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ABSTRACT: A novel synthesis of C(2)-modified peptide nucleic acids
(PNAs) is proposed, using a submonomeric strategy with minimally
protected building blocks, which allowed a reduction in the required
synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones
were used to obtain positively charged PNAs with high optical purity, as
inferred from chiral GC measurements. “Chiral-box” PNAs targeting the
G12D point mutation of the KRAS gene were produced using this
method, showing improved sequence selectivity for the mutated- vs
wild-type DNA strand with respect to unmodified PNAs.

Peptide nucleic acids (PNAs, Figure 1a)1 are synthetic
analogs of DNA with a poly-N-(2-aminoethyl)glycine

backbone, which are largely used in biological applications due
to their high affinity and very high sequence selectivity for
complementary nucleic acids.2 Thanks to these properties,
PNAs can be used as gene modulators using antisense,3

antigene,4 and anti-miR approaches;5 they have also been
shown to promote gene-editing with high precision6 and to be
suitable materials in a plethora of other applications.7 In
diagnostics, PNAs have been used as probes for the detection
of DNA and RNA, resulting in being particularly suited for the
discrimination of single-point mutations8 and for the develop-
ment of ultrasensitive devices exploiting the so-called “liquid
biopsy” approach.9

Modified PNAs bearing positively charged amino or
guanidino side chains on their backbone can display improved
performances,10 allowing for the production of multifunctional
derivatives11 and facilitating their cellular uptake.12 These
modifications also affect their ability in interacting with
complementary DNA or RNA strands, depending on the
configuration of the chiral center introduced in the backbone:

L-amino acid synthons in the C(5)-position (γ-PNAs) are ideal
for increasing the binding affinity for complementary
oligonucleotides, while D-side chains in the C(2)-position (α-
PNAs) are known to increase the selectivity for single-
mismatched sequences (Figure 1b and c, respectively).13 The
latter issue is crucial for the diagnosis of genetic diseases or
tumors, and stretches of three consecutive C(2)-modified
monomers (“Chiral boxes”) derived from either D-Lys or D-Arg
have been found to be effective in inducing the best single-base
selectivity for target mutated-DNAs,14 with complete control
in the orientation (antiparallel) of the resulting PNA:DNA
duplex.15

On the other hand, some drawbacks prevent C2-modified
PNAs to be used on large scales: (i) the relatively long and
challenging synthetic routes to produce the corresponding
monomers; (ii) the occurrence of epimerization reactions
during the PNA synthesis, which generate mixtures of
stereoisomers with different properties.16

The main strategies proposed to solve the first problem
exploit reductive amination,17 Mitsunobu reaction,18 and
alkylation of Nosyl- protected amino acids19 for the synthesis
of the chiral backbone, followed by introduction of the
carboxymethyl nucleobase. However, the use of complete
monomers (i.e., bearing the nucleobase) require careful control
of the reaction conditions for the synthesis of C(2)-modified
PNAs, as, being α-acilated amino acid derivatives, they are
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Figure 1. Structure of (a) unmodified PNA, (b) C5-modified- (γ-
PNA), and (c) C2-modified (α-PNA) chiral PNA structure. Base:
nucleobase (A, T, G, C).
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prone to racemization on their chiral center.16 The
epimerization process can be minimized by following a
“submonomeric strategy”, in which the modified monomers
are built directly on the solid support by the sequential
attachment of the backbone (the submonomer) and of the
nucleobase on a growing PNA chain.17b,c Although optically
pure PNAs could be produced in this way,14,20,21 this protocol
remains challenging from a synthetic point of view since it
requires the introduction of an additional protecting group at
the N(3)-position of a fully protected submonomer (Scheme
1, top left), thus restricting the variety of reaction conditions
that can be used subsequently and creating issues of unwanted
deprotection. These points are particularly problematic in the
case of Fmoc/Bhoc conditions, which are the most suited for
automatic synthesizers.17c As an alternative, a submonomeric
approach based on an Ugi three-component reaction was also
proposed.22 In this paper, we describe the development of a
shorter strategy for the production of optically pure “Chiral
box” PNAs according to a submonomeric Fmoc/Bhoc or
Fmoc/Boc protocol (Scheme 1, bottom route), based on the
use of minimally protected building blocks (i.e., bearing
protecting groups only at the N(6)-moiety and on the side
chain attached at the C(2)-position) which were obtained with
a simplified synthetic route.
During the synthesis of PNAs by the submonomeric

approach, the coupling of the primary amine at the N-term
with the incoming submonomer is much faster than that
involving the secondary amino group of the backbone and the
nucleobase in the next step; thus, we reasoned that building
blocks lacking protecting groups on their N(3)-position could
be suitable to perform the former reaction. Accordingly, also
the protection of the C-term carboxylate could be unnecessary
during the synthesis of the “minimally protected” submo-
nomers, which could be directly performed in a single
reductive amination step. This reaction can be performed
with standard reducing agents (i.e., NaBH3CN), but we also
explored an alternative procedure reported by Wang et al.,23

which has never been tested for the synthesis of PNA
backbones. In this case, the reductive amination takes place by
transfer hydrogenation, promoted by an Ir(III) catalyst in the
presence of a 5/2 mixture of formic acid (FA) and DIPEA.
Compounds 2-D and 3-Dthe most commonly used
submonomers for the synthesis of C(2)-modified PNAs
were successfully obtained by adding this mixture of reagents
to Fmoc-aminoacetaldehyde 1 and D-Lys(Boc)-OH or D-
Arg(Pbf)-OH in dry alcohol (EtOH or MeOH, respectively,
Scheme 2a). Remarkably, the Lys-based synthon was isolated
from the reaction medium by simple filtration, while the Arg-
modified backbone required a reversed-phase chromatography
purification step. This procedure gave 2-D and 3-D in 61% and
49% yield, respectively, which are similar or slightly higher
values than those reported for standard reductive amination
protocols on the same substrates (see ref 17c or Supporting
Information (SI), section 2.2, respectively). Being performed
in a single step and in the presence of less toxic reagents, we
suggest this strategy as a very convenient method for the
synthesis of C(2)-modified PNA submonomers.
Both the Lys- or Arg-based backbones were then used to

produce different “Chiral Box” PNAs presenting a fully
complementary sequence for the G12D point mutation of
the KRAS gene (Figure 2, top), which is highly relevant for
monitoring the efficacy of antibody-based therapies in
colorectal cancer.24 The “Chiral box” moiety was constituted
by an ATC stretch of nucleobases attached on three
consecutive modified backbones, where the central T was
expected to face the single point mutation of the target DNA.
The PNAs were synthesized by adapting known submono-

meric protocols for solid phase synthesis,17c in which the
minimally protected building block 2-D or 3-D is attached on
the N-term of a growing oligomer (Scheme 1, bottom). UPLC-
MS analyses did not reveal any traces of double backbone
attachment in this step (Figures S21 and S22). PyBop and
HBTU were used as activating agents with similar overall
efficiency, although the occurrence of uronium-based adducts

Scheme 1. Comparison of Solid Phase Synthesis of “Chiral Box” PNAs (Top, Right Panel) with Fully and Minimally Protected
Submonomers (Top Left and Bottom Routes, Respectively)a

aPG1, PG2, and PG3 represent orthogonal protecting groups.
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on the unprotected N(3)-position was in principle suggested in
the latter case.25

Subsequently, the appropriated (Boc-protected) carboxy-
methylnucleobase26 (in our case A, C, and T, but the same can
be extended to G, as shown in other “sumbonomeric”
syntheses21) was directly attached on the backbone. As
expected, this step was much slower and required a

combination of strong coupling agents (DIC/DhBtOH) and
a long reaction time (2 × 2 h) to be finalized. The procedure
was repeated for each C(2)-modified monomer and then the
PNAs were completed according to standard Fmoc/Bhoc
synthetic routes. In this way, Lys- and Arg-based oligomers
(Figure 2, top) were obtained as probes for a fully
complementary KRAS G12D-mutated DNA strand, and their
selectivity for the recognition of the complementary
oligonucleotide over its wild-type version will be briefly
discussed below. The “Chiral box” PNAs were obtained with
5−8% yield (after purification), in line with what was reported
for analogous derivatives with previous methodologies.14c The
couplings of both the chiral submonomers and the nucleobases
were found to be the harder steps, as evaluated by UPLC-MS
after the completion of the “Chiral box” part for the D-Lys-
based PNAs (Figures S23 and S24).
At this point, it was crucial to verify that the protocols

presented here do not induce significant racemization in both
the C(2)-modified synthons and the final “Chiral box”
oligomers. For this purpose, we took advantage of a
gaschromatographic method developed by some of us for the
direct chiral analysis of PNAs and of their submonomers, after
conversion in the corresponding trifluoroacetylated piperazine-
2-ones.27 The Lys-based PNA 5 and 6 were digested in
concentrated HCl to give a mixture of N-(2-aminoethyl)amino
acids 4-D,27 which were in turn derivatized with trifluoroacetic
anhydride (TFAA) for GC analysis on a Chirasil-Val column
(Scheme 2b).
An aliquot of the submonomer 2-D and of its L-analog 2-L

were instead converted to piperazine-2-ones 5a-D and 5a-L27

(Scheme 2b and Scheme S5) after deprotection of their N-
term amino group (Scheme S3, compounds 6a-D, 6a-L) and
then submitted to analogous investigations.
For the D- and L-submonomers the amount of the undesired

enantiomer was 3.3 ± 0.5% and 2.8 ± 1.5%, respectively
(Figure 2b and S37), as reported for the same compounds
obtained by regular reductive amination.27 For PNA 5 and 6
the racemization to the L-form was found to be dependent on
the activator used for the introduction of the C(2)-modified
backbones, being estimated to be 2.7 ± 0.3% in the former
case, where PyBop was used, and 5.0 ± 2.3% for the latter
PNA, which was obtained with HBTU (Figure 2c and S39,
respectively). This was probably due to the different electron-
withdrawing effects in the first steps of activation, which
correspond to the formation of acylphosphonium vs
acyluronium adducts, both of them leading to the same N-
hydroxybenzotriazolyl activated ester.
These data indicate that “Chiral box” PNAs can be

effectively obtained from minimally protected synthons with
minimal epimerization during solid-phase synthesis, especially
when proper coupling agents (i.e., PyBop) are used.
Attempts to perform the same analyses on the modified-

backbones 3-D and 3-L and the Arg-based PNA 3 failed
because, as for most of the arginine derivatives injected in
fused-silica columns,28 their derivatization yielded piperazine-
2-ones which were not suitable for chiral GC analysis (SI,
sections 6 and 7).
However, we suggest that for these compounds the

electronic effects on the chiral center should be similar to
those affecting their Lys-based analogs, thus limiting the
racemization process during the synthesis of both the
submonomers and the corresponding “Chiral box” PNAs.

Scheme 2. (a) Synthesis of the Minimally Protected D-
Submonomers by Adapting the Procedure Reported in ref
23 and (b) Derivatization of D-Lys-Based Submonomers
(top) and “Chiral Box” PNAs (bottom) for Chiral GC
Analysis

Figure 2. (Top) “Chiral Box” (CB) PNA, unmodified PNA and DNA
sequences used in this work. C(2)-modified monomers are high-
lighted in red. (Bottom) Chiral GC analysis of (a) 1:1 mixture of
compounds 5a-D and 5a-L, (b) 5a-D, and (c) PNA 5.
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Finally, the recognition properties of these optically pure
PNAs were tested by evaluation of the thermal stabilities for
the complexes formed with complementary DNA strands
presenting full-matched (G12D-mutated) and mismatched
(wild type) sequences (Figure 2 top).
The change in melting temperature between the two types

of duplexes (ΔTm) increased, respectively, by 1.6 and 0.9 °C
when the 14-mer PNA 2 and 3 were used in place of the
corresponding unmodified PNA 1 (Table 1), indicating a

higher performance of the C(2)-modified oligomers for the
discrimination of single point mutations. A further increase of
selectivity was recorded by shortening the sequences of the
tested probes, thus increasing the influence of the “Chiral box”
stretch. In fact, for the Lys-based, 11-mer PNA 5 the best
discrimination ability was obtained, giving a remarkable ΔTm

value of 19.2 °C between the full-matched and the mismatched
complexes, which was 3.3 °C higher than that afforded by its
unmodified analog PNA 4.
It is worth noting that “Chiral-box” PNAs form less stable

adducts with complementary DNAs in comparison to their
unmodified version (i.e., Tm = 59.9 °C vs 65.9 °C for PNA 5
and 4, respectively), due to the sum of destabilizing steric
effects generated by the three adjacent modified monomers.
This apparent disadvantage is balanced by the higher selectivity
of the PNA:DNA interaction, resulting in a higher sensitivity
for a single mismatch in cognate DNA strands.
In conclusion, the described submonomeric strategy for

obtaining “Chiral Box” PNAs has significant advantages in
terms of simplicity and time consumption for the synthesis of
both the monomers and the corresponding oligomers. In
particular, a careful evaluation of the reactivity for the
substrates possibly undergoing acylation during the insertion
of the modified-backbones (primary vs hindered secondary
amino groups) has allowed the elimination of undue
protection/deprotection steps. The given PNAs show high
optical purity and increased performance in terms of mismatch
discrimination for cognate DNA strands, resulting in suitability
for sensing devices relying on advanced optical or electronic
techniques such as Surface Plasmon Fluorescence Spectrosco-
py (SPFS)29whose development is currently underwayor
Field Effect Transistors (FETs).30
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