6

BLASTP Homology YES NO BLASTP E-value cutoff 41.5 72.1

TribeMCL Homology YES YES BLASTP E-value cutoff, MCL inflation index 47.2 74.7

aAlternative orthology detection strategies (including phylogeny, distance or BLASTP-based), or homology detection methods.
bParameters analyzed using the LCA benchmarking framework to assess their effect on orthology detection performance (Figure 4).
cThe fraction of positively predicted protein pairs (using default parameter settings) within the entire sampling dataset of 567,255 cross-species homologous protein
pairs (defined by Pfam domains).

dThe average fraction of positively predicted protein pairs (using default parameter settings) from 100 sampling replicates (of the average total of 1590.15 pairs).
doi:10.1371/journal.pone.0000383.t001..
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a dataset containing 27,562 protein sequences from six eukaryotic

genomes (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melano-

gaster, Homo sapiens, Saccharomyces cerevisiae, and Schizosaccharomyces

pombe), representing 1708 Pfam protein families.

Cross-species homologous protein pairs (defined as belonging to

the same Pfam families) were examined in LCA analysis. Whether

or not a given pair of proteins is truly orthologous is unknown (a

latent class), but each of the methods under consideration makes

a yes/no prediction as to orthology, yielding a pattern comprised

of 1’s and 0’s representing the predictions from all methods. For

methods that do not explicitly make predictions for protein pairs,

orthology is defined based on clustering into the same groups (for

KOG, OrthoMCL, TribeMCL) or sharing of at least one ortholo-

gous domain (for Orthostrapper, RIO). The results for a large set

of cross-species homologous protein pairs may be summarized as

a frequency table (Figure 2). Given such data, the likelihood

function for a Latent Class model can be expressed in terms of the

overall orthology probability, and the false positive (FP) and false

negative (FN) error rates for each method (see Methods). A

maximum likelihood estimate of these model parameters is used to

represent performance evaluation. In order to avoid biasing the

analysis in favor of large protein families, only one cross-species

protein pair was sampled from each Pfam family, with 100

replicates of each experiment (see Methods and Discussion).

Figure 2 presents the pattern of agreement and disagreement in

orthology calls (shaded boxes), and the average frequency with

which each pattern is observed in 100 experimental replicates

(specific numbers for one experiment are provided in Figure S1).

The most abundant pattern (first column) represents all sampled

protein pairs that no method considers to be orthologs. Similarly,

many protein pairs are recognized as orthologs by all methods

(right-most column). Other common patterns include protein pairs

considered to be orthologs by all methods except RIO, reflecting

its possibly high FN rate (next-to-last column), and protein pairs

considered to be orthologs by KOG only (column 8), reflecting its

possibly high FP rate, as discussed below.

Similarities and statistical dependence between

orthology detection methods
In order to assess similarities and dependence between various

methods, Jaccard similarity coefficients, mutual information

scores, and Pearson correlation coefficients were calculated for

all pairwise comparisons between the seven orthology and three

Figure 2. Agreement/disagreement between prediction results of seven orthology detection methods. Average counts of protein pairs identified
in 100 sampling replicates are shown (top; note log scale), for each of the 128 (27) possible orthology prediction patterns indicated by filled and
empty boxes (bottom), representing positive and negative orthology predictions, respectively.
doi:10.1371/journal.pone.0000383.g002

Table 2. Overall dependence and similarity between methods
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MIa RIO Ortho-strapper RSD RBH Inpara-noid Ortho-MCL KOG SBH BLASTP Tribe-MCL

JCsb

RIO 0.07 0.03 0.04 0.05 0.07 0.06 0.05 0.03 0.02

Orthostrapper 0.33 0.10 0.13 0.16 0.16 0.13 0.13 0.07 0.05

RSD 0.25 0.45 0.28 0.20 0.19 0.13 0.20 0.12 0.07

RBH 0.28 0.53 0.67 0.24 0.31 0.16 0.30 0.16 0.11

Inparanoid 0.28 0.59 0.57 0.66 0.35 0.22 0.26 0.17 0.14

OrthoMCL 0.29 0.59 0.52 0.70 0.77 0.26 0.31 0.21 0.18

KOG 0.26 0.54 0.43 0.55 0.64 0.75 0.25 0.18 0.17

SBH 0.27 0.56 0.51 0.67 0.70 0.79 0.77 0.31 0.20

BLASTP 0.23 0.48 0.40 0.52 0.59 0.70 0.78 0.79 0.34

TribeMCL 0.22 0.46 0.37 0.49 0.57 0.68 0.77 0.72 0.91

aMI, mutual information. The mutual information between variables A and B (in this study, A and B represent two methods’ prediction results) is calculated as
MI(A,B) = H(A)+H(B)2H(A,B) where H(A)~{

X
p(a) ln p(a) and H(A,B)~{

XX
p(a,b) ln p(a,b) [p(a) and p(a,b) are marginal and joint probability distributions,

respectively]. The ten highest values are underlined.
bJCs, Jaccard coefficients. The Jaccard coefficient between binary variables A and B (in this study, A and B represent two methods’ prediction results) is calculated as

JC(A,B) = p(1,1)/(12p(0,0)) where p(a,b) is the joint probability distribution of A and B. The ten highest values are underlined.
doi:10.1371/journal.pone.0000383.t002..
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homology identification procedures under consideration. Mutual

information (Table 2, top) and Pearson coefficients (Table S1,

bottom) are commonly used to measure overall/marginal de-

pendence. As indicated in both measurements, many pairs of

methods are significantly correlated (top 10 are highlighted by

underlining): for example, the best BLAST hit (SBH) rule shows

a relatively high degree of correlation with most other BLAST-

based methods. Such marginal dependencies are largely due to the

overlap of positive predictions, measured by Jaccard coefficient

(Table 2, bottom; defined as the fraction of positive protein pairs

identified by either method that are recognized by both).

The basic latent class model 2LC (see Methods) assumes

independence between methods conditionally on the latent

orthology status, commonly referred to as the local independence

assumption [24]. This assumption may be violated, however, when

two methods make similar errors, i.e. if they yield the same false

positive or false negative predictions of orthology. Bivariate

residual (BVR) statistics [27,28] are used to identify possible

conditional dependencies among orthology detection methods, as

shown in Figure 3. Each BVR corresponds to a Pearson chi-square

statistic, comparing observed and expected cross-classification

frequency tables for a pair of methods. Although it is only strictly

appropriate to compare methods intended to predict orthology,

homology detection methods (BLASTP, SBH, TribeMCL) have

also been included in the LCA analysis for the sake of illustration.

As indicated in Figure 3 (shaded diamonds), orthology detection

methods exhibit various degrees of conditional dependence with

each other, particularly when they employ similar strategies. For

example, the phylogeny-based methods RIO and Orthostrapper –

both of which use the neighbor-joining algorithm for tree

construction and calculate confidence based on bootstrapping –

show a high level of dependence (BVR = 46.4; p,1023). A lower

degree of dependence (p,0.05) is also observed for most pairwise

comparisons between BLAST-based orthology detection methods

(RBH, Inparanoid, OrthoMCL, KOG), all of which rely on RBH

as their first step. Interestingly, RBH and KOG exhibit extremely

low conditional dependence, probably because numerous non-

RBH BLAST hits were included during KOG clustering, diluting

the dependence signal. RSD and RBH display a high degree of

dependence, despite using slightly different measures of sequence

similarity, because both are based on a similar rationale of

reciprocally identifying the most similar proteins across two

genomes. Extremely high dependence is observed between the

homology detection methods BLASTP and TribeMCL. The

dependence between homology and orthology detection methods

is generally very low, except that KOG exhibits much higher

dependence with homology detection methods than orthology

detection methods, indicating that KOG prediction is very much

like a homolog clustering.

Because the conditional dependencies observed between

ortholog identification methods could compromise the fit of the

basic 2LC model to our orthology data, the CFactor 2LC model

(similar to [29,30]; see Methods) was employed. In this approach,

a continuous latent factor with test- and class-specific effects is

added to the 2LC model, supposedly to account for any effect

which may contribute to the above cross-method conditional

dependencies. BVR statistics under this model are provided in

Figure S2; when compared with the 2LC model, most of the

dependencies between methods disappear. The better fit to our

data is also revealed by a significant decrease in L-square statistics

[27,28] (2LC model: 533.7; CFactor 2LC model: 104.8).

Applying the CFactor 2LC model to the average frequency

table generated from the 100 sampling replicates described above

yields FP and FN estimates for each ortholog prediction method

under investigation, as listed in Figure 3. The model is also applied

to frequency tables obtained from individual replicates, as

illustrated by colored dots in Figure 3. Bold dots (with outlines)

provide LCA results for methods that make explicit orthology

predictions (RIO, Orthostrapper, RSD, RBH, Inparanoid,

OrthoMCL, KOG; see Table 1). Fainter dots (not outlined)

represent methods for which LCA is not suitable (SBH, BLASTP,

TribeMCL), with error rates calculated as rescaled average

posteriors based on estimated model parameters.

Performance of orthology detection methods
From the data presented in Figure 3, it is clear that most methods

trade off sensitivity (1-FN) versus specificity (1-FP). For example,

orthology detection methods based on phylogeny (RIO, Orthos-

trapper) or evolutionary distance (RSD) exhibit low FP error rates

(1–7%), but high FN error rates (24–64%). This agrees well with

anecdotal experience, where it is often impossible to build a reliable

tree – but whenever practical, tree-based methods provide an

excellent basis for inferring orthology. Conversely, using homology

methods (BLASTP, TribeMCL) to infer orthology results in high

FP error rates (50–56%) and low FN error rates (4–5%). This is

also in accord with anecdotal experience: BLASTP hits typically

include true orthologs but also many false positive results. Between

these two extremes, BLAST-based orthology prediction methods

exhibit a range of FP and FN rates. Although no single ortholog

identification method performs perfectly (both FP and FN = 0),

two methods display FP and FN,20%, and these may therefore

Figure 3. False positive and false negative rates for multiple
orthology/homology detection methods. Shaded diamonds present
bivariate residual (BVR) statistics calculated based on the orthology data
(see Figure 2) and the 2LC model, showing conditional dependence
between the ten methods under study. For benchmarking purpose, the
CFactor 2LC model is applied to all orthology detection methods to
correct for these dependencies (see Figure S2). FP and FN estimates for
each method and the overall orthology probability (estimated to be
0.48) are calculated based on the average frequency table from 100
sampling replicates. Those replicates exhibiting a good fit to the
CFactor 2LC model (L-square,170) are plotted as colored circles (for
illustrative purposes only; FP and FN rates in the table are based on all
replicates).
doi:10.1371/journal.pone.0000383.g003
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be considered the best performing algorithms: Inparanoid and

OrthoMCL.

As noted above, phylogeny-based methods all exhibit a very low

FP error rate, because of the stringent criteria used to predict

orthology based on phylogenetic trees. However, they display

quite different FN error rates (64% for RIO vs. 24% for

Orthostrapper), due to their different specific strategies in ortholog

identification. RIO seeks to reconcile a gene tree with a fixed

species tree, assigning orthology based on inferred speciation/

duplication events [31]. Orthostrapper uses a heuristic orthology

assignment algorithm different from the classical tree reconcilia-

tion strategy, organizing species into evolutionarily distinct groups

instead of a fixed species tree [8,9]. This simplification appears to

greatly improve the sensitivity of phylogeny-based methods,

without dramatically affecting specificity.

The reciprocal best BLAST hit strategy (RBH), used as first step

for most BLAST-based orthology detection methods, displays a low

FP error rate (8%), but its inability to recognize many-to-many or

many-to-one co-ortholog relationships results in a high FN error

rate (30%), as previously expected [4]. LCA analysis clearly

displays improved specificity along the path from BLASTP

(FP = 50%) to SBH (25%) to RBH (8%). This improvement

comes at a cost of (more modest) reductions in sensitivity, however:

FN = 4% for BLASTP, 9% for SBH, and 30% for RBH. The

relatively high FP rate observed for SBH might be expected, as

one-way best hits are frequently not the nearest neighbor [32].

Several BLAST-based methods have sought to improve upon the

trade-offs between sensitivity and specificity. By recognizing co-

orthologs, Inparanoid reduces the high FN rate of RBH to 17%.

Ortholog clustering across multiple genomes provides a further

reduction: to 7% for OrthoMCL, and 1% for KOG. Clustering

across multiple genomes inevitably bears a cost in terms of increased

FP rates, however: 16% for OrthoMCL, and 36% for KOG. Among

all the methods under investigation, KOG displays the best

sensitivity (FN = 1%), probably the benefit of extensive manual

curation, but at a cost of low specificity (FP = 36%), consistent with

the high degree of conditional dependence observed between KOG

and homology detection methods (BLAST, TribeMCL).

RSD and RBH are based on a similar concept: reciprocal

identification of the most similar proteins between two genomes,

and display the highest level of conditional dependence among

orthology detection methods (Figure 3). To test whether observed

differences in performance (FN = 30%, FP = 8% for RBH; vs

FN = 44%, FP = 3% for RSD) might be attributable to the

alternative methods used for alignment (local BLAST [25] vs

global ClustalW [33]), RBH and RSD analyses are simulated

using identical Pfam alignments (see Methods). Pfam_RBH and

Pfam_RSD yield virtually identical results (FP = 11% vs. 12%;

FN = 36% vs. 39%). Further analysis indicates that the perfor-

mance of RBH is also affected by the definition of ‘best-hit’: the

KOG BLAST analysis used for this study defines E-va-

lues,10299 = 0, producing many ties and resulting in a relatively

low FN (and high FP) rate. Increasing stringency by using the best

similarity score (less ties) increases FN to 38% and reduces FP to

4% (Table S2), close to the values observed for RSD. The

divergence threshold parameter used by RSD has no significant

effect on performance (Table S3).

The effect of parameter alteration on orthology

detection performance
The perspectives on benchmarking of orthology detection methods

provided by LCA suggest that this approach may also be useful for

evaluating user-configurable parameters associated with the various

methods under study. The following parameters are evaluated:

orthology bootstrap cutoff is varied for phylogeny-based methods

(RIO, Orthostrapper), BLAST E-value or score cutoff is varied for

BLAST-based methods (RBH, Inparanoid, OrthoMCL, etc.), and

the MCL inflation index is varied for Markov clustering methods

(OrthoMCL, TribeMCL). For each of these methods, only the result

generated from default settings (see Methods) is modeled using LCA;

for non-default results, error rates are calculated as rescaled average

posteriors based on the estimated model parameters.

In phylogeny reconstruction, bootstrapping analysis is used to

evaluate tree reliability by resampling columns in a multiple

sequence alignment. For orthology detection methods, bootstrap

values are calculated as the percentage of bootstrapped trees in

which two sequences are identified as orthologs, i.e. a confidence

measure for orthology prediction. Figure 4A illustrates how the FP

and FN error rates of RIO and Orthostrapper vary according to

the orthology bootstrap cutoff. This analysis indicates that

selecting bootstrap cutoff values lower than the recommended

default setting of 50% results in considerable enhancement of

sensitivity, with little reduction of specificity (especially for RIO).

Orthostrapper differs from RIO primarily in terms of the FN error

rate, probably due to the reduction of a multilevel species tree to

simpler phylogenetic groupings.

For BLAST-based methods, reducing the E-value cutoff

improves specificity and decreases sensitivity (lower FP, higher

FN), as shown in Figure 4B. Homology detection methods

(BLASTP, TribeMCL) are more sensitive to the E-value cutoff

than orthology detection methods in FP rate – especially at high E-

values, where ortholog protein pairs are rare. For example,

changing the E-value cutoff from 0.1 to 0 reduces FP rates by 57%

for BLASTP, but only 5% for RBH.

As graph-based clustering algorithms, both OrthoMCL and

TribeMCL apply Markov clustering to identify groups from an all-

against-all protein similarity graph. Accurate identification of clusters

should eliminate incorrect edges, such as those introduced due to

protein domain fusion or other rearrangements. Increasing the

inflation index parameter increases cluster tightness, thus reducing

FP while raising FN, as shown in Figure 4C. The MCL inflation

index has only a modest effect on performance of OrthoMCL, as

previously described [18]. For example, increasing the inflation

index from 0 (single-linkage clustering) to 5 reduces FP by 10% for

OrthoMCL but 32% for TribeMCL. The greater impact on

TribeMCL is attributable to its denser protein connectivity graph,

incorporating edges between all homologs defined by BLAST hits,

while the OrthoMCL graph only contains edges representing

(co-)ortholog and in-paralog relationships (Figure 1).

The effect of altering orthology bootstrap and BLAST similarity

cut-offs is best illustrated by an ROC (Receiver Operating

Characteristic) curve, as shown in Figure 4D. The sensitivity/

specificity trade-off is readily seen in this figure, although the entire

range cannot be explored for all methods using standard parameters.

It is interesting to note that for phylogeny-based methods, the

recommended parameter settings (indicated by circles) sacrifice

sensitivity in favor of high specificity, a consequence of arbitrarily

imposing a relatively high bootstrap cutoff of 50%. In contrast, the

KOG method sacrifices specificity for sensitivity (only a single value

is shown for KOG, as this manually curated method is not readily

repeated using different parameter settings).

Comparison of ortholog/homolog groupings
Only three of the methods under investigation (KOG,

OrthoMCL, TribeMCL) permit clustering proteins from multiple

species, rather than simply making pairwise predictions for

proteins from two species. As shown in Table 3, from the entire
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Figure 4. The effects of parameter alteration on orthology detection performance. Panel A: Phylogeny-based methods. Varying the orthology
bootstrap cutoff indicates that the cross-over point where FP = FN occurs at a lower cutoff than the suggested default (50%; gray bar). Panel B: BLAST-
based methods. The effect of changing E-value cutoff for various methods (the bit score cutoff used by Inparanoid is transformed into E-value cutoff)
is shown. Single data point is provided for KOG, which could not be readily rerun under diverse conditions. Panel C: Markov clustering methods. The
effect of varying the MCL inflation index is shown. The inflation index of 1 corresponds to single-linkage (SL) clustering. In panels A–C, FP and FN error
rates are represented by solid and dashed lines, respectively. Panel D: An ROC curve representing the range of FP and FN error rates observed in
panels A & B. Default or recommended settings for each method are indicated by circles.
doi:10.1371/journal.pone.0000383.g004

Table 3. Comparison of proteome clusterings by OrthoMCL, KOG, and TribeMCLa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A B Grouped By Both Identical Groups A Contains B B Contains A Coherent Groupsb

OrthoMCL KOG

# Groups 13,323 10,058 5,158 474/572 7,059/3,597 12,691/9,327

(39%/51%)d (4%/6%)d (53%/36%)d (95%/93%)d

# Proteins 78,998 88,613 78,329 22,057 7,106/3,327 42,398/58,997 71,561/84,381

(70%)c (78%)c (99%/88%)d (28%)e (9%/4%)d (54%/67%)d (91%/95%)d

OrthoMCL TribeMCL

# Groups 13,323 8,143 5,116 859/977 6,421/1,895 12,396/7,988

(38%/63%)d (6%/12%)d (48%/23%)d (93%/98%)d

# Proteins 78,998 83,219 76,625 20,290 6,310/4,722 45,002/56,739 71,602/81,751

(70%)c (74%)c (97%/92%)d (26%)e (8%/6%)d (57%/68%)d (91%/98%)d

KOG TribeMCL

# Groups 10,058 8,143 4,289 1,914/2,711 2,398/854 8,601/7,854

(43%/53%)d (19%/33%)d (24%/10%)d (86%/96%)d

# Proteins 88,613 83,219 81,860 21,140 31,040/15,842 21,039/40,954 73,219/77,936

(78%)c (74%)c (92%/98%)d (26%)e (35%/19%)d (24%/49%)d (83%/94%)d

aTotal proteome size = 112,920, of which 76,114 (67.4%) were grouped by all three methods.
bCoherent groups includes cases where methods A and B yield identical groups, cases where a group identified by one method completely encompasses one or more
groups identified by the other method (i.e. the sum of the preceding three columns).

cPercent of total proteome.
dPercent of those groups or proteins that were clustered by method A (left) or B (right).
ePercent of those proteins that were clustered by both methods.
doi:10.1371/journal.pone.0000383.t003..
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dataset of 112,920 sequences, KOG clusters 88,613 proteins (78%)

into 10,058 groups (average 8.8 proteins/group); TribeMCL

clusters 83,219 proteins (74%) into 8143 groups (average size

10.2); and OrthoMCL clusters 78,998 proteins (70%) into 13,323

groups (average size 5.9). Thus, in terms of inclusiveness,

KOG.TribeMCL.OrthoMCL, while in terms of cluster tight-

ness, OrthoMCL.KOG.TribeMCL. Not surprisingly, there is

considerable overlap in which proteins are grouped by these

methods; 76,114 (67%) proteins are grouped by all three methods.

When comparing the two methods that explicitly define ortholog

groups (KOG & OrthoMCL), the vast majority of the extra 3265

(13,323–10,058) OrthoMCL groups contain#4 sequences, from

1–2 species (see Figure S4 for a distribution of group sizes using

each method, by # species and # sequences).

Table 3 also presents further analysis of the relationship and

coherence of KOG, OrthoMCL, and TribeMCL clusterings.

Comparing the two ortholog groupings (KOG & OrthoMCL; top

row), of the 78,329 sequences grouped by both methods, 90–95%

are grouped coherently (right-most column), i.e. KOG and

OrthoMCL groups are either identical or one is completely

contained within the other. 5158 identical groups represent 51%

of KOG groups and 38% of OrthoMCL groups, and include 28%

of all proteins recognized by both. 35% of KOG groups contain

52% of the OrthoMCL groups, while only 3% of OrthoMCL

groups contain 5% of KOG groups, i.e. KOG groups generally

encompass OrthoMCL groups, rather than the reverse (note that

in a previous analysis, OrthoMCL groups were found to generally

encompass EGO groups [18,34]). A similar trend is also observed

when comparing OrthoMCL & TribeMCL, but not KOG &

TribeMCL, as shown in Table 3. Only 84 OrthoMCL groups are

split into two (or more) groups by KOG; these are often attributable

to functionally distinct proteins that are not distinguishable by

sequence similarity (e.g. RNA polymerases I and III), or fusion

proteins (e.g. in the case of bifunctional ATP sulfurylases - adenosine

59-phosphosulfate kinases, these related enzymes were manually split

into individual monofunctional groups and a separate bifunctional

group during curation of the KOG database).

Consistency of protein function and domain

architecture in ortholog/homolog groupings
As described above, OrthoMCL and KOG are very consistent in

their grouping of proteins from a multi-species dataset, although

the former is fully automated, while the latter requires manual

curation. In general, differences are attributable to the tendency of

KOG to incorporate into larger groups proteins that are either

excluded or grouped separately by OrthoMCL – but which of

these clusterings is more accurate? By definition, orthologs arise

through speciation, and are likely to retain similar sequence,

domain architecture, and function; indeed, such conservation

provides one motivation for identifying ortholog groups, in order

to facilitate the annotation of unknown protein sequences. In

contrast, paralogs arise by duplication; because of their functional

redundancy, they are more likely to have point mutation and even

domain rearrangements to evolve new functions. The consistency

of protein function and domain architecture within ortholog/

homolog groups therefore provides a useful measure for assessing

the accuracy of ortholog groupings.

Enzyme commission (EC) numbers are among the most widely

and consistently applied forms of curated functional annotation for

proteins. In order to investigate the accuracy with which ortholog

identification algorithms cluster EC-annotated proteins, protein

sequences and EC numbers were extracted from the ENZYME

database, and mapped to the dataset used for ortholog analysis (see

Methods). Complete (4-digit) EC numbers are identified for a total

of 4,739 sequences in the dataset, .95% of which are clustered

into groups by OrthoMCL, KOG and TribeMCL. Groups

containing two or more EC-annotated sequences (defined as

enzyme groups) are used to assess functional consistency, by

examining the percentage of enzyme groups for which all EC

annotations are identical or consistent.

As shown in Table 4, OrthoMCL recognizes more enzyme

groups, containing fewer proteins, than either KOG or Tri-

beMCL, due to the different tightness of these clusterings. As

a consequence, OrthoMCL exhibits the highest consistency in EC

number annotation: 89% of enzyme groups, vs. 83% for KOG,

and 75% for TribeMCL. Of 4125 EC-annotated sequences in

OrthoMCL enzyme groups, 3531 (86%) are clustered into

consistent groups (vs. 77% for KOG and 54% for TribeMCL).

From another point of view, these statistics indicate that

OrthoMCL exhibits the greatest potential for accurate functional

annotation of unknown protein sequences.

Several strategies can be employed to define protein domain

architecture, often motivated by the desire to identify specific

domains that are structurally (SCOP, CATH) and/or functionally

(Pfam) conserved. In order to incorporate regions that may not be

structurally or functionally significant, we applied MKDOM2

[35], which decomposes all protein sequences into domains based

on successive iterations of PSI-BLAST searches. After excluding

domains that are present in only one sequence in the entire

dataset, a ‘Domain Content Similarity’ (DCS) Jaccard coefficient is

defined as the number of domains present in both of two

sequences, divided by the number of domains present in either (for

a group of sequences, DCS refers to the average of all pairwise

comparisons).

Table 4. Consistency of three clustering methods with EC assignments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Method
Total Dataset Enzyme Groupsb Consistent Enzyme Groupsd

Groups
Proteins (% of
proteomes)a Groups Proteins

EC-annotated (%
of total)c Groups (% possible) Proteins

EC-annotated (%
possible)

OrthoMCL 13,323 78,998 (70) 1,007 10,371 4,125 (87) 895 (89) 8,081 3,531 (86)

KOG 10,058 88,613 (78) 926 14,471 4,393 (93) 773 (83) 9,963 3,378 (77)

TribeMCL 8,143 83,219 (74) 639 19,685 4,437 (94) 481 (75) 7,387 2,388 (54)

aTotal proteome size = 112,920.
bEnzyme groups are defined as groups with at least two proteins for which EC annotation is available.
cA total of 4,739 proteins have EC annotations according to ENZYME database.
dAll EC-annotated proteins in the group have the same or consistent EC numbers. Percentages indicate fraction of enzyme groups which are consistent in EC
annotation, or fraction of EC-annotated proteins properly put into consistent groups.

doi:10.1371/journal.pone.0000383.t004..
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A large amount of groups (33,47%) identified by OrthoMCL,

KOG or TribeMCL exhibit DCS = 1 (see Figure S5), i.e. they

share all of the same domains (ignoring domain order, length, or

repetition). Considering those groups that are not identical

between OrthoMCL and KOG, the average DCS is significantly

higher for OrthoMCL, as shown in Figure 5: 4-fold more

OrthoMCL groups exhibit DCS = 1, and for those groups with

non-identical domain architectures, the peak is shifted to the right

from KOG (DCS = 0.3–0.4) to OrthoMCL (0.5–0.6). This partly

explains OrthoMCL’s better consistency in protein function, as

higher similarity in protein domain architecture results in higher

similarity in function [36]. As might be expected from the overall

comparison of OrthoMCL vs KOG consistency (Table 3), the

more consistent OrthoMCL groups are also smaller in size, as

indicated by shading in Figure 5. Smaller groups with more

consistent DCS are less likely to include out-paralog evolutionary

relationships.

In summary, OrthoMCL yields more, smaller protein groups

than other methods, and is more effective in separating ancestral

duplications (out-paralogs). These groups are more consistent with

respect to both EC number annotation and protein domain

architecture, and are therefore more likely to accurately reflect

protein evolution and function. For example, group KOG1158

includes some proteins annotated with EC 1.1.1.205 (IMP

dehydrogenase), and others annotated as EC 1.7.1.7 (GMP

reductase). OrthoMCL successfully clusters these proteins into

two groups with consistent EC numbers (Figure 6A) and domain

architectures (Figure 6B). Both enzymes share two protein

domains, but IMP dehydrogenase also includes a long N-terminal

extension, incorporating several additional domains.

DISCUSSION

Performance of orthology detection methods
Ortholog identification is critically important for many applica-

tions, ranging from genome annotation to comparative genomics

to evolutionary biology. We have therefore sought to develop

a platform for comparing available ortholog identification

methods. In the absence of a genomic-scale orthology dataset

Figure 5. Comparison of protein domain content similarity for
OrthoMCL and KOG groups. The distribution of Domain Content
Similarity (DCS) values for non-identical KOG and OrthoMCL groups is
shown. Shading is used to represent group size (number of taxa). In
general, OrthoMCL groups are smaller, and exhibit more consistency in
protein domain architecture.
doi:10.1371/journal.pone.0000383.g005

Figure 6. Example of KOG vs OrthoMCL clustering. Group KOG2550 is split by OrthoMCL into two groups that are more consistent with respect to
both EC annotation and protein domain architecture. Panel A: Edge lengths in these two BioLayout graphs [40] indicate BLAST similarity relationships,
and node colors represent different OrthoMCL groups (note that one protein, shown in gray, is not clustered by OrthoMCL). OrthoMCL uses
normalized BLAST scores [18], and clustering is based on the identification of (co-)orthologs and in-paralogs (Figure 1), rather than simply homologs
defined by BLAST. Panel B: Colored vertical bars correspond to OrthoMCL groups; colored horizontal bars indicate conserved domains assigned by
MKDOM2 [35].
doi:10.1371/journal.pone.0000383.g006
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suitable for benchmarking performance, the statistical technique of

Latent Class Analysis allows false positive and false negative rates to

be inferred from data on agreement and disagreement (Figure 2).

Applying this approach to a variety of ortholog identification

methods (Table 1) demonstrates a clear trade-off between sensitivity

and specificity, both with respect to the methods themselves (Figure 3)

and the parameters selected (Figure 4).

As described above (and in accord with anecdotal experience),

phylogeny-based methods typically exhibit high false negative

rates, while simple BLAST-based homology detection methods

exhibit high false positive rates. A similar trade-off between

specificity and sensitivity has recently been described based on the

use of functional genomics data to benchmark human-mouse

orthology predictions [22]. Of the ten methods studied in our

analysis, only four (RBH, Inparanoid, OrthoMCL and KOG)

were included in that study: rankings in sensitivity (approximated

indirectly as raw numbers of ortholog predictions) and specificity

(inferred indirectly based on functional similarity score) partly

agree with the present report. However, it should be noted that

different types of functional genomics data yield different results,

and that such evidence is often inadequate to the challenge of

making comparisons over larger evolutionary distances, e.g. H.

sapiens to C. elegans [22].

Table 1 and Figures 3–4 provide a helpful framework for

selecting suitable methods for various applications. For example,

KOG provides a low false negative rate (but high frequency of

false positives), while RIO offers the reverse. KOG is therefore

suitable for applications requiring high sensitivity, such as the

identification of all candidate genes that might encode a specific

enzyme, while RIO is more appropriate for applications requiring

high specificity, such as the identification of groups suitable for

phylogenetic analysis, or for comparative biochemical studies of

enzyme function. Overall, Inparanoid and OrthoMCL exhibit the

best balance of sensitivity and specificity.

Other factors may also affect the selection of ortholog identi-

fication strategies. For example, RIO and Orthostrapper are based

on analysis of aligned Pfam domains. These methods calculate

evolutionary distances and reconstruct phylogenies, incurring

a relatively high computational cost. All of the other methods

considered here are based on BLAST comparison of full-length

protein sequences, and are therefore relatively fast. The KOG

method, however, relies on manual curation to break apart

inappropriately combined groups – a labor-intensive task that

precludes automated incorporation of emerging genome sequences.

These methods also differ in their ability to group protein

sequences from multiple species – a particularly important

consideration for such applications as functional genome annota-

tion and phyletic pattern analysis. KOG, OrthoMCL and

TribeMCL assemble protein groups from multiple species – the

former by merging ‘triangles’ of reciprocal best hits based on

shared edges (followed by a variety of heuristic steps designed to

improve sensitivity), while the latter two use a Markov clustering

algorithm to form groups from a complex graph defined by pairwise

sequence similarity scores. Other methods are designed for two-

species datasets, although a recent report (MultiParanoid [37])

employs a single linkage clustering on Inparanoid results from all

possible bi-species comparisons to group proteins across multi-

species dataset (in order to prevent the inclusion of out-paralogs,

MultiParanoid is only employed for closely related species). Similar

strategies could be applied to other methods as well, although the

false positives inevitably brought about by single-linkage clustering

make it hard to apply to large number of species.

Groupings formed by three multi-species clustering algorithms

are compared in Table 3. In general, KOG and TribeMCL are

more inclusive than OrthoMCL, leading to lower group consis-

tency in terms of both protein function (Table 4 & Figure 6A) and

domain architecture (Figures 5 & 6B). The inclusive nature of

TribeMCL is attributable to its use of sequence similarity scores

alone to assign groupings (i.e., this method is intended to identify

homologs, in contrast to KOG and OrthoMCL, which purport to

identify orthologs only). KOG’s inclusive nature is due to a variety

of factors, including the requirement for three species (forming

a triangle of reciprocal best hits) during the construction of initial

seed groups, the use of a high BLAST E-value cutoff (10 for KOG,

vs 1025 for OrthoMCL), and permissive rules for adding individual

sequences to the initial seeds. By way of example (Figure 6), GMP

reductases cannot nucleate a KOG seed group because they are

only found in two species in the KOG dataset (H. sapiens and C.

elegans). They are therefore inappropriately grouped with IMP

dehydrogenases in KOG2550 due to sequence similarity, but

properly separated by OrthoMCL.

Challenges in using LCA for benchmarking

orthology detection
As noted above, LCA provides a useful framework for bench-

marking ortholog assignment methods, but such application is not

trivial and we have encountered several challenges. LCA

compares various methods with each other, allowing error rates

to be inferred in the absence of a gold standard. Because error

rates estimated in this way may be affected by other methods

included in the analysis, we considered which (and how many)

methods should be included, the (in)dependence between these

methods, and the robustness of the final result obtained.

In order to provide the most comprehensive and accurate

analysis possible, seven orthology detection methods are included,

representing complementary strategies based on phylogenetic

reconstruction, evolutionary distances, or BLAST-based sequence

similarity. Jackknife analysis of these results shows little systematic

change when any one or two methods are removed from the

analysis (Figure S3). The most significant change observed is an

apparent improvement in the performance of RBH and RSD

when any highly-specific, relatively independent method (RIO,

Orthostrapper, Inparanoid, OrthoMCL) is excluded (Figure S3B).

Exclusion of individual methods also results in a slight increase in

both FP and FN rate estimation for Orthostrapper and RIO,

suggesting that the performance of these methods may be slightly

overestimated. Overall, while the specific false positive and false

negative values estimated by LCA depends on the particular

collection of methods examined, this analysis confirms the value of

incorporating a wide range of methods in the benchmarking

framework, the overall robustness of this analysis, and the utility of

LCA as a method for evaluating performance.

Orthology detection methods all tend to rely on a similar set of

concepts for identifying protein pairs across species boundaries

(Table 1), making cross-method conditional dependence a potential

complication (Figure 3). Such local dependence is a common

problem confronting the use of LCA in many fields, but methods

have been developed to modify basic latent class model by adding

an extra latent variable [29,30]. The application of such model

accurately models conditional dependencies between orthology

detection methods (Figure S2), and results in a better fit to our

orthology data (i.e. improvement in performance estimation).

One significant feature of this LCA application is the

consideration of relationships between subjects (‘‘Are two proteins

orthologs of each other?’’), rather than individual subjects

themselves (e.g. ‘‘Does a patient have a specific disease?’’). Instead

of considering all possible pairwise relationships between all
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proteins in the entire dataset, the frequency table used for LCA

input includes only cross-species homologous protein pairs, as

orthology can only occur between homologs from different species.

Recognizing that orthology detection performance may vary from

one protein family to another, a sampling strategy (with replicates)

was devised to weight all families equally (see Methods), to prevent

the skewing of relationship data in favor of large protein families.

Sensitivity and specificity results estimated in this report therefore

represent an average over all families.

Applications of LCA in Computational Biology
LCA methodology is well suited to many biomedical problems,

where the inability to define a gold standard or unequivocally

recognize truth is a common limitation. This report describes one

of the first applications of LCA to computational biology, but the

emergence of genomic-scale datasets suggests many other potential

applications. For example, numerous computational methods have

been devised to predict potential protein-protein interactions, but

high-throughput experimental methods typically exhibit a high

false positive rate, precluding the development of a well-validated

dataset.

In addition to its utility for evaluating test performance, LCA

may also be employed as a clustering algorithm, based on the

posterior probability of subject membership in each latent class.

For example, LCA has been widely used to classify disease status

or subtypes, based on various types of symptoms or diagnostic

tests. In computational biology, we have exploited LCA as a gene

model combiner, integrating diverse lines of evidence to

significantly improve eukaryotic gene model predictions [38].

Since available orthology detection strategies display a trade-off of

sensitivity and specificity – without any method achieving optimal

performance in both – it should be possible to employ a similar

clustering strategy for merging ortholog predictions from multiple

methods, improving on the performance of any individual one.

Although this strategy would undoubtedly be impractical for

general application (due to intensive computing requirements), it

might be quite useful to generate a close-to-gold-standard

genomic-scale orthology dataset, establishing a benchmark for

future analyses, and guiding computational and biochemical

investigation of ortholog structural and functional properties.

MATERIALS AND METHODS

Orthology detection
The KOG database represents a manually curated grouping of

orthologs based on 112,920 protein/domain sequences from seven

eukaryotic genomes: Caenorhabditis elegans, Drosophila melanogaster,

Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosac-

charomyces pombe and Encephalitozoon cuniculi. The protein sequence

dataset used in KOG construction was compiled as of July 1, 2002

[39]. In order to facilitate the comparison and evaluation of

multiple ortholog identification methods, this dataset was em-

ployed for all analyses (except as otherwise noted). Sources for all

ortholog identification algorithms are as follows:

KOG: Ortholog grouping data and protein sequence data for

the seven eukaryotic genomes noted above were downloaded from

the KOG database (http://www.ncbi.nlm.nih.gov/COG/new/).

BLASTP: The BLAST result file was also downloaded from

the KOG database. Default settings for LCA: E-value cutoff = 1025.

OrthoMCL: Program v1.4 was downloaded from http://

orthomcl.cbil.upenn.edu (MCL v02-063 was downloaded from

http://micans.org/mcl/) and applied to the KOG dataset using

the above KOG BLAST result file. Default settings for LCA: BLAST

E-value cutoff = 1025; MCL inflation index = 1.5.

SBH, RBH: RBH results were obtained from the OrthoMCL

output; SBH results were obtained by modifying the OrthoMCL

script. ‘Best-hit’ is defined as the hit (or multiple hits tied) with the

highest E-value. Default settings for LCA: BLAST E-value cutoff 1025.
Inparanoid: Program v1.35 was downloaded from http://

inparanoid.cgb.ki.se and applied to all pairwise species proteomes

extracted from the KOG dataset (without the use of outgroup

species). Default settings for LCA: BLAST bit score cutoff = 50 bits.
TribeMCL: Program v1.6 and MCL v02-063 were

downloaded from http://micans.org/mcl/. The KOG BLAST

result file was used for TribeMCL clustering. Default settings for LCA:

BLAST E-value cutoff = 10210; MCL inflation index = 1.1.
RSD: Program was downloaded from http://rodeo.med.

harvard.edu/tools/roundup/and applied to all pairwise species

proteomes extracted from the KOG dataset (using the KOG

BLAST result file). Default settings for LCA: BLAST E-value

cutoff = 1025; divergence cutoff = 0.8.
Orthostrapper: Predictions on domain sequences of Pfam

7.2 were downloaded from the HOPS database at ftp://ftp.cgb.ki.

se/pub/data/HOPS/. Default settings for LCA: Orthology bootstrap

cutoff = 50.
RIO: Program v1.1 was downloaded from http://www.rio.

wustl.edu and applied to domain sequences in Pfam 14.0. Pre-

calculated data on evolutionary distance between domain

sequences was kindly provided by the authors. Default settings for

LCA: Orthology bootstrap cutoff = 50.
Pfam_RSD: The RSD strategy was applied to Pfam 14.0,

using pairwise distances extracted from the RIO dataset.

Reciprocal smallest distance pairs of domain sequences were

identified (without using divergence cutoff) for each Pfam domain

and each pairwise species comparison.
Pfam_RBH: The RBH strategy was applied to Pfam 14.0.

For each cross-species pair of sequences belonging to the same

domain, the original Pfam alignment was trimmed to the first and

last conserved columns, and the resulting alignment was used to

calculate a similarity score (Scoring matrix: BLOSUM62; Gap

Open Penalty: 11; Gap Extension Penalty: 1). Reciprocal best hit

pairs of domain sequences (for each Pfam domain and each

pairwise species comparison) were identified based on similarity

scores.

Frequency tables
Large protein families may bias the assessment of orthology

detection performance, by drastically amplifying the number of

cross-species homologous protein pairs relative to small protein

families. In order to avoid this problem, a sampling strategy was

therefore devised to consider only one protein pair, from one

species pair, from each Pfam family, chosen at random except for

the exclusion of S. cerevisiae and S. pombe pairs (which are not

distinguishable in the Orthostrapper/HOPS predictions [9]), and

pairs including E. cuniculi (absent from the Orthostrapper/HOPS

dataset [9]). As a further restriction, no protein pair was selected

more than once in any given sampling (even if present in more

than one Pfam families).

Latent class models and analysis
In orthology detection, both the prediction results Xi (i = 1,…,n,

representing different methods) and the true status of orthology Y

(latent class) are binary: 1 for orthology, 0 for non-orthology. For

a given homologous protein pair, the result of all these methods is

represented as a pattern X (X1 X2 … Xn). The probability of

observing a specific pattern x can be expressed using 2n+1

parameters: the prevalence rate of orthology h among homologous

protein pairs, the FP rate ai and the FN rate bi for each method,
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according to the following formula.

Pr (X~x)~ Pr (Y~1) Pr (X~xjY~1)z Pr (Y~0)

Pr (X~xjY~0)~hPn
i~1b1{xi

i (1{bi)
xi

z(1{h)Pn
i~1axi

i (1{ai)
1{xi

ð1Þ

For a set of homologous protein pairs, a frequency table can be

compiled, listing the counts of pairs for all the 2n possible patterns

as f(X). The likelihood function of the latent class model given this

data can be expressed as

L~Px hPn
i~1b1{xi

i (1{bi)
xi z(1{h)Pn

i~1axi

i (1{ai)
1{xi

h if (x)

ð2Þ

Finally the ML (Maximum Likelihood) estimate of these

parameters can be obtained by using Latent GOLD software

[27]. This model is a basic 2LC model (i.e. containing 2 latent

classes), assuming conditional independence. Once the model

parameters are estimated, the probability of observing each

prediction pattern can be calculated according to formula 1,

above.

In order to account for the conditional dependencies observed

between orthology detection methods, an extra latent variable is

added to the above basic model [29,30]. In such models, the

outcome of a test is assumed to be governed by two factors: the

latent class of orthology status (true or false), and a second latent

variable which summarizes the attributes of the subject (here, the

homologous protein pair) and the test (here, the orthology

detection method) that are not explained by the latent class of

orthology status alone. Generally, the second latent variable is in

the form of standard normal distribution, and a probit model is

used in describing the conditional probability. Thus, such models

are also called latent class models with random effects or

a continuous factor (a CFactor 2LC model). Given both of these

latent variables, the responses of different tests then are assumed to

be independent, so the formulas describing this model are similar

to those used for the basic model. For a detailed description please

refer to [29] or Latent GOLD technical guide [28].

Latent GOLD software version 4.0 was used to perform all

LCA analysis in this paper. For the 2LC model, Latent GOLD

uses a frequency table file as input, and performs ML estimation of

model parameters, by: (i) selecting ‘‘Cluster Model’’ with 2 clusters

(i.e. two latent classes representing ‘‘orthology’’ and ‘‘non-

orthology’’ respectively), (ii) setting orthology detection methods

as ‘‘Indicators’’, (iii) setting the counts of protein pairs for various

prediction patterns in frequency tables as ‘‘Case Weight’’, and (iv)

setting 100 random sets as ‘‘Start values’’, and 250 iterations per

set, in ML estimation. The CFactor 2LC model is run similarly,

except that a continuous factor (CFactor) is added with ‘‘Cluster

Dependent’’ (i.e. latent class dependent) and ‘‘Unequal’’ (i.e. test

dependent) effects. The output of this analysis includes estimated

values for model parameters, as well as BVR statistics.

BVR statistics calculated under the 2LC model may be

regarded as a measurement of conditional dependence. For the

purpose of illustrating the relationship between orthology and

homology detection methods, both kinds of methods were

considered. For evaluating orthology performance, only the seven

orthology detection methods (using default parameter settings)

were included under the CFactor 2LC model, composing the

benchmarking framework. Homology detection methods do not

purport to detect orthology, and are therefore inappropriate for

inclusion. These methods, as well as orthology detection methods

under non-default parameter settings, can be set in LatentGOLD

software as ‘‘Inactive Covariates’’ (i.e. they do not play a role in

LCA analysis), and their error rates are obtained by rescaling

average posteriors to sum to 1 within classes.

Consistency analysis in protein function and domain

architecture
EC annotated sequences were obtained from SWISSPROT

ENZYME database at http://us.expasy.org/enzyme/, and

mapped to KOG sequence dataset based on exact matches. Only

ortholog groups containing at least two sequences for which EC

annotation is available were examined, and groups were

considered to be consistent if all EC annotations are identical or

consistent (i.e. where one enzyme’s EC number(s) are contained

within the set of EC numbers used to describe the other

multifunctional enzyme).

MKDOM2 program was downloaded from http://prodom.

prabi.fr/prodom/xdom/and run against the complete KOG

sequence dataset using default settings.

SUPPORTING INFORMATION

Figure S1 Frequency table from one sampling replicate. Last

column lists the number of protein pairs observed for each

orthology prediction pattern. Note that 50% (64) of the 2ˆ7 = 128

possible patterns are not observed in this replicate (the rows are

not shown).

Found at: doi:10.1371/journal.pone.0000383.s001 (4.01 MB TIF)

Figure S2 Bivariate residual statistics (BVR) calculated based on

the CFactor 2LC latent class model. Note that most conditional

dependencies decrease significantly in comparison with BVR

statistics based on the 2LC model (Figure 3), indicating that they

are effectively modeled by the extra latent variable added in the

CFactor 2LC model.

Found at: doi:10.1371/journal.pone.0000383.s002 (0.42 MB TIF)

Figure S3 Jackknife analysis of orthology detection performance

based on LCA. Panel A: Removal of any one or two orthology

detection methods from the LCA benchmarking framework

(medium- and small-sized circles, respectively) has relatively little

impact on performance. Large circles indicate performance

assessment when all methods are included (see Figure 3). Note

that the overall trend of orthology detection performance is

maintained in jackknife analysis. Panel B: Data extracted from

panel A to indicate specific effects of (one-) method removal. Data

points indicate changes in the estimation of FP & FN error rates

for each method (outer circle), with respect to the original

benchmarking result, following removal of other methods (inner

circle). Most changes observed on these error rates are #0.1

(indicating the relative robustness in estimation), but systematic

changes of some methods indicate possible errors: RBH’s lower

FN rates when some methods are removed suggest possible

underestimation of sensitivity; phylogeny-based methods RIO and

Orthostrapper are concentrated in the upper right quadrant,

suggesting possible overestimation of performance.

Found at: doi:10.1371/journal.pone.0000383.s003 (2.72 MB TIF)

Figure S4 Size distribution of KOG, OrthoMCL and Tri-

beMCL groups (with respect to # sequences and # species). When

compared with KOG and TribeMCL, the majority of extra

groups identified by OrthoMCL contain#4 sequences, from 1–2

species.

Found at: doi:10.1371/journal.pone.0000383.s004 (2.05 MB TIF)

Assessing Orthology Detection

PLoS ONE | www.plosone.org 11 April 2007 | Issue 4 | e383



Figure S5 Domain structure consistency of OrthoMCL, KOG

and TribeMCL groups. DCS (Domain Content Similarity) is

defined as a Jaccard coefficient: the fraction of MKDOM2

domains found in either of two sequences that are present in both;

DCS for a group of sequences is calculated as the average of all

pairwise comparisons of sequences. (Note that the effects of

domain repeat, order and length are not considered under this

simple definition. In addition, due to the difficulties of accurately

predicting gene models, e.g. start codon positions and intron/exon

structures, orphan domains appearing only once in the entire

dataset are excluded.) Groups from all three methods display

a similar distribution in DCS value, with OrthoMCL exhibiting

better consistency than KOG (average DCS is 0.73 for

OrthoMCL vs 0.65 for KOG). The stringent BLAST E-value

cutoff (10ˆ-10) used in TribeMCL clustering results in a high

average DCS (0.74).

Found at: doi:10.1371/journal.pone.0000383.s005 (1.14 MB TIF)

Table S1 Marginal dependence between various orthology/

homology detection methods.

Found at: doi:10.1371/journal.pone.0000383.s006 (0.05 MB

DOC)

Table S2 The performance of Reciprocal Best Hit (RBH)

depends on the definition of ‘best-hit’.

Found at: doi:10.1371/journal.pone.0000383.s007 (0.03 MB

DOC)

Table S3 RSD performance varies according to divergence

cutoff.

Found at: doi:10.1371/journal.pone.0000383.s008 (0.03 MB

DOC)
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