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Abstract: Introduction. A major obstacle in islet transplantation and graft survival pre and post trans-
plantation is islet apoptosis due to mainly inflammatory bio molecules released during islet harvesting
and post graft transplantation and hence, subsequent graft fibrosis and failure. This study aimed to
investigate if incorporation of the anti-inflammatory anti-hyperlipidaemic drug probucol (PB) would
improve islet-graft survival and function, post transplantation in Type 1 diabetes (T1D). Methods. T1D
was induced in mice, and biological profiles of the diabetic mice transplanted PB-microencapsulated
islets harvested from healthy syngeneic mice were measured. Results and Conclusion. Compared
with sham (no PB), the treated group showed significant reduction in serum levels of interleukin-1β,
interleukin-6, interleukin-12, interleukin-17, and tumour necrosis factor-α, accompanied by a 3-fold
increase in survival duration, which suggests PB islet-protective effects, post transplantation.

Keywords: probucol; transplantation; pancreatic beta-cells; interleukin-17; interleukin-12; surgery;
bile acid profile

1. Introduction

Diabetes is a debilitating metabolic condition, which is divided into two main types,
Type 1 diabetes (T1D) and Type 2 diabetes (T2D). Diabetes complications include cardio-
vascular diseases, eye and nerve damage and renal failure due to mainly poor maintenance
of glucose homeostasis and diabetes-associated inflammation [1]. Drug treatments for
diabetes vary in types and dosages, depending on the type and severity of diabetes. Insulin
therapy was discovered in 1921 and remains a mainstream therapy for people with T1D,
and more than a third of people with T2D. Despite strict adherence to insulin therapy,
the majority of diabetic patients have inadequate control of glycemia and suffer from
diabetes-associated complications [2]. Notwithstanding its significant benefits in treating
diabetes, insulin therapy has many limitations, including stringent storage requirements,
route of administration being an injection or a pump, which compromises patients’ com-
pliance, and variable and fluctuating dosing requirements. Other compounds have been
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trialled for their potential hypoglycaemic effects, but to date, insulin injections remain
the only mainstream treatment for T1D. Transplantation of viable and functional islets of
Langerhans to diabetic patients has been proposed as a new way to supplement or even
replace insulin therapy. Nevertheless, and in spite of extensive and ongoing research in
islet transplantation, it remains a challenge and its wide applications in the clinic remain
somewhat elusive and unestablished. The main challenges to islet transplantation include
host inflammation and subsequent fibrotic growth and graft failure. Published studies
have suggested that host inflammation to transplanted islets can be overcome by islet
encapsulation prior to transplantation. Islet encapsulation can be achieved by using the
artificial cell microencapsulation (ACM) technology [3–12].

ACM technology for therapeutic delivery and transplantation was pioneered and de-
veloped by Thomas Chang at McGill University (Canada) in the 1960s and 1970s, and since
then, this technology has been widely studied by many laboratories, scientists, researchers
and clinical and translational entrepreneurs. In islet encapsulation, the technology relies
on the use of chemical polymers to encapsulate viable islets of Langerhans, providing
physical supporting 3D-structure, while maintaining porous scaffolds and microcapsules
that facilitate exchange of nutrients and wastes with the outside biological environment,
post transplantation, and hence, ensure islet survival and an ability to function as a mini
pancreas. The size of the pores of the scaffolds and microcapsules should be large enough
to allow and facilitate permeation of needed nutrients, waste materials and insulin, but
small enough to prevent immune cell permeating through and attacking encapsulated
islets [5–16]. For islet encapsulation, many polymers have been trialled using the ACM
technology, including the seaweed-based polymer, alginate.

Alginate has shown promise as the main encapsulating polymer in islet transplanta-
tion; however, inflammation and fibrotic growth post alginate-encapsulation of islets and
graft transplantation remain major challenges to long-term islet delivery and success in
T1D treatment [17,18]. Recent studies have shown that host inflammation has been found
to encompass high levels of oxidants, free radicals, and proinflammatory biomolecules such
as interleukin-1b (IL-1β), interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-17 (IL-17),
interferon-gama (IFN-γ), and tumour necrosis factor-alpha (TNF-α) [15–17,19,20]. One way
to optimise alginate-based islet transplantation is via islet co-encapsulation with powerful
anti-inflammatory drugs capable of reducing secretion of proinflammatory biomolecules
and subsequent fibrotic growth, and optimise the chance of graft success, particularly in
the long term. Ideally, the co-encapsulated drug is well established and has demonstrated
strong and powerful anti-inflammatory effects. It would be advantageous if this drug also
has direct cellular protective effects, particularly on pancreatic β-cell and has shown to
optimise β-cell viability, performance, and insulin secretion. An example of such a drug is
probucol (PB).

PB is an anti-hypercholesteremic drug with several unique and powerful pharmaco-
logical and biological effects, including antioxidant, antifree radicals and anti-inflammatory
effects [21]. In addition, when co-encapsulated with a mouse-cloned cell line of pancreatic
β-cells, PB exerted anti-inflammatory effects as well as direct desirable cellular protective
effects, enhancing cellular viability, performance, and insulin secretion [22]. Other stud-
ies have examined molecular mechanisms underpinning the anti-inflammatory effects
of PB. Recent studies have demonstrated PB’s potency in specifically targeting NF-κB
cellular pathways, suppressing stimulation and recruitment of neutrophils, and attenuat-
ing secretion of proinflammatory biomarkers [21,23]. Additionally, PB has been used to
improve recovery following spinal cord injury due to its effects in reducing inflammatory
cytokines [23]. Owing to its antioxidant and anti-inflammatory effects, PB has also been
examined in other inflammatory disorders such as heart failure [24], atherogenesis [25],
neurovascular inflammation [26], and diabetes [22], demonstrating significant desirable
effects. Interestingly, recent studies have shown a strong association between diabetes de-
velopment and the bile acid profile, particularly reduced levels of secondary bile acids [27],
and hence, the bile acid profile may contribute to transplantation outcome in T1D. Thus,
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PB co-encapsulation with islets pre transplantation may result in optimised islet viability,
performance and glycaemic control, reduced inflammation, and improved transplantation
outcome in T1D, potentially via modulation of the bile acid profile.

Accordingly, this study aimed to investigate if PB co-encapsulation with microencap-
sulated islets will form stable microcapsules capable of controlling hyperglycaemia, reduce
inflammation and influence the bile acid profile, in T1D mice.

2. Materials and Methods

All experiments were approved by the Animal Ethics Committee at Curtin University
(protocol JARE2017-7, approved in July 2017), and all experiments were performed accord-
ing to the Australian Code of Practice for the care and use of animals for scientific purposes.

2.1. Formulation and Islet-Microcapsule Formation

PB, the bile acids chenodeoxycholic acid (CDCA), lithocholic acid (LCA) and ur-
sodeoxycholic acid (UDCA), and alloxan powder (>97%) were purchased from Sigma-
Aldrich (St. Louis, MO, USA) and Thermo Fisher (Melbourne, VIC, Australia). Transplan-
tation tools were purchased from ABLE Scientific (Melbourne, VIC, Australia). Materials
used for islet microencapsulation were also purchased from Thermo Fisher (Melbourne,
VIC, Australia), Scharlab Ltd. (Melbourne, VIC, Australia), and Sigma-Aldrich (St. Louis,
MO, USA). Sodium alginate (low viscosity), poly-l-ornithine, barium chloride, and water-
soluble ultrasonic gel were purchased from Sigma-Aldrich, and Scharlab Ltd. Prepared
solutions consisted of 40 mM barium chloride (bathing gel), 1.2% sodium alginate, 0.8%
poly-l-ornithine, 1% water-soluble ultrasonic gel, and 2.5% PB. The mixtures were prepared
by either dissolving ingredients in water or simply using the manufacturers’ purchased
liquid products and make that up to the final mixture with water using stirring and heating
as described below. Deionised water was used as the main vehicle, and mixtures were
stirred for 2–3 h at 37 ◦C followed by 6–7 h at room temperature, and heated to 37 ◦C 30 min
prior to use. Mixtures that were not used were stored in the refrigerator or −20 ◦C freezer,
and prior to use, they were placed at room temperature for 6–7 h and heated at 37 ◦C for
30 min prior to use. If mixtures were not stored in the refrigerator or at −2 ◦C (i.e., stored
at room temperature), they were used within 24 h of preparation, unless stored at −80 ◦C
in the freezer, in which case they were used within 1 month of preparation. Regardless
of the storage temperature deployed, all mixtures were stirred for at least 30 min and
up to 180 min, at 37 ◦C, prior to use. Remaining mixtures and solutions were stored for
up to one month, at −80 ◦C in the freezer, post preparation, except for alloxan, which
was used immediately after preparation. Once formulations were ready for microcapsule
formation and islet transplantation, a new set-up of aseptical techniques were deployed.
The overall processes of islet encapsulation and microcapsule formation took less than
60 min and were done aseptically. Preparation of formulations and islet encapsulation
were carried out aseptically in customised fume hoods, using our well-established and
approved protocols [14,15,28]. For cell confocal imaging, cellular staining of pancreatic
β-cell line, NIT-1 cells, grown in vitro, was carried out using specialised staining agents as
appropriate, sourced and supported by the Curtin Health Innovation Research Institute,
Bentley, Australia, as described in our published methods [6,16,20]. When microcapsules
were not being analysed, they were kept in the refrigerator for up to a month before be-
ing discarded. When microcapsules were required for imaging, size analyses or surface
composition measurements, they were taken out of the refrigerator and dried to allow
such analyses, as per our established methods and as appropriate [10,19,29]. In brief, after
microcapsules formation, they were stored within the bathing gel for up to 21 days in the
refrigerator. In order to dry the microcapsules, they were taken out of the refrigerator,
placed at room temperature for 8 h, followed by being placed at a controlled-hot room for
48 h (at 37 ◦C and relative humidity of 35%). Relative humidity was set as the weight of
water vapour for each unit of weight of air, and was expressed as grams of water vapour
per each kilogram of air, using the Angelantoni Environmental and Climatic Test Chamber
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(Italy), as per our established-methods [30,31]. Imaging, size analysis, and surface composi-
tion measurements were carried out simultaneously at multiple research centres including:
the Curtin University Electron Microscope Facility at Bentley, the John De Laeter Research
Centre and the Pharmaceutical Technology Laboratory, at Curtin University, as well as the
CISRO research centre in Perth, Western Australia, using our established methods [10,29].

2.2. Processes of Islet Extraction and Transplantation (Balb/c Mice)

Once mixtures and formulations were prepared, islets were harvested, digested,
separated, rejuvenated in fresh media, and encapsulated in formulations to produce micro-
capsules, via our Ionic Gelation Vibrational Jet Flow technology [10]. For islet extraction
and preparation, male 6–8-week-old balb/c mice were acquired from the Animal Resources
Centre (Perth, Australia) and islets harvested using procedures that have been approved
by the Animal Ethics Committee at Curtin University and the Animal Resource Centre
(Perth, Australia). In order to extract islets from the donor mice, the abdomen of the
euthanised donor mouse was opened, and collagenase enzyme solution was injected to
the bile duct (at a concentration of 1 mg/mL in Roswell Park Memorial Institute media,
RPMI), meticulously and carefully to avoid any unintended tissue damage. The extracted
pancreatic islets were subjected to gentle swirling and digestion for 19 min at 37 ◦C. The
digestion was ceased by using RPMI media supplemented with 10% fetal bovine serum.
The pancreatic tissues were purified by filtering through micrometer-wide wire mesh and
repeated centrifugation at 2500 rpm for several min each time, on slow centrifugation mode,
in order to avoid islet damage and reduction in viability. Prior to microencapsulation, the
extracted islets were rejuvenated by being cultured in RPMI media supplemented with
10% FBS, 5.5 mM glucose and 100 µg/mL penicillin streptomycin for best filtrate. Once
encapsulated, islets were then surgically transplanted into both groups of the diabetic
mice, control (no PB) and treatment (with PB). Surgical transplantation was carried out, as
per our approved ethics application, supported by the Curtin Animal Ethics Committee,
at Curtin University, Bentley (Perth), Western Australia, Australia. Microencapsulated
islets were transplanted within 2 h of being encapsulated, while the microcapsules were
kept in RPMI media until transplantation. For transplantation surgical illustration, freshly
prepared islet-microcapsules were prepared and transplanted into freshly euthanised mice
(Figure 1). All procedures of islets extraction and transplantation were carried out in ac-
cordance with the relevant regulations as well as the technical and husbandry standard
operating procedure in the Animal Resources Centre and in the Life Sciences Research
Facility at Curtin University. All animal experiments were performed according to the
Australian Code of Practice for the care and use of animals for scientific purposes.

2.3. Imaging Analyses

For the light microscopy imaging of the microcapsules, YS2-H optical, Nikon (Tokyo,
Japan) was used, while for the scanning electron microscopy, and confocal imaging as well
as the surface composition measurements Zeiss Neon 40EsB FIBSEM (Tescan, Brno, Czech
Republic), UltraVIEW Vox, Perkin Elmer (Waltham, MA, USA), and Oxford Instruments,
Aztec X-Act (Abingdon, U.K) were used as per our well-established procedures [32–34]. In
brief, for the YS2-H optical imaging, dry microcapsules were placed on a glass slide and
multiple images taken at different angles. The best image with best resolution was selected
and presented. For the Zeiss Neon 40EsB FIBSEM scanning electron microscopic imaging,
microcapsules were dried then coated with platinum, and using laser-guided pen, multiple
images were taken. The best images with clear morphology relevant to specific desired
magnifications were presented. For the UltraVIEW Vox confocal imaging complemented
and equipped with a Yokogawa CSU-X1 confocal scanning unit, microcapsules with stained
cells were imaged and multiple images taken, with the best resolution being presented.
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Figure 1. An illustration surgical figure: (1) location of the common bile duct, (2) injection of collagenase into the common bile
duct, (3) perfusion and separation of the pancreas, (4) extracted and purified islets, (5) PB-impregnated microencapsulated
islets used for transplantation, (6–14) creation of an omentum pouch for transplantation, and (15–20) transplantation and
mouse recovery.

2.4. Diabetes Induction and Blood Glucose and Insulin Measurements

Alloxan powder was mixed with saline and injected subcutaneously to mice at a
dose of >150mg/kg body weight to induce diabetes. In order to ensure the most accurate
alloxan dose per mouse, each mouse was weighed immediately prior to alloxan injection.
Blood glucose measurements were carried out prior to mice injection with alloxan to
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establish a healthy baseline, then measurements were taken daily thereafter. Once blood
glucose concentration was >13 mM in two consecutive days, insulin concentrations were
measured to confirm diabetes. All mice became diabetic within two to three days after a
single injection of alloxan. AccuCheck Glucose meter was used Roche, North Ryde NSW,
Australia) for glucose measurements, while Mercodia ultrasensitive insulin kits (Mercodia,
Uppsala, Sweden) were used for insulin analysis. For glucose and insulin measurements,
either tail vein or saphenous vein blood was used. Daily glucose measurements as well
as insulin confirmation for diabetes induction were performed on all mice, and required
less than 30 µL of blood samples for each measurement. T1D was confirmed by glucose
and insulin measurements as well as mice exhibiting classic symptoms of the disease, such
as urination and weight loss. In our severe and well-established T1D mouse model [27],
mice exhibited severe symptoms of diabetes and showed no detectable insulin levels,
demonstrating severe stage of T1D with blood glucose rising sharply and reaching >16 mM
for all mice, by the second day of the experiment. Once T1D was confirmed, both groups
of mice (control and treatment) were transplanted with the microcapsules. Urination and
weight loss were some of the visible symptoms the diabetic mice exhibited, and no insulin
was administered during the experiment, based on the approved animal ethics application
and as per study design. When mice reached end points of weight loss and urination,
they were euthanised as per approved protocols. Weight loss was accepted within 10%
and all mice lost between 7 and 10% after diabetes induction. Our model of T1D is robust
and all mice exhibited clear signs of the disease, where control mice had to be euthanised
within six days of alloxan injection. Despite islet transplantation, control mice did not show
improved glycaemic control and continued to deteriorate in terms of diabetes symptoms
and well-being, and hence, were euthanised once end points were reached as per approved
protocols and in order to ensure that best animal welfare practices were strictly followed.

2.5. Study Design and Quantification of Cytokines and the Bile Acid Profile

Adult male balb/c mice were randomly divided into two equal groups (6–7 per
group), one control and one treatment. All mice were acclimatised for several days prior
to the experiment. Using alloxan, T1D was induced in all mice, and mice became diabetic
within two days of alloxan administration. Islets from donor mice (adult male balb/c mice)
were harvested and encapsulated ready for transplantation. Upon T1D confirmation in
Day = 2, all animals were transplanted either sham (microencapsulated islets without PB)
or treatment (microencapsulated islets with PB). Each mouse received 80 viable islets. At
Day = 10, mice were euthanised, and blood, liver, and faeces collected for cytokine and bile
acid analyses (Figure 2).

Blood, liver, and faecal samples were collected, prepared, and analysed for plasma
concentrations of IL-1β, IL-6, IL-12, IL-17, IFN-γ, and TNF-α, as well as plasma, liver, and
faecal concentrations of the bile acids, CDCA, LCA and UDCA.

For analyses of IL-1β, IL-6, IL-12, IL-17, IFN-γ, and TNF-α in plasma, cytokine bead
array (CBA) kits were acquired from BD Biosciences (San Jose, CA, USA) and were used
as per the manufacturer’s instructions and as per our well-established methods [35–37].
For each sample, sample processing and mixing involved protein extraction, solubilisa-
tion, reagent dilution, and precipitation, and the concentrations of the cytokines were
determined and analysed by Attune Acoustic Focusing flow cytometry (Carlsbad Life Tech-
nologies, Carlsbad, CA, USA) using refined methods described in depth in our previously
published papers [34–36].

For analysis of the bile acids CDCA, LCA, and UDCA in plasma, liver, and faeces, liq-
uid chromatography mass spectrometry (LCMS) was used, based on our well-established
methods [19,27,38]. Briefly, 30 mg of samples or plasma were mixed with ice acetonitrile in a
one-to-one ratio to extract the three bile acids, and 40 µL of the bile acid-containing samples
were diluted twofold in mobile phase. The LCMS system deployed was a Shimadzu LCMS
2020 (Shimadzu Corporation, Kyoto, Japan). The LCMS system flow rate was established
at 0.25 mL/min for each run of the mobile phase at ambient temperature and pH adjusted
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to 3. The column used was Phenomenex C18 with pore size of 5 µm, length of 10 cm, and
internal diameter of 2 mm. The column was washed and pre-equilibrated with the mobile
phase for each run. Ten µL of pooled and prepared samples were injected into the detector
by the injector within the SIL 20AC HT Shimadzu-Prominence autosampler (Shimadzu
Corporation, Kyoto, Japan). Blank samples contained only mobile phase, while quality
control samples contained known concentrations of the bile acids in the analysed medium.
Quality control samples at high, medium, and low concentrations were prepared. Quality
control concentrations covered the range from 5 to 800 ng/mL, and were prepared by spik-
ing plasma, liver, or faecal samples with quality control solutions of known concentrations
of the three bile acids. Quality control and blank samples were included in each analysis.
The quality control samples were prepared independently of calibration standards but in
the exact same way and were used to ensure method robustness, i.e., for batch-level quality
control as well as method reproducibility and stability. The limit of quantification and limit
of detection were obtained and verified based on the signal-to-noise ratios of 3 and 10,
respectively. The bile acid analyses and concentrations measurements were based on our
well-established protocols [19].
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Figure 2. Timeline for the in vivo study to examine the therapeutic effect of transplanted PB-islet microcapsules.

3. Results and Discussion

Imaging, topographic, and surface analysis results are presented in Figure 3, while
postprandial blood glucose concentrations and plasma concentrations of the biomarkers
IL-1β, IL-6, IL-12, IL-17, IFN-γ, and TNF-α are presented in Figure 4. The concentrations
of the bile acids CDCA, LCA, and UDCA in plasma, liver, and faeces are presented in
Figure 5.
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3.1. Imaging, Topography, and Surface Analysis Measurements

Microcapsules’ imaging in Figure 3 represented randomly selected microcapsules
from several produced batches. During imaging, various scales were used such as 500 µm,
100 µm, 20 µm, and 1 µm magnifications. The imaging techniques deployed (SEM and
Micro-CT) showed opaque, discrete, consistent, and spherical shaped microcapsules, and
cell and islet (confocal and optical) images showed presence of cells and islets within all
layers of the microcapsules, which suggests efficient and consistent method of encapsu-
lation regardless of PB presence. The images also suggest that PB distribution within the
microcapsules did not compromise the microcapsules’ shape, size, uniformity, surface
features, topography, or layers’ thickness or cell and islet distribution within the micro-
capsules. In addition, the surface elemental composition analysis (EDXR) showed that no
PB-specific atoms such as S were present on the surface of the microcapsules, which sug-
gests that PB incorporation was efficient and remained within the core of the microcapsules
rather than distributed throughout the layers of the microcapsules including the surface.
The results are consistent with previous studies in our lab that showed that excipient
co-encapsulation within alginate-based microcapsules did not alter the morphological and
topographic features of the microcapsules [29]. However, PB entrapment within the core of
the microcapsules seems to be dependent on the encapsulating methodology, the design
of the microcapsules, and type and ratio of encapsulating excipients. In a recent study in
our laboratory, PB capsules designed for oral targeted delivery exhibited PB distribution
throughout the layers of the microcapsules including the surface, suggesting variation of
PB distribution depending on techniques deployed and the nature of the excipients [39].
The accumulation of PB within the core of the microcapsules suggests that PB molecules
interact directly with the encapsulated viable islets and would likely exert some biological
and anti-inflammatory effects on the islets and perhaps on the treated mice (Figure 4).

3.2. Blood Glucose and Inflammatory Cytokines Measurements

The treatment group showed lower concentrations of daily blood glucose compared
with control, and mice survived longer, suggesting that PB incorporation with the encapsu-
lated islets resulted in improved islet-response to hyperglycaemia, insulin secretion, and
glycaemic control. The improved glycaemic control also suggests that the nature of the mi-
crocapsules and encapsulating materials, as well as the internal 3D architecture including
the microcapsule’s membrane, were suitable and supportive of protein and gas exchange
and insulin diffusion into the outside biological fluids, resulting in insulin release from the
microcapsules and subsequent hypoglycaemic effects. The inflammatory profile was also
improved in the treatment group compared with control. The treatment group showed
lower concentrations of plasma IL-1β, IL-6, IL-12, IL-17, and TNF-α. The anti-inflammatory
effects associated with PB incorporation suggest powerful and direct inhibition of immune
cell secretion of these biomarkers, possibly via islet-triggered positive effects. Similar to
the hypoglycaemic effects of PB incorporation, the anti-inflammatory effects seem to result
from PB core-distribution within the microcapsules and direct interaction with encapsu-
lated islets, as shown in Figure 3. The anti-inflammatory effects of PB may have resulted
from improved glycaemic control or reduced islets’ own inflammatory profile, resulting in
reduction in systemic inflammation and ameliorated secretion for these biomarkers. Such
PB anti-inflammatory effects are less likely to be a direct result from PB presence in the
transplanted graft and its diffusion to the systemic circulation and directly affecting the im-
mune cells, particularly since the amount of incorporated PB within the microcapsules was
not large enough to warrant such powerful and systemic anti-inflammatory effects. When
compared with published studies, the observed anti-inflammatory effects of PB on viable
islets are in line with the literature. In a recent study in our laboratory, when PB was incor-
porated with a mouse-cloned viable pancreatic β-cell, within microcapsules, PB increased
cellular viability, insulin release and significantly reduced the proinflammatory biomarker
TNF-α, in vitro [39]. In another study where PB was orally administered to mice induced
with T1D, PB microcapsules brought about a significant reduction in the inflammatory pro-
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file, which suggests that PB exerted significant and powerful anti-inflammatory effects in
T1D [40]. Similarly, in a study published by Shimizu H. et al., the authors investigated the
application of PB in diabetic mice administered multiple low-dose streptozotocin injections.
The aim of the study was to investigate the effects of PB on the protection against pancreatic
β-cell damage from oxidative stress caused by streptozotocin. The authors concluded that
PB incorporation resulted in improved insulin release, attenuated hyperglycemia, and
improved glycaemic control post oral glucose challenge test, hence, protecting pancreatic
β-cell from oxidative stress [41]. Another study carried out by Guoyong Hu et al. showed
similar positive effects of PB in a hamster animal model of hypertriglyceridemic acute
pancreatitis and strong anti-inflammatory effects on pancreatic islets [42]. Accordingly, our
findings of PB effects on islets are in line with the literature and support PB positive effects
on transplanted islets and subsequent improvement in glycaemic control and inflammation.
Such PB effects may have been associated with observed alteration in the bile acid profile
due to diabetes induction and glycaemic control (Figure 5).

3.3. Bile Acid Measurements

The concentrations of the bile acids CDCA, LCA and UDCA in control and treatment
mice were similar in liver and faeces. The concentrations of LCA in plasma were undetected
in the treatment group compared with control, showing significant reduction of LCA plasma
concentrations as a result of PB incorporation in the encapsulated and transplanted islets.
PB effects on LCA were only observed in plasma and not in liver or faeces, which may be
associated with reduced inflammation or improved glycaemic control, in the treatment group
compared with control. Based on the literature, reduced inflammation seems to be the likely
cause of reduced LCA concentrations in plasma, in the treatment group. In a recent study in
our laboratory which compared the bile acids profiles between healthy and T1D mice, LCA
concentrations were significantly increased in the T1D mice compared with healthy mice, not
only in plasma, but also in liver and faeces [29], while in another study in insulin-resistant mice,
plasma LCA concentrations were higher compared with healthy [19], and in both studies there
was an increase in inflammation in the diabetic animals compared with the healthy animals.
However, significant and well-defined association between high LCA concentrations in
plasma and tissue, and inflammation has not been demonstrated by other researchers. In fact,
some studies have demonstrated beneficial and anti-inflammatory effects of LCA. In a study
by Moretti A. et al., the authors investigated the effects of nanotherapeutics containing LCA-
based macromolecules on inflammation and potential applications in atherosclerosis. The
authors showed that LCA-conjugated macromolecules reduced inflammation in macrophages
via protein synthesis pathways [43]. In another study by Ward J. et al. the authors investigated
the applications of the bile acids LCA and UDCA in inflammatory bowel diseases. The authors
showed that both bile acids exerted anti-inflammatory effects in the colon and concluded
that LCA is a potent inhibitor of intestinal inflammation, and hence may have potential
applications in inflammatory bowel diseases [44]. Overall, the reduction in LCA plasma
concentrations presented in Figure 5 is likely to be influenced by multiple factors including
cholesterol catabolism, gut microbiome, the bile acid enterohepatic recirculation in gut and
liver, and diabetes-associated inflammation and hyperglycaemia. However, exact mechanisms
of LCA change remain elusive.

4. Summary

In summary, our study investigated if PB pre-encapsulation with primary viable
islets will improve islets functions, post encapsulation and transplantation in T1D. The
physical features of the PB graft, its antidiabetic and anti-inflammatory effects, as well as its
effects on the bile acid profile, were assessed. PB graft showed improved glycaemic effects,
anti-inflammatory effects and LCA-altering effects, suggesting potential applications of
PB in islet transplantation, with potential mechanisms of actions including effects on the
expression and synthesis of well-known inflammatory biomarkers, cholesterol metabolism
and bile acid profile, and cell survival and functions.
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