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Abstract

Aim: Suicide prevention for depressive patients is an important clinical issue in

psychiatry. However, not all depressive patients plan or attempt suicide. In this

study, we investigated the differences of functional brain networks between a high‐

risk group and a low‐risk group for suicide by comparing resting‐state functional

connectivity (rsFC).

Methods: The subjects were 29 patients with major depressive disorder, nine of whom

had attempted suicide. The suicidal ideation of all subjects was assessed with the

Columbia‐Suicide Severity Rating Scale, then the subjects were divided into two groups

based on the most severe suicidal ideation (MSI) in their lifetime. We compared rsFC

between the two groups.

Results: Of the 29 subjects, 16 were in the severe MSI group. We found that the severe

MSI group members had significantly smaller rsFC in two networks: one comprised the

right dorsolateral prefrontal cortex and the default‐mode network, and the other

comprised the left rostrolateral prefrontal cortex and the striatum, amygdala, and

hippocampus. These regions are reported to be associated with rumination, retrieval

suppression, and delay discounting (DD).

Conclusion: Our results suggest that functional networks related to rumination, retrieval

suppression, and DD might be impaired in depressive patients with severe suicidal

ideation. It might be beneficial for psychiatrists to assess these characteristics in terms

of suicide prevention for depressive patients.
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INTRODUCTION

Suicide is a public health problem of global importance. Over 800,000

people died by suicide in 2012, which means that every 40 s a person

dies by suicide somewhere in the world.1 A review of psychological

autopsy studies, which included 3,275 suicide completers, showed

that 87.3% of suicide victims had been diagnosed with a mental

disorder prior to their death, and that 43.2% of suicide victims were

diagnosed with an affective disorder, including depressive and bipolar

disorders.2

However, not all people who suffer from major mood disorders

plan or attempt suicide. These differences are thought to be

associated with suicidal vulnerabilities of individuals. Many biological

studies have been conducted to elucidate suicidal vulnerabilities.

Previous studies have shown that familial and genetic predisposi-

tions, as well as early‐life adversities increase the lifetime risk of

suicide.3,4 They alter responses to stress and other processes through

epigenetic modification of genes and associated changes in gene

expression and through the regulation of emotional and behavioral

traits. Impairments of the serotonin neurotransmitter system and the

hypothalamic‐pituitary‐adrenal axis stress‐response system, inflam-

matory changes, and glial dysfunction in the brain are associated with

the precipitation of a suicidal event.

As part of such biological studies, neuroimaging studies have also

been actively conducted.5,6 A previous study using structural

magnetic resonance imaging (MRI) suggested that suicide attempters

(SAs) with depression showed volume reduction or cortical thinning

in frontal regions, such as ventral lateral prefrontal cortex, dorso-

lateral prefrontal cortex (DLPFC), and orbitofrontal cortex (OFC)

compared with non‐suicide attempters (NSAs) or healthy controls

(HCs).7 Other studies implicated that SAs had volume reduction in

limbic regions and basal ganglia,8–13 but a recent study found no

significant volumetric differences in the caudate, pallidum, putamen,

nucleus accumbens, hippocampus, amygdala, ventral diencephalon,

or thalamus between SAs and NSAs.14

Various studies have also reported aberrant brain functions using

functional MRI (fMRI) and positron emission tomography. Jollant

et al.15 investigated task‐related fMRI during the Iowa Gambling Task

in depressive SAs and depressive NSAs. They found activation of left

lateral OFC is reduced in SAs during risky choices compared with

safe choices. In another task‐related fMRI study assessing emotion

processing neural circuitry, reduced functional connectivity between

the right anterior cingulate cortex and the bilateral insula was observed

in SAs compared with NSAs when viewing 50% intensity angry faces.16

A significant reduction of serotonin‐transporter binding potential

in the midbrain, thalamus, and striatum was noted in the depressed

suicidal group compared to the HC group.17,18 Sublette et al.19

examined the glucose metabolism of depressive SAs compared with

depressive NSAs. They found that the glucose metabolic rate in SAs

was lower in the right DLPFC.

Based on these findings, recent studies have focused on

functional connectivity of patients with suicidal ideation. Cao

et al.20 investigated the resting‐state brain functional network

connectivity in depressed patients with and without suicidal behavior

using resting‐state fMRI. The suicidal attempts group showed

significantly decreased inter‐network connectivity between the

anterior default mode network and the salience network as well as

the right frontal‐parietal network. Jung et al.21 investigated the

differences in resting‐state brain networks in patients with major

depressive disorder (MDD) who had or did not have a history of

suicide attempts using independent component analysis. The suicidal

depressed patients' group had a decreased inter‐network connectiv-

ity between the insular network and the default mode network

compared with the non‐suicidal depressed patients' group. These

findings suggest that suicidal behavior affects various functional

networks. Functional networks might partly reflect psychological

phenomena related to suicidal vulnerability. Rumination and delay

discounting (DD) have been reported to be related to suicidal

vulnerability. Rumination, which is defined as a persistent passive

focus on negative self‐relevant information, is thought to be a

possible cause of depression or a possible consequence of depres-

sion.22 DD is a decreased subjective value for delayed reward relative

to the same reward at present, and greater DD has been reported in

psychiatric disorders.23

Most of the past neuroimaging studies have compared SAs with

nonattempters. However, it is known that not only past suicide

attempt(s), but also having severe suicidal ideation increases the risk of

suicide.24 Thus, if we divide subjects only by the history of suicide

attempts, those who have no history of suicide attempts but have had

severe suicidal ideation are included in the nonattempters group. Actually,

there are few neuroimaging studies that compare subjects who have a

history of suicide attempts or who have had severe suicidal ideation as a

“high‐risk group for suicide” with those who have never had a history of

suicide attempts nor had severe suicide ideation as a “low‐risk group for

suicide.”

Therefore, in this study, we tried to elucidate the differences of

functional brain networks in a “high‐risk group for suicide” by

comparing the resting‐state functional connectivity (rsFC) between

those who have had a history of suicide attempts or have had severe

suicidal ideation and those who have never had a history of suicide

attempts nor had severe suicidal ideation.

METHODS

Subjects

The subjects were 30 patients with MDD, 10 of whom had attempted

suicide within the 3 years before they were admitted to a hospital or

were referred to a clinic, and the remaining 20 of whom had no

history of suicidal attempts. The diagnosis of MDD was based on the

diagnostic criteria of the Diagnostic and Statistical Manual of Mental

Disorders, 4th revision.25 One patient with attempted suicide was

excluded as the patient was 79 years old and showed cognitive

decline. Therefore, data derived from 29 patients were analyzed. To

assess suicidal ideation, we employed the Columbia‐Suicide Severity
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Rating Scale (C‐SSRS).26 We used this scale because the worst‐point

suicidal ideation in one's lifetime (most severe suicidal ideation [MSI],

lifetime) question in this scale would predict suicide attempts during

the follow‐up period of the study. The C‐SSRS was administered to

all subjects, and they were divided into two groups based on the

severity of suicidal ideation at the time when their ideation was the

most severe in their lifetime: the more severe ideation group (MSI

4–5) and the milder ideation group (MSI 0–3). The reason for

separating the MSI scores at 3 or less and 4 or more is based on a

study in which participants with the two highest levels of ideation

severity (intent or intent with plan) were more likely to attempt

suicide during the study period (24 weeks).26

Demographic data, the Japanese version of the Quick Inventory

of Depressive Symptomatology (QIDS‐J) scores, and medications

were analyzed using Rstudio. The Wilcoxon rank sum test was

applied to compare continuous variables, including age, QIDS‐J score,

antidepressants, and anxiolytics/hypnotics. Pearson's chi‐square test

was applied to examine the differences in gender and handedness

composition between groups.

This study was approved by the ethics committee of the Ibaraki

Prefectural Medical Center of Psychiatry and performed in accord-

ance with the guidelines and regulations of the institution. All

participants gave written informed consent prior to participation.

MRI acquisition and preprocessing

MRI data were obtained using a 3.0‐Tesla MRI scanner (Discovery

MR750, GE Healthcare, USA) equipped with standard phased array

head coils. For resting‐state fMRI (rs‐fMRI) scans, we employed a

gradient‐echo echo‐planar imaging sequence with the following

parameters: echo time (TE), 30ms; repetition time (TR), 2500ms; field

of view (FOV), 211 × 211mm; matrix, 64 × 64; slice thickness, 3.3mm;

and flip angle, 80°. We acquired 160 real scans with five dummy scans.

During scanning of rs‐fMRI, participants were instructed to rest with

their eyes open and to focus on a centrally presented white cross.

Three dimensional T1‐weighted images were also acquired with the

following parameters: TE = 2.3ms; TR = 5.9ms; TI = 400ms; FOV

256 × 256mm; flip angle 14°; and slice thickness, 1mm.

Functional connectivity was analyzed using the CONN toolbox

17.f (http://www.nitrc.org/projects/conn), running on MATLAB

R2017b (MathWorks, Inc.) on Lin4Neuro27 based on Ubuntu 18.04

to analyze functional connectivity. The images were preprocessed

using the default settings of CONN. Slice timing of functional images

was corrected based on slice order followed by realignment and

normalization of the images. The Artifact DetectionTools (ART) were

applied for scrubbing image artifacts due to head movement using 97

percentiles in a normative sample. Signal noise from the white matter

and cerebrospinal fluid were also discerned. As a result of denoising,

the FCs were normally distributed. Then, we applied a band‐pass

filter at 0.008–0.09Hz and smoothed data with 6‐mm full width at

half maximum Gaussian kernel.

Statistical analysis

For first‐level analyses (within‐subject analyses), we calculated

Pearson's correlation coefficients between the time‐course of a

seed‐region of interest (ROI) and the time‐courses of all other

ROIs and generated ROI‐to‐ROI connectivity matrices. We

employed the atlas based on the rsFC‐boundary map by Gordon

et al.28 and the subcortical atlas implemented in CONN. Then we

performed Fisher's transformation to convert the correlation

coefficients to normally distributed scores that were used for

second‐level analysis.

As second‐level analyses (inter‐subject analyses), we performed

between‐group comparisons of connectivity. Ages and doses of

antidepressants (imipramine equivalent) were treated as nuisance

variables. The false discovery rate (FDR) was used to correct for the

multiple comparisons, with a threshold of p < 0.05.

RESULTS

Demographics and clinical data

Of the 29 subjects, 16 belonged to the severe MSI group (MSI = 4,

5). All nine patients with MDD who had been admitted to a

hospital or clinic for suicidal attempts were in the severe MSI

group. We found no statistically significant differences between

the severe and the mild MSI groups in terms of age, sex,

handedness, depression scale (QIDS‐J), or equivalent amount of

psychotropic medication (imipramine equivalent of antidepres-

sants agents and diazepam equivalent of benzodiazepine anxioly-

tics and hypnotic agents) at the time of MRI scanning (Table 1). In

our sample, QIDS‐J and MSI score were not significantly correlated

(r = −0.009, p = 0.963).

TABLE 1 Comparison of demographics and clinical data
between the two groups

MSI ≦ 3 MSI ≧ 4 P‐value

n (male/female) 13 (10/3) 16 (10/6) 0.67

Age (years), median

(interquartile range)

44 (39–48) 38.5 (33.5–51.25) 0.57

Handedness (R/L) 11/2 16/0 0.37

QIDS‐J 11 (9–15) 10 (8–15.5) 1

Antidepressantsa

(mg/day)
150 (70–200) 112.5 (65–206) 0.9

Anxiolytics/hypnoticsb

(mg/day)
5 (5–8.3) 7.09 (1.25–10.11) 0.88

Abbreviations: MSI, most severe suicidal ideation; QIDS‐J, Japanese
version of the Quick Inventory of Depressive Symptomatology.
aImipramine equivalent.
bDiazepam equivalent.
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rsFC

In the rsFC comparison, we found differences in two networks. The first

was the network between the right DLPFC (MNI coordinates [31, 40,

26]) and the bilateral hippocampus, precuneus, superior frontal gyrus,

medial OFC, posterior middle temporal gyrus, left subgenual anterior

cingulate cortex (ACC), and left pregenual ACC, with significantly lower

rsFC in the severe MSI group (Table 2 and Figure 1). These regions

belong to the default‐mode network. The second was the network

between the left rostrolateral prefrontal cortex (RLPFC) (MNI coordi-

nates [−29, 51, 10]) and the bilateral amygdala, hippocampus, putamen,

and nucleus accumbens, where rsFC was significantly lower in the

severe MSI group (Table 2 and Figure 2).

DISCUSSION

In the present study, we compared rsFCs between severe MSI and

mild MSI groups. We found that severe MSI groups had significantly

smaller rsFCs in two networks: one is the network between the right

DLPFC and regions comprising the default‐mode network, and the

other is the network between the left RLPFC and the striatum,

amygdala, and hippocampus.

The default‐mode network is associated with internally oriented

mental activities, including past remembering, future thinking, social

cognition, mental imagery, and mind wandering.29 One of the

psychological phenomena thought to be related to DMN is

rumination. One study suggests that rumination is associated with

greater severity and duration of depressive episodes in adults, and

prospectively increases the risk of depressive relapse.30 Also,

rumination has garnered attention as a factor that may increase

vulnerability to suicidal ideation and attempts.31 To date, the most

consistent neural correlates of rumination have been regions within

the DMN and subgenual prefrontal cortex.32,33

Retrieval suppression is known to be associated with rumina-

tion. When people encounter an unwelcome reminder, they strive

to limit awareness of the unwanted memory by stopping its

retrieval. This retrieval stopping process is known as “retrieval

suppression.”34 Retrieval suppression engages the right lateral

prefrontal cortex; the prefrontal cortex suppresses the hippocam-

pal activity that supports retrieval.35 Controlling unwanted

TABLE 2 Regions in which rsFC significantly decreased in severe
MSI group

ROI
Centroid of ROI (MNI
coordinates) t‐value p‐FDR

Seed: rt. DLPFC

rt. precuneus 12 −52 35 3.97 1.56 × 10−2

lt. precuneus −11 −52 37 4.61 8.90 × 10−3

rt. medial OFC 7 48 −10 4.15 1.24 × 10−2

lt. medial OFC −6 55 −11 4.41 1.16 × 10−2

lt. subgenual ACC −7 38 −9 4.26 1.24 × 10−2

lt. pregenual ACC −6 45 6 3.34 4.24 × 10−2

rt. superior frontal
gyrus

21 33 42 4.13 1.24 × 10−2

lt. superior frontal
gyrus

−20 30 46 5.09 5.2 × 10−3

rt. hippocampus 30 −19 −19 4.21 1.24 × 10−2

lt. hippocampus −22 −22 −17 3.92 1.64 × 10−2

rt. parahippocampal
gyrus

20 −11 −25 3.88 1.67 × 10−2

lt. parahippocampal
gyrus

−21 −13 −24 4.03 1.45 × 10−2

rt. middle temporal

gyrus

58 −7 −16 3.66 2.74 × 10−2

lt. middle temporal
gyrus

−53 −11 −16 3.56 3.27 × 10−2

Seed: lt. RLPFC

rt. amygdala 23 −4 −18 4 2.22 × 10−2

lt. amygdala −23 −5 −18 5.08 7.6 × 10−3

rt. accumbens 9 12 −6 3.99 2.22 × 10−2

lt. accumbens −9 11 −7 3.61 4.62 × 10−2

rt. putamen 25 2 0 4.31 1.27 × 10−2

rt. hippocampus 26 −21 −14 4.51 1.18 × 10−2

rt. thalamus 11 −18 7 3.61 4.62 × 10−2

Abbreviations: ACC, anterior cingulate cortex; DLPFC, dorsolateral
prefrontal cortex; FDR, false discovery rate; MSI, most severe suicidal
ideation; OFC, orbitofrontal cortex; RLPFC, rostrolateral prefrontal cortex;

ROI, region of interest; rsFC, resting‐state functional connectivity.

F IGURE 1 Regions in which rsFC significantly decreased with rt. dorsolateral prefrontal cortex (DLPFC) seed in severe most severe suicidal
ideation (MSI) group. rsFC, resting‐state functional connectivity.
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memories has been associated with increased dorsolateral pre-

frontal activation and reduced hippocampal activation.36 These

studies suggest that the right DLPFC is involved in suppressing the

mental response to the repeated recollection of past painful

experiences (i.e., rumination).

In the present study, the rsFC between the regions consisting

of the DMN and the right DLPFC was significantly lower in the

severe MSI group. These regions are related to rumination and

retrieval suppression. Our findings suggest that patients with

severe MSI have difficulty suppressing the focus on their depres-

sive symptoms or rumination, which may lead to strong suicidal

thoughts or suicide attempts.

In addition to the DMN‐right DLPFC network, we found

decreased rsFC of the left RLPFC‐striatum/amygdala network in

the severe MSI group. This network is known to be related to DD.

DD refers to a phenomenon in economic decision‐making in which an

individual's valuation of a future reward declines as the delay of

reward delivery increases.37 An individual's preference for an

immediate reward, which can be measured using a behavioral index

of discounting rate, has been considered as an indicator of one's

impulsivity in decision‐making.38 In addition to depressive disorders,

individuals with impulse‐control disorders, including attention‐deficit

hyperactive disorder, substance abuse, pathological gambling, and

smoking, exhibit steeper reward discounting than HC.39–45 Studies

have consistently shown that DD involves cortical‐basal ganglia

circuits.46 These circuits consist of two networks: a valuation

network consisting of the ventral striatum, amygdala, hippocampus,

ventromedial prefrontal cortex, and posterior cingulate cortex,47–49

and a control network consisting of the dorsal striatum, dorsal

anterior cingulate cortex, lateral prefrontal cortex, and the posterior

parietal cortex47,50–52

Structural and functional connectivity between the striatum

and lateral prefrontal cortex has been negatively associated with

discounting rates.53 Li et al.54 found that the FC between the

valuation network and the control network was negatively

correlated with discounting rates. That is, the smaller the rsFC

between the valuation network and the control network, the

larger the discount rate. In our results, the rsFC between the left

RLPFC, which is part of the control network, and the valuation

network was significantly smaller in the severe MSI group. These

results suggest that the severe MSI group might have a larger

discount rate and be more likely to make impulsive decisions.

Making a choice according to a long‐term goal at the expense of

an immediately available reward is accompanied by an increased

negative functional interaction between the nucleus accumbens

(NAcc) and the anteroventral PFC.55 The left anteroventral PFC

(MNI coordinates [−28, 56, 4]) reported in their study is almost the

same region as the left RLPFC (MNI coordinates [−29, 51, 10]), in

which we found significant differences between the two groups.

Our results suggest that the high suicide risk individual (severe

MSI) might be more likely to make impulsive and short‐sighted

decisions when making decisions that involve a temporal compo-

nent. Because of these biological characteristics, they might have

difficulty coping with distress from a long‐term perspective,

leading to serious suicidal ideations or to impulsive suicide

attempts.

In this study we treated patients with history of suicidal attempt

and those with severe suicidal ideation as a high‐risk group for

suicide. The neuroimaging findings of our study were similar to

previous studies in which only suicidal attempters were included. Cao

and colleagues reported that suicidal attempters showed decreased

FC between left superior frontal gyrus and right anterior cingulate

gyrus.56 Stange et al. showed the decreased FC between right middle

frontal gyrus/inferior frontal gyrus and DMN.57 These results are in

line with our results, which indicates that individuals with severe

suicidal ideation might have altered functional network similar to

suicidal attempters.

There are several limitations in our study. First, our sample size

was small, so it limits the generalization of the result. Second, there

was no HC group in this study. We evaluated the intensity of suicidal

ideation by semi‐structured interviews (C‐SSRS) and selected

subjects not only based on their history of suicide attempts, but also

based on previous severe suicidal ideation. This allowed us to

compare MDD patients with a high risk of suicide with MDD patients

with a low risk of suicide. Including a control group may allow

evaluation of the interaction between MDD traits and suicide risk.

F IGURE 2 Regions in which resting‐state functional connectivity (rsFC) significantly decreased with lt. rostrolateral prefrontal cortex
(RLPFC) seed in severe most severe suicidal ideation (MSI) group.
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Lastly, though we speculate that rumination, retrieval suppression,

and DD might influence suicidal ideation based on our results, we did

not directly assess these tendencies. Future studies focusing on

severe suicidal ideation as well as rumination, retrieval suppression,

and DD would shed more light on the neural substrate of suicide.

In conclusion, our results suggest that functional networks

related to rumination, retrieval suppression, and DD might be

impaired in depressive patients with severe suicidal ideation. It might

be beneficial for psychiatrists to assess these characteristics to

prevent suicide in depressive patients.
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