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A B S T R A C T   

In this letter we present comments on the article “A global-scale ecological niche model to predict SARS-CoV-2 
coronavirus” by Coro published in 2020.     

1. Introduction 

The recent outbreak of SARS-CoV-2 infections, which causes 
COVID-19 in humans, has accelerated the development of global health 
policies to manage and mitigate the risks of infectious diseases (Wilder- 
Smith et al., 2020). Concurrently, the medical scientific community has 
been mobilized to provide clinical support during the pandemic 
(Kupferschmidt and Cohen, 2020). This pandemic has also attracted the 
interest of non-medical researchers hoping to understand potential 
environmental drivers of SARS-CoV-2 prevalence and to predict future 
outbreaks via correlative methods such as species distribution models 
(SDMs). 

Coro (2020) presented an implementation of a SDM to predict 
global areas of high SARS-CoV-2 infection rate from geophysical and 
social-related spatial covariates that he found to be correlated with high 
infection rates. While contributing to a broader understanding of the 
potential geographic scope of the pandemic is a commendable effort, 
the application of a correlative model to estimate SARS-CoV-2’s eco-
logical niche given the epidemiology of transmission, as well as tech-
nical aspects of model implementation, highlights the drawbacks of 
using this approach to predict future outbreaks of SARS-CoV-2. We 
contend that such SDM implementations are prone to spurious results, 
meaning that they have a high potential for finding correlations be-
tween mechanistically unrelated variables, especially when model as-
sumptions are violated and spatial scaling between covariates and 
mechanistic processes are mismatched. Therefore, extreme care should 
be taken when disseminating and overinterpreting correlative research 
without strong a priori mechanistic hypotheses, particularly in the midst 
of a pandemic, as incorrect conclusions about drivers of viral spread 
may have negative consequences if used as guidance by policy makers. 
Indeed, Coro's model did identify correlations between putative ex-
planatory variables and high infection rates. However, below we argue 
that such correlations are unlikely to be biologically relevant both be-
cause the variables considered lack mechanistic plausibility in this 
setting as well as other flaws in model implementation. 

Herein, we present our concerns with the foundational premise of  
Coro 2020 to model the ecological niche of SARS-CoV-2 as well as the 
implementation and interpretation of modeling results. We suggest that  

Coro's (2020) claim that “Generally, the model indicates a high infec-
tion rate in areas characterized by an annual moderate-high level of 
CO2, moderate-low temperatures, and moderate precipitation” is pro-
blematic for two primary reasons: 1) SDMs do not accurately predict the 
dynamic geography of SARS-CoV-2 transmission because the under-
lying drivers of viral spread are dominated by human behavior 
(Carlson et al., 2020); and 2) the paper overlooks substantial predictive 
misclassifications, model assumptions and validations. 

2. SDMs are not suitable for modeling emerging SARS-CoV-2 
spread 

SDMs typically use the locations where a species is recorded as 
being present and, if possible, where the species is recorded as being 
absent, to build a statistical model of the occurrence of the species with 
environmental covariates in order to predict its distribution. The cor-
rect application of an SDM requires that the species has a clear en-
vironmental niche, even if that niche is unknown to the researcher, and 
that its distributional data are reflective of that niche (Václavík and 
Meentemeyer, 2012; Gallien et al., 2012). The use of an SDM to predict 
viral spread does not meet these requirements because SARS-CoV-2 
presumably originated from a single spillover event (Andersen et al., 
2020) and further transmission has resulted from human-to-human 
contact and not through a vector with an identifiable ecological niche 
(Carlson et al., 2020). Moreover, the virus is continuing to spread across 
the globe into new environments, driven primarily by human social 
contact patterns (Liu et al., 2020), such that the distribution of occur-
rence at any one point in time likely does not accurately reflect any sort 
of theoretical ecological niche (Chipperfield et al. 2020). Although  
Coro's (2020) model includes human-related parameters of population 
density and CO2 levels in addition to climatic variables, they in-
adequately describe other social-related factors that drive transmission 
beyond human abundance such as, but not limited to, social contact 
dynamics, behavior changes from perceived threat of infection, gov-
ernmental policy and its timing of implementation, socioeconomic 
factors across different regions of a country and across countries, and 
the timing of infection peaks. 
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2.1. The pandemic is a dynamic process 

Coro (2020) derived an “occurrence of high infection rate” response 
variable that is constructed by selecting the provinces in Italy that have 
a higher number of confirmed cases per capita than the national 
average (up until March 2020 representing the peak of the pandemic in 
Italy). However, this process does not improve the suitability of the 
application of an SDM. Firstly, the pandemic is a dynamic process; 
Markov processes operating within human contact networks alone are 
sufficient to expect that areas of Italy which don't currently have high 
infection rates, may later become the high infection areas as epidemics 
potentially take hold in those places whilst declining in the areas af-
fected earlier. Given the north-south gradient of environmental condi-
tions in Italy, then we might expect the entire correlation between 
occurrence and climate to change depending on when during the out-
break we perform the analysis. The proposed climate-occurrence signal 
may in fact be noise because the provinces identified as high-infection 
rate can and do change if case data from one day preceding or following 
the period analyzed by Coro are omitted or included. Therefore, the 
model is not robust to making accurate predictions outside of that time 
period. It is widely appreciated that SDMs and similar correlative spa-
tial models are susceptible to spurious findings through random cov-
ariance of spatially structured variables alone with no causal link 
(Currie et al., 2019; Bahn and McGill, 2007; Fourcade et al., 2018). 
Therefore, a priori care in selecting covariates and accounting for spatial 
autocorrelation is paramount to avoiding spurious inferences in SDMs 
(Currie et al., 2019; Austin, 2007; Merow et al., 2013). In this case, 
transmission of SARS-CoV-2 is largely by droplets generated from 
human-to-human interaction, so there is unlikely to be a strong effect of 
climate, especially as most transmission occurs indoors (Allen and 
Marr, 2020). 

3. Flaws in model implementation and validation 

Coro (2020) dichotomized continuous values of infection rate using 
as threshold the average number of confirmed cases per capita at the 
peak of the pandemic in Italy to derive a response variable with the 
categories "occurrence" and "absence" of "high infection rate". The di-
chotomization of continuous data has well-known negative con-
sequences, such as overestimation of effect sizes and loss of measure-
ment reliability (MacCallum et al., 2002), overestimation of the 
differences between groups (Altman and Royston, 2006), and distortion 
of the relationship between predictive and response variables 
(Selving, 1987). 

Furthermore, Howard et al. (2014) demonstrate that using a proxy 
of abundance (such as per-capita infection rate) as input for a SDM lead 
to distribution estimates significantly better than those derived from 
presence-absence data because the signal abundance-suitability is lost 
when all presences are treated as equals. For example, treating above- 
average per-capita infection rates as equals in the presence category 
may lead to a high bias if “very high” infection rates are scarce within 
the dataset and “just above average” infection rates are en-
vironmentally clustered by chance due to the North-to-South climatic 
and infection gradients in Italy. In such a case, high suitability values 
yielded by MaxEnt will be centered around the presences with lower 
infection rates within the “presence” category. Such a problem may 
only worsen if there is not much difference between infection rates at 
both sides of the threshold. 

Using such knowledge, Coro (2020) could have made a sound 
choice by using per-capita infection rates as a continuous response 
variable in a regression model, rather than obscuring potential re-
lationships between the response variable and the predictors through a 
convenient (MaxEnt can only use a dichotomous variable as response) 
albeit arbitrary dichotomization. As a result, biases in Coro's analysis 
cannot be assessed, and remain masked behind the apparent reliability 
of a colorful map. 

Moreover, Coro's paper does not acknowledge or address violations 
of model assumptions beyond the existence of a viral niche that sig-
nificantly affect results and their interpretation such as scaling mis-
match between species’ data (modeled here as locations with high viral 
incidence rate) and predictor variables, and equilibrium of the species 
with its environment (Guisan and Zimmerman, 2000). Additionally, the 
poor model validation described in the manuscript undermines the 
paper's primary conclusions. To wit, the conclusions that “climatic 
parameters such as air temperature and precipitation (or air humidity) 
play a critical role at defining locations that may be subject to a high 
infection rate” is unsupported based on the model diagnostics presented 
in the paper. We elaborate these details in the next three sections. 

3.1. Scale mismatch and prediction outside model domain 

Coro (2020) used a MaxEnt model which is known to be highly 
prone to bias resulting from non-random training samples (Elith et al., 
2011; Merow et al., 2013; Gurutzeta et al., 2015). Coro's model was 
initially trained on data restricted to point locations of capital cities of 
Italian provinces with a high-incidence of infections which is a non- 
representative sample for predictive extrapolation to the whole planet 
(Jarnevich et al., 2015). To test whether the geographic scope of the 
training data influenced model performance, the author retrained the 
model first by adding areas that were initially well-predicted by the 
base model and re-assessing model fit. Unsurprisingly, the inclusion of 
these areas did not substantially affect model performance. However, 
when the training area was expanded to include areas with poor pre-
dictive validation, model performance dropped. The author states that 
this result “indicates that the used input parameters are insufficient to 
understand the infection rate increase in these areas”. Thus, the fitted 
model is not suitable for predicting areas of high infection rate on a 
global scale. We find the poor predictive performance of the model 
unsurprising because the restricted geographic extent of the training 
data limits the explanatory power of relatively coarse resolution (0.5°) 
covariate data used by Coro (Mertes and Jetz, 2018), particularly for 
the CO2 flux data that was reprojected to a 0.5° resolution from the 
original Copernicus CO2 data product (Coro and Trumpy, 2020) which 
has an even coarser resolution of 3.75° in longitude by 1.87° in latitude  
CAMS (Copernicus Atmosphere Monitoring Service) 2019). Model re-
sults suggest CO2 flux as the variable with the highest predictive power, 
however, even after resampling from the original coarser resolution, 
correlative associations between CO2 and high incident rates of COVID- 
19 are drawn from only 26 unique values that are unrepresentative of 
variation of values globally. Thus, global extrapolation is outside of the 
original model domain and based on a limited amount of information. 
Furthermore, the 0.5° resolution of covariate data is mismatched in 
scale with high-infection rates because it is derived from case data 
summarized by province and geo-referenced by the location of the 
province capital city. This leads to substantial model bias because any 
grid-cells within the province that do not overlap the point location of 
the capital city are falsely ignored by the model as true presence lo-
cations leading to missed covariate associations, particularly for CO2 

flux and population density which may have substantially different 
values in grid-cells not overlapping with the capital city. 

Given the bias introduced by an unrepresentative sample and scaling 
mismatch, rather than implying the modeled viral “niche” does validate 
across the “range” of SARS-CoV-2 due to an undiscovered separate set of 
environmental correlates for viral spread in these poorly-predicted areas, 
we suggest that incomplete predictive accuracy implies estimated corre-
lations that might be spurious (i.e., not causally related). 

3.2. SARS-CoV-2 is spreading through human social interactions; a system 
not in equilibrium 

Another key assumption of SDMs, including MaxEnt models, is that 
the modeled species distribution is a stationary function of some 

Ecological Modelling 436 (2020) 109288

2



environmental variable(s) (Austin, 2002; Guisan and 
Zimmerman, 2000; Elith et al., 2011). However, this assumption does 
not hold true for invasive species at the onset of immigration into a new 
area since the geography of occurrence is still shifting and likely ex-
panding (Theoharides and Dukes, 2007; Phillips et al., 2008). Thus, the 
assumption of an equilibrium distribution is unmet by the emerging 
pandemic whose emerging spatial distribution is dynamic and primarily 
influenced by human social contact networks rather than abiotic en-
vironmental factors (Liu et al., 2020; see also Section 2.1). 

3.3. Predictive misclassification 

Coro's (2020) model misclassifies 22.75% of known high infection 
rate areas (where areas are defined by a mix of geopolitical units). 
Based on World Health Organization data (WHO, 2020), at the time the 
revised paper was submitted to the journal (June 11, 2020) the missed 
areas, from a visual inspection of Fig. 3 in Coro 2020, cover over a 
quarter of the cumulative global case load; today those areas cover 
nearly 30% of the cumulative global case load. We suggest that such 
substantial underprediction of extant outbreaks indicates poor model 
performance rendering inferences drawn from the model not in-
formative. 

4. Conclusion 

We found little convincing evidence that this global-scale ecological 
niche model predicts SARS-CoV-2infection rate due to the drawbacks 
that we identified in the model implementation, validation, and inter-
pretation as well as in the premise of an identifiable ecological niche for 
the spread of this particular virus. All modelling exercises require 
careful consideration of modeling assumptions in relation to study de-
sign and data collection for making interpretations that are meaningful 
and repeatable. Given the limitations of SDMs in particular, we re-
commend that future efforts to forecast SARS-CoV-2 outbreaks and/or 
to predict the spatial occurrence of other viruses with a similar ecology 
to SARS-CoV-2 be avoided (Carlson et al., 2020). Fundamentally, these 
outbreaks represent a non-equilibrium process with an environmental 
niche constrained almost entirely by that of its host organism, in this 
case humans, and with range dynamics that SDMs have a poor track 
record of predicting well. There may be cases for limited application of 
well-considered SDMs for directly transmitted diseases in appropriate 
scenarios such as the modelling of the occurrence of reservoir hosts of 
infectious disease transmissible from animals to humans (Zhu and 
Peterson, 2014; Carlson et al., 2016) and/or to make assessments of 
wildlife ecology and conservation strategies (Higgins et al., 2012). 
However, the direct application of an SDM for the occurrence of a di-
rectly-transmitted disease with a host species that has affected an es-
timated 95% of the earth's land surface is never likely to be informative. 
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