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Objective: This review aims to summarize the possibilities of recently discovered molecular diagnostic 
techniques in lung cancer, by evaluating their impact on diagnosis, monitoring, and prognosis in 
oligometastatic disease.
Background: Oligometastatic non-small cell lung cancer (OM-NSCLC) is currently defined based on 
morphological rather than biological features. Major advances in the detection of molecular biomarkers in 
cell-free tumoral DNA and the models of oncogene addiction make as feasible an early diagnosis and guide 
the therapeutic decision-making progress to improve the prognosis.
Methods: This narrative review EXAMINES current approaches of diagnosis, monitoring, and prognosis of  
OM-NSCLC and describes the fast-evolving therapeutic scenario of this disease. We provide an overview 
of the powerful capability of liquid biopsy techniques applied to blood and fluid and we focus on the 
technological advancement of circulant biomolecular factors in OM NSCLC pathology, starting from 
apparently simpler models such as oncogene addicted tumors to evaluate themselves in the light of treatment 
with immune-checkpoint inhibitors. 
Conclusions: A better understanding of spatial and temporal evolution of oligometastatic diseases would 
contribute to a more accurate diagnosis and tailored treatment. Data from prospective clinical trials in the 
early stage of disease, coupled with knowledge of genetic characteristics of lung tumors, are warranted. 
These efforts would lead to improving the possibility to eradicate the residual disease in these low burden 
tumoral settings, thus enhancing the definitive cure perspectives.
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Introduction

Since the first observations on growth and the metastatic 
spreading of non-small cell lung cancer (NSCLC), it has 
been clear that some tumors remained confined and indolent 
in few organs for a long time (1). The “oligometastatic” 
condition—hereafter called oligometastatic NSCLC—was 
initially defined as an intermediate stage between locally 
advanced and widely disseminated disease (1). However, this 
definition was inaccurate and did not discriminate between 
primary oligometastatic disease and oligorecurrence, and 
different cut-off numbers of metastases or organs involved 
were used (1).

Recently, the European Organization for Research 
and Treatment of Cancer Lung Cancer Group (EORTC-
LCG) published a consensus about the clinical definition of 
oligometastatic NSCLC (2) and described different patterns 
among de-novo status, repeat or induced oligometastatic 
disease in collaboration with the European Society of 
Radiotherapy (ESTRO) (3).

All definitions summarize a phenotypic rather than a 
genotypic condition; however, describing genetic features 
and microRNA signatures may be pivotal in the diagnostic 
process of oligometastatic disease (4). In clinical practice, 
genotyping to identify oligometastatic-NSCLC (OM-
NSCLC) is not feasible, and the diagnosis of a clinical 
oligometastatic status per se is a prognostic factor.

Indeed, among clinical factors, metachronous versus 
synchronous metastases, N-stage, and adenocarcinoma 
histology may stratify the risk of progressive disease and 
death (5).

Lacking biomarkers of OM-NSCLC, it is impossible to 
differentiate an oligometastatic disease that grows slowly 
and remains in this clinical status from an oligometastatic 
disease that continues to proliferate and spreads in multiple 
organs. Furthermore, it is not possible to distinguish 
the definition of metastasis in multinodular lung disease 
from multiple primary lung tumors with the prognostic 
consequences and the therapeutic strategy of the case only 
from histopathological evidence (6,7).

Many efforts had been done to discriminate multiple 
primary lung cancers from intrapulmonary metastasis. The 
first attempt was based on the expression of four cancer-related 
proteins—p53, p16, p27, and C-erbB2 (8). Subsequently, 
the TRACERx program, using the whole-exon sequencing, 
revealed a more complex genetic scenario (9). Tissue genetic 
profiling and liquid biopsies resulted as effective techniques 
to achieve the correct diagnosis of oligometastatic disease and 

ameliorate the individualized therapeutic strategy. 
Tissue-based biomolecular biomarkers can more 

accurately identify those patients who might benefit from 
local therapy, describing mRNA expression, microRNA 
expression, DNA mutations, epigenetic changes. In 
these procedures, poor quality of tissue and tumor 
heterogeneity—spatial and temporal—may be limiting (10).

Blood-based biomarkers are attractive, since they do not 
require invasive biopsies and may explore many tumoral 
components such as proteins, microRNAs, circulating 
tumor cells, ctDNA, and exosomes. These techniques can 
be repeated, if necessary, and better reflect tumor molecular 
heterogeneity, either temporal or spatial, than a single 
biopsy (11,12).

ctDNA is quantitively related to tumor burden and is a 
more objective measure of total body disease burden than 
imaging. Based on these observations, ctDNA profile can 
be useful to determine the minimal residual disease (MRD), 
defined as a small volume of tumor cells remaining after 
treatment in patients who do not have clinical evidence 
of disease, in early-stage or oligometastatic solid tumors 
and may allow predicting the outcomes in oligometastatic 
patients (13). In OM-NSCLC, ctDNA profile can be 
applied both to identify those patients who are eligible for 
local ablative treatment and to follow them after ablative 
treatments that completely eradicate metastatic deposits and 
lead to a definitive cure.

This review summarizes current approaches of diagnosis, 
monitoring, and prognosis of OM-NSCLC and describes 
the fast-evolving therapeutic scenario of this disease. 
We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/tlcr-20-1067).

Methods

We performed an updated literature search for papers 
published up to October 2020 about the role of diagnostic 
and prognostic biomarkers for OM-NSCLC throughout 
different medical research databases like PubMed, Scopus, 
and Web of Science, as well as an evaluation of abstracts 
reported on principal international cancer congresses 
(ASCO, ESMO, IASLC) websites.

We employed for the search the following terms: 
“oligometastatic non-small cell lung cancer”, “biomolecular 
markers”, “predictive biomarkers”, “prognostic biomarkers”, 
“liquid biopsy”, and “oligometastatic non-small cell lung 
cancer”. We retrieved and analyzed also data of completed 
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or ongoing clinical trials about this specific topic.
Given the hugeness of the data concerning the predictive 

and prognostic factors of response to treatments, we have 
focused on the technological advancement of circulant 
biomolecular factors in OM NSCLC pathology, starting 
from apparently simpler models such as oncogene addicted 
tumors to evaluate themselves in the light of treatment with 
immune-checkpoint inhibitors.

Biological techniques

Interventional pathologists play a pivotal role in the 
molecular characterization of OM-NSCLC, triaging the 
appropriate technique for the mini-invasive evaluation 
of the dynamic changes related to the genomic landscape 
of tumors. Cytological specimens may be the first ideal 
source of DNA for next-generation sequencing (NGS); 
fine needle aspirations (FNAs) are safe and cost-effective 
procedures that allow an optimal sampling of deep lesions 
via radiological guides (ultrasound/computed tomography). 
Traditional or liquid-based preparations are suitable for 
the application of exome sequencing or customized panels 
and, especially, May Grunwald Giemsa (MMG)-stained 
slides can be easily microdissected to obtain enriched 
samples. Supernatants may provide adequate material for 
the detection of driver mutations in oncogene-addicted 
cancers, helping to avoid the sacrifice of diagnostic stained 

smears (14). Especially during the natural history of long-
lasting cancers, the possible contribution of core-needles 
as repeat biopsies is debated. Traditionally, processed 
formalin-fixed paraffin-embedded (FFPE) samples have 
been compared to paired PAXgene® tissue fixed paraffin-
embedded (PFPE) tissues, which might be superior 
for DNA and RNA integrity, particularly in low-yield  
samples (15). Cytology and micro-histological approaches 
might work in a complementary fashion (16), however, 
when neoplastic sites are not accessible or clinicians have 
not the possibility to apply an interventional procedure with 
the requested advantage, the recourse to liquid biopsy is 
completely justified. The best way to guarantee multitasking 
management of precious oncological samples is the careful 
choice of the most appropriate way to take on the bioptic 
target and the medium to maximize the extraction of nucleic 
acids from small specimens.

The term “liquid biopsy” defines not only cell-free DNA 
(cfDNA), shed into the bloodstream by tumor and non-
tumor cells, but also other relevant biological molecules 
and macrostructures, such as microRNA, circulating free 
RNA, extracellular vesicles, and circulating tumor cells  
(Figure 1) (17). CtDNA represents the specific fraction of 
tumor-derived cfDNA to assess the molecular status of 
epidermal growth factor receptor (EGFR) (18-21) at the 
resistance from first-line treatment with a first or second-
generation EGFR tyrosine kinase inhibitors (TKIs) or the 
basal setting when tumor tissue is absent or not adequate 
for predictive analysis (18).

At the moment, the correlation between ctDNA levels 
and tumor burden (22) or the possibility to adopt liquid 
biopsy in non-advanced stage settings [such as cancer 
interception, early detection, and MRD (23,24)], represent 
research hot-topics.

A correlation among ctDNA levels and disease burden and 
specific metastatic sistes has been widely demonstrated (22).  
In patients with advanced-stage solid, the ctDNA 
concentration in the bloodstream is about 100 times higher 
concerning early-stage patients (25). In a recent prospective 
case-control sub-study by Liu et al, targeted methylation 
analysis of cfDNA was performed to detect and localize 
multiple cancer types across all stages on 2,482 cancer 
patients (>50 different cancer types) and 4207 non-cancer 
people (26). The overall specificity of 99.3% in cancer 
detection was reached. Interestingly, the authors highlighted 
that the detection rate was higher in advanced stages. As 
far as tumors are concerned, sensitivity was 18% in stage I, 
43% in stage II, 81% in stage III, and 93% in stage IV (26).

A

B

C

D

Figure 1 “Liquid biopsy” traditionally represents a peripheral 
blood sample withdrawal. Into the blood stream different analytes 
of clinical interest may be recovered: (A) circulating tumor nucleic 
acids (DNA and RNA), (B) Protein, (C) circulating tumor cells and 
(D) extracellular vesicles.
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In this scenario, another key factor is represented by the 
tumor dimension. An overall tumor volume of 10 cm3 seems 
to be the cut-off value to reach an adequate sensitivity level 
when considering ctDNA analysis (27). More recently, 
as discussed below, the integration of different biological 
levels (genetics, transcriptomics, and proteomics) may be 
a fascinating tool to overcome the limitations of ctDNA 
analysis, to implement liquid biopsy even for early-stage 
patients and cancer interception (28).

Data from proteomic analyses indicated that proteins of 
extracellular vesicles and particles of 426 human samples 
could serve as reliable biomarkers for cancer detection (29).

Another crucial issue related to the ctDNA analysis in 
solid tumors is associated with the specific metastatic site. 
The ctDNA “shareability” into the bloodstream is strictly 
dependent, not only on the tumor type (Table 1) (30-35) 
but also on the metastatic site. As an example, in a really 
interesting pooled analysis by Passiglia et al, considering 
a set of ten studies, for a total of 1425 NSCLC patients, 
the sensitivity of ctDNA based EGFR mutation testing was 
significantly higher in patients with M1b vs. M1a disease 
stage (odds ratio, OR: 5.09; 95% CI: 2.93–8.84) regardless 
the use of digital (OR: 5.85, 95% CI: 3.56–9.60) or non-
digital polymerase chain reaction technologies (OR: 2.96, 
95% CI: 2.24–3.91) (36). These well-structured analyses 
showed that the specific metastatic site significantly affected 
the accuracy of ctDNA based EGFR mutations analysis in 
NSCLC patients (36).

In most cases, advanced-stage cancer patients show a 
central nervous system, pleural, or peritoneal metastasis. 
In a recent prospective study by Villatoro et al, 42 
cerebrospinal fluid (CSF), pleural effusion, and/or ascites 

were used as a source of ctDNA in advanced NSCLC and 
melanoma patients and compared with results obtained 
from paired blood samples in 22 cases. The results obtained 
underline that fluids close to metastatic sites are superior to 
blood for the detection of relevant mutations (37). These 
important results can be useful in the oligometastatic 
patients, for the ctDNA molecular characterization to 
define the treatment strategy. 

Also in this scenario, as previously discussed for tumor 
stage and size, the integration of different “omics” levels, 
may represent a key “weapon” to overcome the limitations 
related to the metastatic site location, not only for NSCLC 
patients but also for other types of solid tumors.

Multidimensional liquid biopsy analysis 

The integration between the epigenetic fingerprints and 
the mutational profile of ctDNA is exemplified by the 
GRAIL Inc. program (26). Based on the evidence of Liu 
et al. (26), this innovative approach is focused on ctDNA 
sequence methylation assessment, through the analysis of  
100,000 methylation regions (covering ~1 million CpG 
sites), by using a highly efficient targeted bisulfite NGS and 
machine learning, able to identify the abnormal methylated 
ctDNA region.

Another example of different omics level integration is 
represented by CancerSEEK (Thrive Earlier Detection 
Corp.) that combines the detection of ctDNA mutation 
profile and protein expression associated with eight 
types of cancers, including ovarian, liver, stomach, 
pancreatic, and esophageal cancers, with a median  
sensitivity of 70%.

Table 1 Tumor ctDNA shareability in NSCLC patients with intra- or extra-thoracic metastasis

First author Methodology
Sensitivity intra-thoracic 

metastasis
Sensitivity extra-thoracic 

metastasis

Oxnard et al. BEAMing PCR 75.0% 86.3%

Wu et al. allele-specific quantitative real-time PCR kit 60.0% 76.9%

Tseng et al. Peptide nucleic acid-zip nucleic acid polymerase chain reaction 
clamp

23.8% 78.0%

Kasahara et al. dsPCR 50.0% 78.8%

Thress et al. cobas EGFR Mutation Test and BEAMing dPCR 18.2% 77.8%

Jenkins et al. cobas EGFR Mutation Test and NGS 50.6% 72.1%

BEAMing PCR, beads, emulsion, amplification, magnetic polymerase chain reaction; dsPCR; digital solid polymerase chain reaction; 
EGFR, epidermal growth factor receptor; NGS, next generation sequencing; NSCLC, non-small cell lung cancer; PCR, polymerase chain 
reaction.
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Despite  the excit ing results ,  both GRAIL and 
CancerSEEK (and other similar approaches) are not ready 
for clinical implementation and larger studies are currently 
ongoing for the clinical validation of these novel tools.

Liquid biopsy real-time monitoring for OM-NSCLC

One of the most fascinating opportunities offered by 
liquid biopsies is the possibility to track clonal evolution 
during anticancer treatments, pinpointing the emergence 
of resistant clones before radiographic progression and 
monitoring MRD. The term MRD refers to the evidence 
of a small number of cancer cells that remain in the body 
during or after treatment and are associated with prognostic 
and therapeutic relevance. Liquid biopsy is particularly 
suitable for this scope due to its minimally invasive 
nature that allows multiple evaluations over time without 
significant risks for the patient.

Several recent studies have evaluated the use of cfDNA 
analysis for real-time monitoring during EGFR TKIs in 
EGFR-mutated NSCLCs using different methodologies, 
including digital droplet PCR (ddPCR) (38-41), next-
generation sequencing (NGS) (37,40), and Peptide nucleic 
acid–zip nucleic acid clamp PCR (32). Collectively, these 
studies have shown a promising role for longitudinal 
monitoring of EGFR mutations in cfDNA through liquid 
biopsy, allowing the identification of acquired resistance 
mechanisms, such as the secondary EGFR mutation T790M 
after the 1st/2nd generation EGFR TKIs, even before 
radiographic progression. The use of NGS platforms 
offers the opportunity to simultaneously evaluate different 
mechanisms of resistance with high sensitivity and should 
be preferred over PCR-based methods (42). Whether 
the identification of mechanisms of acquired resistance in 
cfDNA before radiographic progression should lead to a 
therapeutic switch from a line of therapy to another (for 
instance, different EGFR TKIs) is a matter of debate and 
is currently under evaluation in the EORTC phase II study 
APPLE trial (NCT02856893).

In the context of OM-NSCLC and oligoprogressive 
disease, the use of cfDNA analysis could be of high clinical 
relevance (Figure 2), since multiple clinical studies have 
recently reported that cfDNA dynamics are a strong 
prognostic factor during anticancer therapies in advanced 
NSCLC, including EGFR TKIs (43-45) and immune 
checkpoint blockage with PD-(L)1 inhibitors (46-48). 
The dynamics of ctDNA have been shown to correlate 
with the outcome of advanced NSCLC patients treated 

with PD-(L)1 inhibitors and could better discriminate 
equivocal radiographic patterns of response, such as 
pseudoprogression and/or oligoprogression. In addition, 
ctDNA changes seem to correlate with pathologic response 
in early NSCLC after neoadjuvant PD-(L)1 blockage (46).  
Using an ultrasensitive liquid biopsy test (Cancer 
Personalized Profiling By Deep Sequencing, CAPP-Seq), 
Zhang et al. showed that ctDNA analysis can noninvasively 
identify MRD in NSCLC patients with long-term benefit 
to PD-(L)1 blockade (≥12 months), with 93% of patients 
with undetectable ctDNA levels progression-free versus 
none of the patients with detectable ctDNA (P<0.0001) (49).  
Albeit limited by small sample size (n=31), the study is 
hypothesis-generating and the use of liquid biopsy might 
allow personalized strategies for a treatment duration of 
immune checkpoint blockade and enable early intervention 
in patients at high risk for progression (49).

Data on OM-NSCLC are scant. Recently, an exploratory 
analysis of a randomized phase II study evaluating local 
consolidative therapy versus maintenance therapy or 
observation was reported (50). Plasma NGS was performed 
on 21 patients using a 1,021 cancer gene panel. At 
early follow-up timepoints, patients treated with local 
consolidative therapy were associated with a lower detected 
mutation burden. Furthermore, in a small subset of patients 
(n=6) with available serial samples for ctDNA analysis, 
the first increase of ctDNA mutation burden preceded 
radiographic progression by a median of 6.7 months 
(range, 2.9–17.9 months) (49). These results are in line 
with previous findings in early-stage NSCLC (stage I–III), 
where ctDNA detection after a curative intent treatment 
precedes radiographic progression in 72% of the patients by 
a median of 5.2 months (13). Furthermore, recently Chabon 
et al. showed that pretreatment ctDNA levels in stage 
I-IIIA NSCLC were associated with prognosis in terms of 
both disease-free and distant metastasis-free survival (51),  
suggesting that persistence of ctDNA detection after 
curative-intent treatments might reflect the presence of 
micrometastases (52). Collectively, these results indicate 
that ctDNA levels are associated with tumor burden and 
might be used as a minimally invasive monitoring tool 
after curative intent therapies in early-stage NSCLC and/
or local consolidative therapies in OM-NSCLC, allowing 
personalized therapeutic strategies in positive cases.

Whether ctDNA changes during treatment of OM-
NSCLC could represent a novel reliable biomarker will 
be further investigated in the ongoing phase II EXTEND 
basket trial (NCT03599765) (53), assessing the efficacy 
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and safety of upfront local consolidative therapy in 

OM solid tumors, and the phase III LONESTAR trial 

(NCT03391869) (54), evaluating the impact of local 

consolidative therapy after nivolumab-ipilimumab in stage 

IV NSCLC.

Prognostic and predictive biomarkers for the 
OM-NSCLC

Two clinical factors have been associated with the OS and 
prognostic stratification of patients with OM-NSLC, i.e., 
the type of metastatic presentation (synchronous versus 

Current Scenario

Future Scenario

OM-NSCLC undergoing 
curative intent treatment

OM-NSCLC undergoing 
curative intent treatment

Conventional 
clinico-radiologic follow-up

Conventional 
clinico-radiologic follow-up

MRD monitoring through liquid biopsies

miRNA

cfDNA CTCs

EVs

Figure 2 MRD monitoring through liquid biopsies in the context of OM-NSCLC. OM-NSCLC, oligometastatic non-small cell lung 
cancer; cfDNA, cell free DNA; CTCs, circulating tumor cells; miRNA, micro RNA; EVs, extracellular vesicles; MRD, minimal residual 
disease; Credit: Created with BioRender.
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metachronous) and N status (5), and several candidate 
biomarkers are under investigation to predict the outcome 
of patients with OM-NSCLC and their response to 
treatments.

Besides tumor-sample-based biomarkers, such as the PD-
L1 expression, the high-microsatellite instability (MSI-H), 
the tumor mutational burden (TMB), the presence of 
tumor-infiltrating lymphocytes (TILs), and gene expression 
profiling (GEP) (55,56) liquid and other non-tumor sample-
based biomarkers may offer the advantage to overcome the 
lack of tissue, the tumor heterogeneity, and the different 
adaptive mechanisms of tumors cells to treatments (57) and 
will be briefly described (Table 2). 

Relevant vectors from liquid biopsies are cfDNA/ctDNA 
(and the associated level of blood TMB), peripheral blood 
mononuclear cells (PBMSCs), soluble mediators (i.e., 
proteins), circulating tumor cells (CTCs), exosomes, and 
microRNA (58).

As previously discussed in this review, in EGFR mutated 
NSCLCs, the presence of ctDNA and its quantity can be 
related to tumor volume, stage, and possible discrimination 
between specific metastatic sites (i.e., M1b vs. M1a) 
(22,25,35). Their sensitivity could be variable depending 
on tumor shedding. The presence and the levels of 
cfDNA/ctDNA could be explored in the OM-NSCLC for 
prognostic stratification and treatment monitoring.

Based on cfDNA and ctDNA, their levels, blood TMB 
(bTMB), and allelic variant frequencies have been explored 
in advanced NSCLC as biomarkers predictive of PD-1/
PD-L1 tumor expression and outcomes under immune-
checkpoint inhibitors (ICIs). A high bTMB has been 
correlated with the favorable clinical outcome under ICIs 
independently by PD-L1 expression on tumor tissue (59) 
and could be correlated to tissue TMB (60). Changes 
in levels of ctDNA (61) and the allelic frequency of 
distinct mutations measured in ctDNA (47,61,62) showed 
concordance with disease response to ICIs and could assist 
radiographic assessments (58). Therefore, these biomarkers 
could be helpful to better define genomic profiling between 
the OM-NSCLCs and towards the non-OM-NSCLC and 
to monitor treatment response to treatment. 

Other types of circulating biomarkers

As previously discussed, the emerging concept of liquid 
biopsy includes also other biological relevant molecules 
and macrostructures, such as miRNA, cell-free RNA, 
extracellular vesicles and circulating tumor cells (16).

The simultaneous analysis of these different analytes, 
in combination with data obtained from the ctDNA 
mutational analysis may represent a novel advice to 
overcome the limitations related to the low sensitivity of 
liquid biopsy in some settings, such as cancer interception, 
early stage disease analysis and MRD (16).

The role of other liquid biopsy components, such as 
circulating tumor cells (CTCs) and extracellular vehicles 
(EVs) is far less defined in the context of OM-NSCLC. 
The presence of ≥5 CTCs before chemotherapy was 
significantly associated with worse prognosis in advanced 
NSCLC (52). Their role in OM-NSCLC is still unclear, 
albeit some indirect evidence suggests a promising role in 
this peculiar clinical scenario. For instance, in early-stage 
NSCLC (stage I) treated with stereotactic body radiotherapy 
(SBRT), pretreatment levels of CTCs (using a cut-off of  
≥5 CTCs/mL) and posttreatment persistence are significantly 
associated with increased risk of recurrence outside the 
targeted treatment site (63). Furthermore, longitudinal CTC 
monitoring in patients with locally advanced NSCLC treated 
with chemo-radiotherapy predicted the outcome, with most 
of the patients having undetectable CTCs on initial post-
radiotherapy draw and CTCs re-emergence predicted disease 
progression before radiographic evidence of recurrence (64). 
These results suggest a potential application of CTCs in the 
context of OM disease and deserve further confirmation in 
prospective studies.

The presence and the amount of blood CTCs could 
represent another potential biomarker to differentiate OM-
NSCLCs and compare to non-OM-NSCLCs, to predict 
prognosis and inform treatment strategies. For instance, 
fewer CTCs were detected among NSCLC patients with 
OM than in those with non-OM brain metastases, while 
the presence of CTCs and their thresholds of ≥2 and  
≥5 CTCs/7.5 mL of blood were independent factors 
for overall survival in the OM disease (65). This could 
suggest more intensive treatments in patients with OM-
NSCLC with brain metastases and high levels of CTCs. 
Furthermore, PD-L1+ CTCs were associated with poor OS 
and treatment failure (58).

PD-L1 mRNA and protein levels in circulating 
extracellular vesicles (often referred to as exosomes) may 
also have the potential to predict tumor response to anti-
PD1/PD-L1 antibodies. Cancer cells release exosomes 
from the endocytic compartment into the plasma and 
they play a role in influencing processes involved in tumor 
progression, including immunoediting and drug resistance, 
by transporting nucleic acids, proteins and lipids to nearby 
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Table 2 Candidate non tumour-sample-based biomarkers for the OM-NSCLC

Biomarker Parameter Correlation findings Potential applications for the OM-NSCLC

Liquid

cfDNA/ctDNA Levels Tumour volume Prognostic stratification

Tumour stage Treatment monitoring

Metastatic site

Response to ICIs

bTMB from cfDNA/ctDNA High/low Tumour PD-L1 or TMB Profiling

Response to ICIs Treatment monitoring

Allelic variants from ctDNA Frequency Response to ICIs Profiling

Changes Treatment monitoring

CTCs Levels Prognosis Prognostic stratification

Response to ablative RT Treatment orientation and monitoring

PD-L1 mRNA and protein levels from 
exosomes

Levels Response to ICIs Prognostic stratification

Changes Adaptive response to ICIs

Soluble PD-L1 and PD-1 Levels Prognosis Profiling

Metastatic site Prognostic stratification

Response to ICIs Treatment monitoring

Response to TKIs

PBMCs: PD-1/PD-L1+ T cell subtypes 
and CTCs, NK

Frequency Prognosis Prognostic stratification

Levels Response to ICIs Adaptive response to ICIs

NLR ± LDH Levels Prognosis Profiling

Response to ICIs Prognostic stratification

Non-liquid

Radiomics Features Histological and molecular features Profiling

Prognosis Prognostic stratification

Response to ICIs Response to ICIs

MTV and TLG from FDG-PET scan Levels Prognosis following ablative RT Prognostic stratification

Response to ablative RT

Gut microbiota Species Response to ICIs Profiling

irAEs Response to ICIs

Toxicity

OM-NSCLC, Oligometastatic non-small cell lung cancer; bTMB, blood tumour mutational burden; cfDNA, circulating cell-free DNA; CTC, 
circulating tumours cells; ctDNA, circulating tumour DNA; FDG-PET, fluorodeoxyglucose (FDG)-positron emission tomography (PET); ICI, 
immune checkpoint inhibitors; irAEs, immune-related adverse events; LDH, lactate dehydrogenase; MTV, metabolic tumor volume; NK, 
natural killers; NLR, neutrophil-to-lymphocyte ratio; PBMCs, peripheral blood mononuclear cells; PD(L)-1, programmed cell death (ligand)-1; 
RT, radiotherapy; TKI, tyrosine kinase inhibitor; TLG, total lesion glycolysis.
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or distant cells (66). PD-L1 protein levels in circulating 
exosomes and changes in plasma levels of PD-L1 positive 
exosomes, by the analysis of PD-L1 mRNA, were related 
with treatment outcome to PD-1/PD-L1 inhibitors in 
melanoma and NSCLC patients (67,68). The presence of 
PD-L1 on tumor-derived exosomes may allow them to 
target PD-1+ CD8 T-cells as a mechanism of the adaptive 
response of the tumor cells to T cell reinvigoration, thus 
allowing them to evade immune response at the effector 
stage (67).

The soluble form of PD-L1 (sPD-L1) levels have not 
been related to the tumor PD-L1 (69-71). However, high 
baseline sPD-L1 levels were associated with poor prognosis 
and abdominal metastases (69,72), whilst low baseline 
sPD-L1 levels were linked to treatment efficacy (68) and 
increasing levels to treatment failure (70). High sPD-1 
levels predicted a favorable outcome to the TKIs (73).

PBMCs include T-cells (≈70%), B-cells (≈15%), 
monocytes (≈5%) and natural killer cells (≈10%) whose 
proportion may considerably differ by showing the 
activity of the immune system and play an important role 
as immunological biomarkers (74). Furthermore, PD-1 
expression can be measured on PBMCs and is elevated 
among CD4+ T-cells from advanced NSCLC patients 
compared with healthy donors, while no correlation between 
PD-L1 expression on tumor cells and PD-1 expression on 
CD4+ and CD8+ T cells was found (75). High PD-L1 CD4+ 
T cells were associated with unfavorable outcome in OS and 
PFS and failure to ICIs (75), whilst an early (within 4 weeks) 
increase in PD-1+ CD8+ T cells predicted better response to 
anti-PD1 agents (76). A high baseline number of NK-cells 
and their increase during ICIs was associated with treatment 
response (77).

The neutrophil-to-lymphocyte ratio (NLR) is a surrogate 
for tumor-associated inflammation and likely represents the 
frequency and activity of myeloid-derived suppressor cells, 
that hinder T-cell proliferation and expansion (78). A high 
NLR and its combination with high lactate dehydrogenase 
or tumor PD-L1 expression level were related with worse 
outcomes to ICIs, but not to chemotherapy (79-81).

PD-L1 protein levels in exosomes, sPD-L1/PD-1 
levels, PD-1/PD-L1 expression on T cells and CTCs and 
NLR could, therefore, be prognostic and useful to explore 
possible differences in the adaptive response to PD-1/PD-
L1 inhibitors in the OM-NSCLC. 

However, although promising, the use in clinical 
practice of these soluble biomarkers is currently limited 
by data heterogeneity, lack of direct comparison of assays, 

vectors, and validations (58). No liquid biomarker has been 
currently tested in randomized phase III trials, although the 
first trial is ongoing (82).

Recently, deep learning approaches applied to the 
quantitative analysis of radiological images (namely the 
radiomics approach) has been explored as a diagnostic and 
risk-layering tool to characterize specific tumors features 
(such as the PD-L1 expression or the TMB) and predict 
patients’ prognosis and response to treatments by offering 
interpretable artificial intelligence (AI) models able to merge 
a high amount of information from different vectors (83). Of 
course, the utility of radiomics in the OM-NSCLC could 
vary from assisting the histological and molecular diagnosis 
of the tumor to profiling better this disease subgroup and 
predict prognosis and response to treatments.

Another imaging biomarker that could have a role for the 
prediction of outcome following ablative radiotherapy of the 
OM-NSCLC could be the metabolic burden of the disease 
as defined by the metabolic tumor volume and total lesion 
glycolysis of all lesions by the fluorodeoxyglucose positron 
emission tomography as both resulted as independent 
prognostic factors for the OS (84).

Finally, the study of gut microbiota, that could be obtained 
by stool cultures or molecular techniques (i.e., sequencing, 
metagenomics), has associated various species to the disease 
response and immune-related adverse events (irAEs) from 
ICIs and could be useful to profile the OM-NSCLC and 
predict disease response and toxicity from the ICIs.

Diagnostic and prognostic biomarker in 
oligometastatic NSCLC: are we ready from prime 
time?

Liquid biopsy and ctDNA profiling are usually employed 
in clinical practice to detect the EGFR T790M mutation 
and the subsequent sensitivity to Osimertinib (85). These 
techniques are extremely sensitive and specific and are 
currently recommended for T790M testing when tissue 
biopsy is not feasible (86). In some oligometastatic diseases, 
the difficulties to obtain a fresh biopsy make the liquid 
biopsy the unique way to employ a treatment driven by an 
actionable target, and different sources of ctDNA, such as 
liquor, have been explored. Even in these cases, Osimertinib 
was active in presence of EGFR T790M (87).

Dynamic changes of EGFR mutations in plasma or 
cerebrospinal fluid during the EGFR tyrosine kinase 
inhibitor treatment are directly linked to clinical activity 
and monitoring these fluctuations may be useful to decide 
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the strategy in the management of intra and extracranial 
disease (88).

The open-label, single-arm, prospective APOLLO study 
enrolled patients with EGFR T790M positive NSCLC with 
brain metastatic spread, treated with Osimertinib (89). In 
twelve patients with paired cerebrospinal fluid and plasma 
sample, a low concordance between cerebrospinal fluid/
plasma EGFR T790M status positivity (8.3%) was detected, 
underlying the differences of the microenvironment of 
intra and extracranial sites. However, a higher concordance 
was seen in EGFR mutation-sensitive del19 and L858R 
between plasma and cerebrospinal fluid (100% and 75%, 
respectively).

The clearance of T790M in cerebrospinal fluid after  
6 weeks of treatment displays a higher intracranial response 
rate and a trend in better median progression-free survival.

This trial is the last example of a series of trials (90) 
that demonstrated that early clearance of EGFR mutation 
in plasma may correlate with positive activity and efficacy 
outcomes. The presence of EGFR T790M variant allelic 
frequency (VAF) rather than its clearance is predictive of 
Osimertinib activity (85).

The cut-off points of plasma VAF at the beginning of 
therapy and the convenient time to detect VAF clearance 
during treatment (i.e., 3–6 weeks) are still a matter of debate 
and the detection of resistance mutation is not enough to 
change accordingly the therapeutic strategy.

Even if some experiences demonstrated that the 
occurrence of plasma mutation resistance could anticipate 
the clinical progression of a median of 3 months, no 
prospective trials with complete accrual indicated if it is 
opportune to change the therapeutic behavior (91).

The ongoing APPLE trial is a unique example of a 
prospective clinical trial in which the therapeutic strategy 
is adapted after the detection of T790M mutation at fixed 
timepoints in ctDNA in EGFR mutant TKI treatment-
naïve patients. The trial compared continuing gefitinib until 
disease progression according to RECIST or switching to 
Osimertinib when plasma T790M arose and clarified the 
predictive power of liquid biopsy in this setting (82). 

In other oncogene-addicted lung cancers, such as ALK-
driven tumors, ctDNA by calculating maximum allelic 
frequency correlates with tumor burden and predicts the 
response to ALK inhibitors. In these experiences, maximum 
plasma allelic frequency and ALK alteration VAF are 
independent surrogates of ctDNA and high disease burden.  

ALK fusion/ mutations have been found in more than 
2/3 of plasma analyzed patients; therefore, a personalized 

therapeutic strategy that chooses active ALK inhibitors 
according to ALK-driven resistance mutation detected 
would become reasonable. However, also for ALK fusion or 
mutated NSCLCs, no prospective trials are still published 
about therapeutic change driven by dynamically testing of 
plasma ALK VAF.

Like ALK-harboring tumors, liver, adrenal glands, and 
bone are metastatic sites that correlate with a higher burden 
of ctDNA shedding (92); for instance, the plasma assay 
is more sensitive when the central nervous system is the 
prevalent site of metastasis (93,94). 

In oncogene-addicted OM-NSCLC, ctDNA profiling is 
an attractive tool in both diagnostic settings when the tissue 
biopsy is hard to collect and monitoring of therapeutic 
activity. However, no conclusion about the prognosis could 
be done without a link to an elevated ctDNA burden at the 
diagnosis (Figure 3) (95).

The need for coupling prognostic information and 
predictive activity of therapeutic strategy is more evident 
in the field of non-oncogene addicted oligometastatic 
NSCLC, eventually eligible for immunotherapy. Recently, 
a comprehensive analysis of ctDNA VAF from solid 
tumors with a large representation of lung tumors treated 
with durvalumab combined or not with tremelimumab 
demonstrated that a higher basal VAF was associated with 
poor prognosis while the reduction of ctDNA during 
treatment had a predictive meaning (49). Baseline mean 
or maximum VAF was associated with median OS and not 
with the overall response rate (ORR), tumor burden or 
other prognostic information, as showed in multivariate 
analysis (95). Therefore, ctDNA can be considered as a 
prognostic factor rather than a predictor of response to 
immune-checkpoint inhibitors.

The ctDNA dynamics correlated to the clinical benefit 
of immunotherapy, as the reduction of ctDNA mean VAF 
measured at 6 weeks was associated with ORR and OS (62).

Data that correlate mean VAF and prognosis associated 
with immunotherapy have been already reported, but the 
cut-offs of mean ctDNA VAF to distinguish poor from 
good prognosis have not been established yet (96).

The detection of stable or increased levels in circulating 
DNA VAF is an interesting phenomenon to evaluate the 
activity of disease when instrumental imaging scans restage 
a stable disease, as per RECIST criteria. Again, the lack 
of results from well-conducted prospective trials does 
not allow to draw a firm indication about the impact on 
therapeutic strategy.

Thus, the liquid biopsy approach may represent a 
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valuable option in OM-NSCLC to overcome issues related 
to invasive tissue sampling procedures. In addition, the 
selection of a “liquid biopsy” more close to the metastatic 
site (e.g. CSF in brain metastasis) may overcome the 
limitations of a low shedding of tumor-related analytes into 
the bloodstream, leading to false-negative molecular results.

Conclusions

Clinical data available to date are not focused on OM-
NSCLC setting and the scenario that is more likely to 
be employed arises from oncogene-addicted tumors and 
NSCLC during a deep response to the drug.

In the setting of NSCLC, liquid biopsy developed in 
early-stage disease or when a MRD is expected during active 
treatment is feasible; however, since a low ctDNA shedding 
is expected due to a low tumor burden, ultra-sensitive assays 
are necessary. In addition, the liquid biopsy approach can 
overcome the limitation of tissue-based approaches related 
to the spatial and temporal molecular heterogeneity that 
may significantly limit the adoption of the best treatment 
option in OM-NSCLC patients. 

In OM-NSCLC, liquid biopsy can be a diagnostic 

tool, seeking oncogene mutation typically expressed in 
lung cancers; this technique may overcome the difficulties 
due to small tissue biopsy in low metastatic spreading 
disease or localized in difficult to reach the site (i.e., brain 
localization).

From a prognostic point of view, the mean ctDNA VAF 
seems to be the only biological factor that emerges from 
literature, even if it has not been specifically studied in the 
OM-NSCLC setting.

The main point is that the oligometastatic disease 
is currently described using clinical and morphological 
definitions rather than its biological features; data from 
prospective clinical trials in an early stage of disease, coupled 
with knowledge of genetic characteristic of lung tumors 
are warranted since they may further clarify diagnostic and 
prognostic features of this sub-group of disease (97). These 
efforts would lead to improving the possibility to eradicate 
the residual disease in these low burden tumoral settings, 
enhancing the definitive cure perspectives.
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