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Sparse recovery algorithms have shown great potential to accurately reconstruct images using limited-view
optoacoustic (photoacoustic) tomography data sets, but these are computationally expensive. In this paper,
we propose an improvement of the fast converging Split Augmented Lagrangian Shrinkage Algorithm
method based on least square QR inversion for improving the reconstruction speed. We further show image
fidelity improvement when using a coherence factor to weight the reconstruction result. Phantom and in vivo
measurements show that the accelerated Split Augmented Lagrangian Shrinkage Algorithm method with co-
herence factor weighting offers images with reduced artifacts and provides faster convergence compared
with existing sparse recovery algorithms.

INTRODUCTION
Optoacoustic imaging combines the rich contrast of optical
imaging and the high resolution of ultrasonic imaging (1-3). The
method enables visualization of absorption chromophores that
have high spatial resolution in the micrometer-to-millimeter
range depending on the imaging depth. Therefore, optoacoustic
imaging can provide anatomical, physiological, and molecular
information at resolutions that are significantly improved over
optical diffusion imaging techniques (1, 2, 4). The technique
operates on illuminating the sample imaged by nanosecond
laser pulses. Absorption of the light energy generates broadband
ultrasonic waves via thermoelastic expansion; these waves have
frequencies ranging from hundreds of kilohertz to many tens of
megahertz (3, 5, 6). The recorded optoacoustic signals are used
to reconstruct an image using analytical or model-based algo-
rithms (7-9).

Different image reconstruction schemes can be used for
image formation. The spherical radon transform is widely used
because of its simple implementation and high efficiency. Mod-
el-based approaches are capable of incorporating information
regarding detection geometry, acoustic attenuation, and trans-
ducer properties in the reconstruction process (10, 11), resulting
in more accurate reconstructions. However, model-based meth-
ods require large numbers of repeated sparse matrix-vector
multiplications in an iterative manner, resulting in significant
computational cost (12, 13). Accelerated model-based methods
were developed to reduce the computation cost (13-15). For

example, the angular discretization method was used to gener-
ate the model matrix, which effectively reduced the computa-
tional cost and saved memory (13, 14). Other approaches per-
formed inversion on parallel processing platforms based on
graphics processing units, which enabled real-time, model-
based reconstruction (15, 16).

A particular challenge in optoacoustic tomography is the
implementation of limited-view projections, that is, cases where
360° projections are not available. This could be the case, for
example, in imaging large volumes (whole-animals or humans),
whereby access is afforded only from 1 side of the tissue,
analogous to ultrasound imaging. Limited-view implementa-
tions typically result in lower image fidelity and a larger number
of artifacts compared with 360° view data sets (12). Neverthe-
less, sparsity-based algorithms showed better performance with
limited-view data sets (12, 17, 18) compared with Tikhonov-
based reconstructions, albeit at a higher computational cost.
Moreover, sparse recovery-based methods may amplify noise in
limited-data scenarios (19).

In this work, we propose improvements to sparsity-based
inversion for optoacoustic tomography. The sparse method pro-
posed is implemented for accelerating the reconstruction pro-
cess implemented within the Split Augmented Lagrangian
Shrinkage Algorithm (SALSA) framework, using least square QR
(LSQR) inversion and a novel coherence factor (CF) weighting
scheme for suppressing noise and artifacts. We show the perfor-
mance on several phantoms and biological tissue ex vivo to
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quantify performance improvements compared with previously
described SALSA implementations.

Theory

Acoustic Forward Problem. The generation and propagation
of the acoustic wave is given by the following wave equation
(20, 21):

��2 � ka
2�p�r, t� � �

�

cp

�H�r, t�

� t
(1)

where p(r, t) indicates the acoustic pressure at a position r and
time t, and H(r, t) indicates the heating function, which is
obtained as a product of absorption coefficient and light flu-
ence. � is the thermal expansion coefficient of the tissue, and Cp

is the specific heat at constant pressure. ka represents the acous-
tic wave number given as ka � �/vs, where � is the temporal
frequency and vs is the speed of sound. Note that the heating
function is independent, both spatially and temporally, that is,
H(r, t) � Hr(r)Ht(t). The solution for the above equation is given
as follows:

p�r, t� �
�vs
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t �
R�vst

Hr(r � )

R
dA� (2)

whereby R � |r - r=| and spherical integration are performed
over surface element dA=. This integral is discretized to form a
model matrix using an interpolated model matrix method to
result in the following matrix equation:

Ax � b (3)
where b is the recorded data and x is the reconstruction image. A
is obtained by the linear interpolation of the heating function
over the image grid.

Regularization and Inversion. Efficient inversion of Equation
3 requires regularization. We selected conventional Tikhonov
regularization with parameter (�), assuming an initial pressure
rise distribution that is smoothly varying. In this case, the
objective function to be minimized is given as follows:

� � �Ax � b�2
2 � ��x�2

2 (4)

whereby � �2 represents the L2 norm. The above objective func-
tion can be solved using normal equations (22), as follows:

xtikh � (ATA � �I)�1ATb (5)

However, Equation 5 is computationally expensive because of
the time-consuming matrix inversion. Alternatively, an LSQR
approach can be used (23) as follows:

xLSQR � Vk��Bk
TBk � �Ik��1�0Bk

Te1� (6)

whereby Bk represents a bidiagonal matrix, Vk is the right
orthogonal matrix resulting from Lanczos bidiagonalization
(23, 24), and �0 is defined as �b�22. e1 is [1 . . .]T. Equation 6 can
be inverted in a faster fashion compared with Equation 5 be-
cause it involves inverting the bidiagonal matrix, which is
computationally efficient.

Proposed SALSA Acceleration with CF. The proposed method
is based on applying a sparsity constraint and accelerating the
reconstruction with the help of bidiagonal matrices. The accel-
erated SALSA (ASALSA) is proposed herein as an improved
version of SALSA minimization implemented using Krylov sub-
space optimization. In this case, the objective function to be
minimized is as follows:

� � �Ax � b�2
2 � ��x�1 (7)

Sparsity optimization schemes are expected to offer better
performance over conventional Tikhonov regularization for
limited projection data (25, 26). Equation 4 assumes a smooth
solution, hence resulting in a large number of unknowns and
edge smoothening. Equation 7 assumes that the number of
unknowns are sparse (by considering only nonzero entries) and
are known to perform well in limited-data scenarios. Equation 7
is minimized using the SALSA scheme, which has demonstrated
the fastest convergence among existing sparsity norm-based
optimization schemes (27). In this scheme, we use a variable
splitting approach, wherein a new variable is introduced in the
optimization procedure. The above objective function is now
split into 2 quadratic minimizations with the help of the tem-
porary variable (v), which is given as follows:

� � �Ax � b�2
2 � �x � vk � d�2

2 (8)

�̃ � ��x�1 �


2
�xk�1 � v � dk�2

2 (9)

where  represents the regularization parameter (depends on the
noise). Equation 8 is solved using a maximum a posteriori-based
algorithm to obtain an estimate for initial pressure rise (x). Equation
9 is minimized to obtain an estimate for v, using a soft thresholding
operation (which acts as a derivative for sparsity minimization).
The update for the alternated direction method of multiplier pa-
rameter is given as dk�1 � dk � �xk�1 � vk�1�. The minimization in
Equations 8 and 9 and the alternated direction method of multiplier
parameter update is repeated until convergence.

The original SALSA algorithm involved the inversion of a
large matrix during the optimization procedure (27). To accel-
erate inversion, we recast the SALSA algorithm, as indicated in
Table 1, by using the LSQR solver. Faster computations are
achieved by using LSQR iterative inversion schemes for en-
abling accelerated SALSA (termed as ASALSA) reconstruction
using the L1-norm-based approach. It can be seen that Equation
4 applies a smoothness constraint, (�x�2); hence, noise will be
smoothed out during reconstruction. In contrast, because equa-

Table 1. ASALSA-CF Algorithm

Aim: Estimation of x by solving Equation 7

Input: A, b, �, , max_iter

Output: x

Initialize ADMM parameter d � 0.

1. Calculate backprojection solution (x � ATb), CF � AT b2

for k � 1, 2, . . . max_iter

2. Optimize Equation 9: v � soft(x � d, (0.5 � �)/�)

3. Optimize Equation 8: x1 � Sk((Ck
TCk � �Ik)�1�1Ck

Te1), where
matrix C is obtained by Lanczos bidiagonalization of AT

with k iterations and �1 is the euclidean norm of
(ATb � * (v � d)).

xrecon � Mk((Hk
THk � �Ik)�1�1Hk

Te1), where �2 is the
Euclidean norm of x1.

4. Update ADMM parameter: d � d � xrecon � v

end

5. CF � (x2/CF)

6. x � xrecon. � CF
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tion (7) applies sparsity constraint, it may amplify the weak
signal and noise (19). To suppress noise amplification and arti-
facts that arise because of limited-view data and sparsity con-
straint, we introduce herein an additional operation using a CF
(28, 29), defined as the ratio between the energy of the coherent
sum of optoacoustic signals and the total incoherent energy,
which is explained as follows:

CF�i� �
�(xrecon)i�2

N�
i�0

N

��xback�i�2

�
�(xrecon)i�2

ATb2
(10)

where N represents the total number of pixels in the recon-
structed domain. xrecon is the reconstructed image obtained us-
ing ASALSA and Xback is the backprojection reconstruction. The
numerator in Equation 10 represents the energy of the coherent
sum of the signals, and the denominator is the total energy sum.
The CF values can be interpreted as a focusing quality index
estimated from the measured optoacoustic data, ranging from 0
to 1. It is maximal when all signals emitted by an optoacoustic
absorber at position r’ arrive in the same phase at different
detector positions r. After being projected, real signals will
constructively superimpose on their point of origin. In this way,
good focusing properties can be achieved and consequently a
sharp reconstruction. In contrast, incoherent signals will not
superimpose on their point of origin after summation, but rather
smear out, overall resulting into a degradation of the image
quality. Therefore, weighting the amplitude of each image pixel
with the corresponding CF can suppress contributions from
incoherent signals, enabling identification of noise/artifacts in
the reconstructed image and consequently thresholding them.
Therefore, the CF is further used for weighting the reconstructed
image given as follows:

xrecon � CF . � xrecon (11)

This CF weighting enables amplification of the higher optoa-
coustic signal and suppresses the noise. The ASALSA algorithm
along with the CF is indicated in Table 1.

EXPERIMENTAL METHODS
Optoacoustic Imaging System
A multispectral optoacoustic tomography small animal scanner
(MSOT256-TF, iThera Medical GmbH, Munich, Germany) was

used to experimentally examine the performance of the pro-
posed reconstruction method. In brief, a custom-made, 256-
element cylindrically focused array was used to record the
optoacoustic signals. The ultrasound array covered an angle of
approximately 270° with a radius of 40 mm, allowing simulta-
neous acquisitions of the signals generated with each laser
pulse. The central frequency of the array elements was 5 MHz
with a bandwidth of 90%. The sample was illuminated with a
wavelength-tunable optical parametric oscillator laser with a
repetition rate of 10 Hz. The detected optoacoustic signals were
simultaneously digitized at 40 megasamples/s and were aver-
aged 10 times to improve the signal-to-noise ratio (SNR) of the
signal. Detailed information about the imaging setup can be
found in the literature (30-32).

Phantom and Tissue Experiments
To test the performance of the proposed method, a printed paper
(U.S. Air Force resolution target, standard inkjet printer with
black ink) embedded in a 1.9-cm-diameter diffuse agar cylinder
(6% by volume intralipid in the agar solution) was imaged. The
absorbing features of the phantom are shown in Figure 1A. The
phantom consisted of several groups of line elements of differ-
ent sizes, which can be used for resolution and image quality
characterization at different levels. To mimic limited-view sce-
narios, we assumed 2 down-sampled data sets, one using 128
positions over 270° coverage angle and one using 128 positions
over 135° coverage angle.

A tissue-mimicking agar phantom was also prepared to
examine the ASALSA-CF performance. The phantom included
areas containing 0.016% India Ink to impart higher optical
absorption than the background. The absorption coefficient of
the ink-containing inclusions was �a � 1.6 cm�1. In addition, a
hollow cylindrical cavity was introduced for illustrating the
nature of artifacts produced because of acoustic mismatches.
The phantom was used to examine the performance of the
proposed algorithm in relation to artifacts arising because of the
reflecting material.

Furthermore, a mouse kidney was imaged ex vivo to exam-
ine the performance of the proposed method with the biological
tissue. The kidney sample was extracted postmortem (nonper-

Figure 1. Reference U.S. Air Force
phantom printed on white paper with
black ink, which was embedded in
scattering agar (A). The reconstructed
image by L2-norm (B). The ASALSA
method (C) and the proposed
method (D). The subsects in (B–D) are
the zoomed-in regions marked in a
red rectangle of (A). The line profiles
in the horizontal and vertical direc-
tions marked in (B) are represented in
(E) and (F), respectively.
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fused) according to institutional regulations regarding animal
handling protocols and subsequently embedded in a diffuse agar
block (6% by volume intralipid in the agar solution) for ensuring
uniform illumination of the sample.

Image Reconstruction
The performance of reconstructions based on Equation 6
(L2-norm), Equations 8 and 9 (ASALSA), and Equation 11
(ASALSA-CF) was compared using the experimental measure-
ments collected from phantoms and mouse kidneys. Before
reconstruction, the optoacoustic signals were band-pass filtered,
with cutoff frequencies between 0.2 and 7 MHz to remove
low-frequency offsets and high-frequency noise. A uniform
speed of sound of 1510 m/s was used for all the reconstructions
(33). For all phantom measurements, images were reconstructed
with a pixel size of 100 �m [200 � 100 pixels (2)], and in the
case of tissue data, a pixel size of 100 �m [200 � 180 pixels (2)]
was used. The regularization parameter for the L2-norm-based
scheme was obtained using an L-curve approach, while in the
case of the ASALSA algorithm, it was chosen heuristically. The
parameters  and � were set as 100 and 1500, respectively, for
the ASALSA algorithm. Note that in the case of the ASALSA
algorithm, we have multiple parameters ( and �, which are
sensitive to noise; therefore, they can be adjusted based on the
image quality of the reconstructed image.

To further quantify the reconstruction improvement, the
average intensity (S) of the resolution lines was calculated for
the paper phantom, as well as the standard deviation of back-
ground (B) signals in the spaces between the lines. The ratio of
the average signal to the standard deviation of background
noise provided a contrast ratio of CNR � 20 � log(S/B).

RESULTS
The reconstruction results corresponding to the printed-paper
U.S. Air Force resolution phantom using 256 detector elements

over 270° are depicted in Figure 1. Figure 1A shows the structure
of the paper phantom. Figure 1B is the image reconstructed by
the L2-norm scheme, whereas Figure 1C indicates the recon-
structed image obtained by the ASALSA method. Both recon-
structions result in similar initial pressure rise distribution. In
contrast, the proposed ASALSA-CF method achieves sharper
structure and lesser background artifacts compared with other
methods. The artifact reduction is apparent from the
zoomed-in areas shown in the insets of Figure 1B-D, and the
zoomed-in region is indicated by a red rectangle in Figure 1A.
Although the image intensity of line features (label 1 marked
in Figure 1B) is partially distorted, the line profiles along the
red-dashed line indicated in Figure 1B (shown in Figure 1, E
and F) suggest that line features are better resolved in the
image reconstructed by the proposed method. Also the first
line in label 1 was reconstructed very well using the L2-norm
and SALSA method, but it was not accurately reconstructed
using the proposed method.

Results of the limited data situation (128 positions over
270°) are depicted in Figure 2. Figure 2A shows the image
reconstructed with L2-norm-based algorithm. Because of lim-
ited data, the line features (labels 1 and 2) are heavily blurred.
However, the image obtained by the ASALSA method recovers
the absorbing features much better than that obtained by the
L2-norm-based approach. Figure 2C displays the result obtained
by the proposed method (ASALSA-CF), where the line features
are better resolved as observed in the zoomed-in areas. Analo-
gous to Figure 1, Figure 2C shows fewer artifacts compared with
the results reconstructed by other methods. The lateral and axial
line profiles (Figure 2, D and E) marked by the red lines in Figure
1B also suggest significant resolution improvement achieved by
the proposed reconstruction method on highly undersampled
data.

Underdamped data with limited-view condition (128 trans-
ducer positions over 135°) are reconstructed, and the corre-

Figure 2. Images reconstructed using 128 trans-
ducer positions over 270 degrees. The recon-
structed image by L2-norm (A). The ASALSA
method (B) and the proposed method (D). The sub-
sects in (A–C) are the zoomed-in regions marked
in a red rectangle of Figure 1A. The line profiles in
the horizontal and vertical directions marked in
Figure 1B are represented in (D) and (E),
respectively.
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sponding results are shown in Figure 3. The L2-norm-based
reconstruction is fully distorted and blurred. Line features (labels
1 and 2) in Figure 3A cannot be identified. In contrast, the
ASALSA method shows better performance in resolving the line
pattern. Clearly, both images contain artifacts and blurry re-
gions. However, Figure 3C shows that there are fewer artifacts
and line features are much better resolved compared with the
results of the other reconstruction methods, indicating the su-
periority of the proposed scheme. Line profiles and zoomed-in
images present similar resolution improvement as in previous
cases. Meanwhile, the CNR values of line features (yellow labels
1, 2, 3, and 4) are calculated and shown in Table 2. It can be seen
that the ASALSA-CF method achieves better image contrast
than other methods.

The reconstruction results pertaining to the tissue-mimick-
ing agar phantom containing background optical absorption
and scattering are shown in Figure 4. Optoacoustic signals from
128 detector positions over 180° are used for reconstruction. The
light absorption takes place throughout the phantom, resulting
in reflected waves (due to the mismatch between air and tissue-
mimicking agar); thus, more reconstruction artifacts are pro-
duced. The L2-norm and ASALSA results contain obvious
artifacts (white arrows). However, the CF weighting method

removes background artifacts, and the 2 absorbing areas are
recovered with higher contrast compared with other reconstruc-
tion approaches.

The results pertaining to the ex vivo kidney experiment
reconstructed from 256 elements over 270° are presented in
Figure 5. Figure 5, A and B shows images obtained with the
L2-norm and ASALSA method. Analogous to the paper phan-
tom, these 2 images display similar image quality. However, the
CF method further improves the reconstruction performance of
the SALSA scheme, as illustrated in Figure 5C, showing im-
proved reconstruction quality. Specifically, blood vessel struc-
tures marked with the box indicated in Figure 5A are better
distinguishable and less blurry with the ASALSA-CF approach
compared with the results obtained using other schemes (insets
of Figure 5A-C). The visual evaluation is further corroborated by
the line profile (Figure 5D) drawn over a given image segment
[indicated by the dash line in Figure 5A], indicating that blood
vessels marked by the red line are better resolved in the
ASALSA-CF reconstructions.

The results for the ex vivo kidney data reconstructed from
128 elements over 135° are presented in Figure 6. Figure 6, A
and B show images obtained with the L2-norm and ASALSA
method, respectively. It can be seen that the ASALSA method is

Figure 3. Images reconstructed
using 128 transducer positions
over 135 degrees. The recon-
structed image by L2-norm (A).
ASALSA (B) and the proposed
method (D). The subsects in (A–C)
are the zoomed-in regions marked
in a red rectangle of Figure 1A.
The line profiles in the horizontal
and vertical directions marked in
Figure 1A are represented in (D)
and (E), respectively.

Table 2. Contrast (CNR) Comparison

Methods Object 1 Object 2 Object 3 Object 4

L2-norm 0.1(Da) 0.4(D) 0.2(D) 1.4

SALSA 0.9 0.7 1.2 2.1

ASALSA-CF 1.2 1.4 2.4 3.7

Da: Distorted
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able to reconstruct more details while producing more artifacts
compared with the L2-norm-based scheme. The reconstruction
result (Figure 6C) obtained by the proposed method significantly
reduces artifacts. Insets in Figure 6A-C, marked by the red box
and the line profile (Figure 6D), clearly show that the vessel
structures are better distinguishable and have higher contrast in
the ASALSA-CF image than those in the images obtained using
other methods.

The comparison of different reconstruction schemes with
respect to the computational time and memory requirements
is presented in Table 3. We calculated the reconstruction time
and memory usage for Figures 5 and 6 using a normal PC
(Intel Core i5-3470 @2.3GHz and 16 GB memory). It can be
seen from Table 3 that the proposed method takes more time
and memory compared with the L2-norm approach. However,
the conventional SALSA method cannot reconstruct the 256
signals because of computer memory limitation. For 128
signals, the original SALSA method is over 20 times slower
and takes 7 times more memory compared with the proposed
method.

DISCUSSION
In this work, we proposed a fast sparse recovery method along
with CF weighting for optoacoustic tomographic image recon-
struction. The interpolated model matrix method uses a sparse

Figure 4. Reconstructed images of the tissue-mim-
icking agar phantom, which includes a hollow
cavity filled with air and 2 high absorbing areas.
Reference image of the phantom (A). The recon-
structed image by L2-norm (B). The ASALSA
method (C) and the proposed method (D). Arrows
indicate artifacts caused by reflections or scatter-
ing of the acoustic waves, which are significantly
reduced with the proposed method.

Figure 5. Reconstructed images of the mouse
kidney from 256 transducer positions over 270
degrees. The reconstructed image by L2-norm (A).
The ASALSA method (B) and the proposed
method (C). The subsects in (A–C) are the
zoomed-in regions marked in a red rectangle of
Figure 5A. The line profiles marked by the red
line in Figure 5A are represented in (D).

Figure 6. Reconstructed images of the mouse
kidney from 128 signal positions over 135 de-
grees. The reconstructed image by L2-norm (A).
The ASALSA method (B) and the proposed
method (C). The subsects in (A–C) are the
zoomed-in regions marked in a red rectangle of
Figure 6A. The line profiles marked by the red
line in Figure 6A are represented in (D).
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matrix; hence, it is beneficial to use mathematical tools pertain-
ing to sparse algebra. Therefore, the original Basis Pursuit
(solved using Augmented Lagrangian method) is rewritten using
iterative Krylov subspace solvers framework (LSQR inversion),
which tends to converge in fewer iterations. It has been proved
that the accelerated SALSA approach can save enormous mem-
ory and significantly accelerate the computation time compared
with the original SALSA approach.

Previous work used the SALSA algorithm in the deconvolution
framework to remove the blurring caused by the regularization
parameter (34). In this work, we directly used the SALSA algorithm
for performing the image reconstruction and hence avoiding the
2-step procedure. Further, many L1-norm-based algorithms are
present in the literature, namely, 2-step iterative shrinkage thresh-
olding, fast iterative shrinkage thresholding algorithm, optimiza-
tion based on majorization-minimization, and greedy algorithms
like orthogonal matching pursuit. SALSA is known as the fastest
converging algorithm among all these. Hence, in this work, the
SALSA algorithm has been applied and rewritten with the LSQR
inversion, foreseeing its utility for real-time implementation.

Table 3 also shows that the proposed scheme is slower
compared with the traditional L2-norm-based approach by
about 4 times. The reason is that the ASALSA-based approach
needs 2 iterative inversion (LSQR) operations (as shown in

Table 1). In terms of the order of computation, the ASALSA
approach is O(4(M � N)N), while the L2-based reconstruction is
O(2(M � N)N), where M is the number of measurements and N is
the number of pixels to be reconstructed. This drawback can be
overcome by the using graphics processing units to accelerate
the reconstruction procedure.

We further hypothesized that the application of a CF weighting
will reduce the noise and artifacts that arise during sparsity-based
reconstruction, as noise and artifacts are incoherent, whereas op-
toacoustic signals are coherent. This hypothesis was motivated by
the use of CF in ultrasonography for similar reasons (28, 29). CF
weighting was integrated into the SALSA algorithm for reducing
artifacts arising in limited-view cases. In contrast, artifacts also
arise because of acoustically reflecting materials such as bone and
air; previous works have reduced these artifacts by using CF
weighting (28, 29). From Figure 4 it is evident that CF weighting
clearly reduces artifacts arising because of acoustic mismatches. In
the resolution phantom measurements, undersampled limited data
and limited-view scenarios were retrospectively studied, and it was
observed that the ASALSA method outperformed the L2-norm-
based method in reconstructing the line features. The CF method
further helps in reducing artifacts and improving resolution
and contrast. However, the distorted line feature (label 1) in
Figure 1 suggests that the CF method may underestimate the
image intensity when SNR is low. This can be improved by
using the SNR-based CF calculation method (28). Analogous
to the phantom measurements, the reconstruction results of
the mouse kidney data also prove that the proposed method
can better recover vessel structure compared with conven-
tional methods. Overall, the implication of the proposed re-
construction method could be in its utility for limited-view
data sets compared with conventional model-based methods
and much faster reconstruction than original sparse methods.
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