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1  |  INTRODUC TION

There are three major options for investigating a gene or gene family 
when no good genome assembly exists but reads are available. One 
option is to wait for a finished genome to be released; another option 
is to parse raw reads that match a homeologous gene sequence from 

a species with a better assembly. In between there is a third option, 
to assemble contigs from a set of reads that match the sequence of 
the target gene. An extension of this third option is an iterative local 
assembly based on cycles of matching- read retrieval and assembly.

Several programs have been developed to perform iterative 
local assembly, starting with tracembler (Dong et al., 2007), which 
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Abstract
Although finished genomes have become more common, there is still a need for as-
semblies of individual genes or chromosomal regions when only unassembled reads 
are available. slag (Seeded Local Assembly of Genes) fulfils this need by performing 
iterative local assembly based on cycles of matching- read retrieval with blast and as-
sembly with cap3, phrap, spades, canu or unicycler. The target sequence can be nucleo-
tide or protein. Read fragmentation allows slag to use phrap or cap3 to assemble long 
reads at lower coverage (e.g., 5×) than is possible with canu or unicycler. In simple, non-
repetitive genomes, a slag assembly can cover a whole chromosome, but in complex 
genomes the growth of target- matching contigs is limited as additional reads are con-
sumed by consensus contigs consisting of repetitive elements. Apart from genomic 
complexity, contig length and correctness depend on read length and accuracy. 
With pyrosequencing or Illumina reads, slag- assembled contigs are accurate enough 
to allow design of PCR primers, while contigs assembled from Oxford Nanopore or 
pre- HiFi Pacific Biosciences long reads are generally only accurate enough to design 
baiting sequences for further targeted sequencing. In an application with real reads, 
slag successfully extended sequences for four wheat genes, which were verified by 
cloning and Sanger sequencing of overlapping amplicons. slag is a robust alternative to 
atram2 for local assemblies, especially for read sets with less than 20× coverage. slag 
is freely available at https://github.com/cfcra ne/SLAG.
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retrieves reads from the NCBI Trace Archive database and then 
uses the retrieved reads in subsequent queries against the same 
database, finally assembling contigs from the accumulated reads 
with cap3 (Huang & Madan, 1999). beap (Koltes et al., 2009) follows 
the same strategy with additional NCBI databases and can also 
retrieve reads from a local database. The program tasr (Targeted 
Assembly of Sequence Reads), while not itself iterative, neverthe-
less illustrates another strategy for local assembly in which reads 
are selected if their first 15 bases exactly match any 15- base sub-
sequence in the targeted sequences (Warren & Holt, 2011). The 
reads are then aligned and a consensus sequence is built up by 
majority vote at each nucleotide position. mapsembler (Peterlongo 
& Chikhi, 2012) is similar but uses k- mer words anywhere in the 
reads and iteratively collects sets of reads for attaching short 
matching subsequences to both ends of the growing, resulting 
contig. Another in silico strategy for reconstructing complete 
mitochondrial genomes from NGS data is mitobim (mitochondrial 
baiting and iterative mapping; Hahn et al., 2013). Reads match-
ing 31- nucleotide starting sequences are retrieved and assembled 
initially into contigs with mira (Chevreux et al., 1999), and subse-
quent iterations find and assemble reads that overlap the ends of 
the growing contigs. grabb (Brankovics et al., 2016) also retrieves 
reads on the basis of matching 31- mer words and then assembles 
all the retrieved reads with edena (Hernandez et al., 2008) or vel-
vet (Zerbino & Birney, 2008). grabb repeats this cycle until contigs 
completely match the seeding sequence(s) or until no additional 
reads are retrievable. kollector (Kucuk et al., 2017) uses 48- base 
k- mers from seeding sequences to populate a Bloom filter that se-
lects matching reads, from which additional k- mers are selected to 
update the Bloom filter for the next iteration of matching; the final 
read collection is assembled with abyss (Simpson et al., 2009). The 
programs tram (Johnson et al., 2013), atram (Allen et al., 2015) and 
atram2 (Allen et al., 2018) implement the full cycle of read retrieval 
with blast (Zhang et al., 2000), assembly with abyss (Simpson et al., 
2009), velvet (Zerbino & Birney, 2008), trinity (Grabherr et al., 
2011) or spades (Bankevich et al., 2012), and seeding of the next 
cycle with contigs that match the target sequence. srassembler 
(McCarthy et al., 2019) follows a cycle of read retrieval with vmatch 
(Abouelhoda et al., 2004), contig assembly with abyss (Simpson 
et al., 2009) or soapdenovo2 (Luo et al., 2012), selection of contigs 
to retrieve the next set of reads, and periodic purging of contigs 
that do not match the target sequence. srassembler can also defer 
the first assembly until multiple cycles of read retrieval have been 
completed, using previously retrieved reads as query sequences to 
retrieve more reads.

Although many local assemblers are available, none deals 
explicitly with: (i) long reads, as are now available from Pacific 
Biosciences or Oxford Nanopore sequencing; (ii) hybrid assem-
blies containing both long and short reads; and (iii) sequencing 
projects with shallow read depth. Therefore, we introduce slag 
(Seeded Local Assembly of Genomes), a versatile, command- line, 
local assembly pipeline that can assemble reads of any length 
and coax assemblies from shallow read sets. slag is similar to 

atram (Allen et al., 2015) and atram2 (Allen et al., 2018) in that it 
uses blastn or blastx to identify matching reads, then assembles 
them with phrap (Green, P., http://www.phrap.org/phred phrap/ 
phrap.html), cap3 (Huang & Madan, 1999), spades (Bankevich 
et al., 2012), canu (Koren et al., 2017) or unicycler (Wick et al., 
2017), and carries forward to the next cycle the contigs that 
match the target sequence by blastn or tblastn search. However, 
slag has its own nuances to increase contig length and can utilize 
a fragmentation strategy with phrap or cap3 to assemble long 
reads at low (e.g., 5×) coverage, where canu and unicycler fail to 
produce an assembly.

2  |  METHODS

2.1  |  Work flow

2.1.1  |  Input files

slag is written in Perl 5.16. slag reads all necessary settings and 
file names from a user- supplied configuration file, which must also 
be written in syntactically correct Perl. Thus the user has control 
over the stringency of read retrieval and assembly. A blastable da-
tabase of reads is always needed and must be supplied by the user. 
Depending on the chosen assembler, a fastq file of paired- end 
reads might also be needed. If contigs are to be polished (error- 
corrected with more accurate short reads), a combined file of fastq 
reads is needed, with all reads having distinct names. slag also re-
quires a query file of one or more nucleotide or protein sequences 
in fasta format. Since all retrieved reads are assembled together, it 
is probably more efficient to execute separate runs for individual 
or small groups of query sequences than to run thousands at once, 
but slag itself imposes no limit on the number of query sequences. 
Depending again upon the chosen assembler, it might be necessary 
to set up the environment with an appropriate loading command 
before running slag.

2.1.2  |  Read gathering

slag identifies target- matching reads in the blastable database 
with blastn or tblastn, then retrieves them with blastdbcmd. While 
the user specifies the e- value and maximum number of reads to 
retrieve, the number typically far exceeds the number of reads 
actually assembled. slag limits the number of reads assembled in 
any one of five ways: (i) all, where all retrieved reads are used; 
(ii) bitscore, where only reads that match higher than a specified 
blast bitscore are used; (iii) increment, where the count of reads 
used increases by a constant value (the increment) with each 
cycle; (iv) population, where reads are accepted at consecutively 
decreasing bitscores until all reads from the previous cycle have 
been included; and (v) manual, where the user directly specifies 
the number of reads to be assembled at each cycle. With the 

http://www.phrap.org/phredphrap/phrap.html
http://www.phrap.org/phredphrap/phrap.html
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increment and manual options, the reads are taken from the top 
of a list in decreasing order of blast bitscore.

2.1.3  |  Assembly

slag performs a de novo assembly of all selected reads at each cycle. 
Thus there is continuous interaction among nascent contigs and the 
read set that determines which reads contribute to which contigs. 
slag can use spades (Bankevich et al., 2012) for short reads, phrap 
(Green, 1999) or cap3 (Huang & Madan, 1999) for short or medium- 
length reads, and canu (Koren et al., 2017) or unicycler (Wick et al., 
2017) for long reads. slag can also fragment long reads in two ways 
for assembly with phrap or cap3 and thereby bypass the minimum 
read depth required for canu or unicycler. In the first, reads are bro-
ken without overlap into pieces of a user- specified length (e.g., 600 
bases) and then assembled. In the second way, reads are broken 
without overlap into pieces of one length (e.g., 610 bases), and the 
intact reads are also broken into pieces of a second length (e.g., 490 
bases). All of the pieces are then assembled together. This doubles 
the apparent read depth for the assembler without adding any new 
information. It merely allows the assembly to span regions of 1– 2× 
coverage that would otherwise interrupt contig growth.

2.1.4  |  Contig selection and polishing

slag produces a blastable database from the contigs and queries the 
original seeding sequences against it with blastn or tblastn. Only the 
matching contigs pass on to the next cycle. slag can polish seeding 
contigs with racon (Vaser et al., 2017) for a user- specified number 
of iterations. In this case, the polished contigs proceed to the next 
cycle. Since racon requires a .sam file of read alignments to the 
contigs, slag uses bowtie2- build and bowtie2 (Langmead & Salzberg, 
2012) to produce the .sam file.

2.1.5  |  Stopping criteria

The user can specify how slag stops: (i) after a set number of cycles; 
(ii) when the longest contig fails to lengthen by a minimum amount 
from the previous cycle; or (iii) if all manually set read counts have 
been used. slag will also stop if no contigs are generated or if no gen-
erated contig sufficiently matches the target sequence.

2.1.6  |  Output files

For each cycle of retrieval and assembly, slag outputs a fasta file of 
the assembled contigs that match the target seed sequence. If con-
tigs have been polished with racon, the polished contigs will appear 
in a separate file. slag also outputs a log file listing all calls to blast, 
the assembler and the polisher.

2.2  |  Simulations

Contig length and accuracy were tested in three sets of simulations. 
The first set simulated very similar variants of a 7- kb random found-
ing sequence generated with nucleotide frequencies drawn from a 
Hessian fly- responsive, dirigent- like sequence (GenBank accession 
JX501668.1, Subramanyam et al., 2013) from bread wheat (Triticum 
aestivum L.). The sequence consisted of a relatively conserved cen-
tral region of 1800 nucleotides flanked by less conserved sequence; 
individual variants were derived from the founding sequence by 
random mutations with respective probabilities of 0.005 and 0.02 
per nucleotide in the central and flanking regions. Simulated read 
lengths were distributed as in the pyrosequencing (454) reads used 
by Brenchley et al. (2012) to assemble the genome of Chinese Spring 
wheat. Read depth and accuracy were varied to determine the effect 
on contigs generated with phrap (Green, 1999).

The second set drew simulated reads of various lengths at ran-
dom from three homeologous regions of chromosomes 1A, 1B and 
1D of version 2.0 of the genome of hexaploid bread wheat (T. aes-
tivum L.) as downloaded from https://urgi.versa illes.inra.fr/downl 
oad/iwgsc/ IWGSC_RefSeq_Assem blies/ v2.0/. This set allowed 
investigation of the response of contig length to abundant repet-
itive elements. The regions consisted of nucleotides 559066659– 
596637530 in chromosome 1A, 627849254– 696738616 in 
chromosome 1B, and 454010413– 496939616 in chromosome 1D. 
These homeologous regions sum to 149,389,439 nucleotides. While 
eight of the 50 seed sequences were oriented more than one way, 
none of them had the same relationship of orientation to chromo-
some as any of the others, so there was no convincing evidence for 
large- scale chromosomal inversions among the three sampled re-
gions. Distinct perl scripts were written to generate long (7– 14 kb) 
single reads and short (150 bp) paired- end reads. Random variations 
were introduced to simulate sequencing errors, including substitu-
tions, single- base deletions, single- base insertions, and shifted count 
in runs of a single nucleotide. For paired- end reads, the respective 
probabilities of these errors per base were 0.005, 0.001, 0.001 and 
0.01, leading to an overall error probability somewhat less than 0.01 
per base. For long reads, these respective probabilities were 0.07, 
0.01, 0.01 and 0.80, resulting in an overall match of about 90% by 
blastn alignment or an overall error probability of about 0.10. These 
error frequencies were intended respectively to simulate reads 
generated by Illumina and OxfordNanopore sequencing technolo-
gies. For choosing the 50 seed sequences, the coordinates of gene 
models were downloaded as a gff file for version 1.0 of the wheat 
genome (International Wheat Genome Sequencing Consortium, 
2018) from https://urgi.versa illes.inra.fr/downl oad/iwgsc/ IWGSC_
RefSeq_Annot ation s/v1.0/. Sequence for Chinese Spring version 
1.0 was downloaded from https://urgi.versa illes.inra.fr/downl oad/
iwgsc/ IWGSC_RefSeq_Assem blies/ v1.0/. A perl script was written 
to extract sequence for 50 version 1.0 gene models in the version 
1.0 sequence. Each of these gene models exists at least once in the 
sampled sequence from version 2.0. The closest blast hits for these 
wheat sequences in the Genbank nr database are given in Table 1.

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v2.0/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v2.0/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/
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TA B L E  1  Wheat gene models used as target sequences for local assembly

Gene Mmodel e-  value Accession no. Description

TraesCS1A01G393300.1 6e- 21 EMS62516.1 Hypothetical protein TRIUR3_20468

TraesCS1A01G393800.1 6e- 29 EMS54359.1 Chaperone protein DnaJ

TraesCS1A01G396600.1 9e- 24 XP_020158285.1 E3 SUMO- protein ligase MMS21

TraesCS1A01G396600.2 2e- 21 XP_020158285.1 E3 SUMO- protein ligase MMS21

TraesCS1A01G397600.1 7e- 55 XP_020153608.1 Zinc finger MYM- type protein 1- like

TraesCS1A01G398400.1 8e- 44 XP_020169217.1 ras- related protein RABA1f- like

TraesCS1A01G399600.1 No hit

TraesCS1A01G402200.2 4e- 29 EMS60683.1 General transcription factor 3C polypeptide 2

TraesCS1A01G403200.1 2e- 28 XP_020147766.1 FRIGIDA- like protein 3

TraesCS1A01G404500.1 9e- 26 XP_020176384.1 Phytepsin

TraesCS1A01G405600.1 6e- 45 XP_020176342.1 Sugar transporter ERD6- like 4

TraesCS1A01G407000.1 8e- 44 VAH10327.1 Unnamed protein product

TraesCS1A01G408800.1 2e- 44 XP_020186556.1 Short- chain dehydrogenase/reductase 2b- like

TraesCS1A01G410200.1 No hit

TraesCS1A01G411500.2 2e- 36 VAH11092.1 Unnamed protein product

TraesCS1A01G411700.1 3e- 33 XP_020174231.1 Nuclear transcription factor Y subunit B- 4- like

TraesCS1A01G415200.1 1e- 32 KAE8800973.1 Protein CHUP1, chloroplastic

TraesCS1A01G417300.1 2e- 43 XP_020154488.1 Peroxisomal membrane protein PEX14- like isoform X2

TraesCS1A01G419700.1 6e- 27 XP_020178694.1 Uncharacterized protein LOC109764261 isoform X2

TraesCS1A01G421800.1 No hit

TraesCS1A01G423100.1 1e- 25 EMS51643.1 Spastin

TraesCS1A01G423800.1 1e- 59 EMS58218.1 Late embryogenesis abundant protein Lea14- A

TraesCS1A01G426400.1 5e- 39 VAH11437.1 Unnamed protein product

TraesCS1A01G430700.1 No hit

TraesCS1A01G430700.3 6e- 43 XP_020175200.1 Trimethylguanosine synthase- like isoform X2

TraesCS1A01G431300.1 2e- 38 XP_020187356.1 Proteinase inhibitor PSI- 1.2- like

TraesCS1A01G433600.1 3e- 50 KAE8773310.1 Disease resistance protein RGA2

TraesCS1A01G437500.2 No hit

TraesCS1A01G439200.1 1e- 26 VAH11693.1 Unnamed protein product

TraesCS1A01G441500.1 2e- 42 VAH11737.1 Unnamed protein product

TraesCS1A01G442400.2 8e- 51 XP_020190989.1 TATA- binding protein- associated factor BTAF1- like

TraesCS1A01G444100.1 4e- 40 XP_020157674.1 Two- component response regulator ORR42- like

TraesCS1B01G397300.1 9e- 50 VAH22346.1 Unnamed protein product

TraesCS1B01G400200.1 3e- 30 XP_020197381.1 65- kDa microtubule- associated protein 3- like

TraesCS1B01G401300.1 1e- 49 XP_020187904.1 Oligopeptide transporter 7- like isoform X4

TraesCS1B01G402400.1 No hit

TraesCS1B01G403300.1 No hit

TraesCS1B01G406000.1 1e- 26 YP_874698.1 Ribosomal protein S15 (chloroplast)

TraesCS1B01G407300.1 3e- 27 XP_020166758.1 GDSL esterase/lipase At5g45910- like

TraesCS1B01G413800.1 1e- 53 KAE8794788.1 Putative sodium/metabolite cotransporter BASS1, 
chloroplastic

TraesCS1B01G417500.1 5e- 39 VAH22694.1 Unnamed protein product

TraesCS1B01G421200.1 4e- 34 AKJ77990.1 Endosperm transfer cell specific PR60 precursor

TraesCS1B01G423900.1 8e- 30 VAH22812.1 Unnamed protein product

TraesCS1B01G439200.1 2e- 38 XP_020170913.1 Disease resistance protein RPP13- like

TraesCS1B01G451600.1 3e- 43 XP_020178665.1 Putative receptor- like protein kinase At4g00960
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The third set of simulated reads was drawn from version 2.0 of the 
genome of the wheat- pathogenic, ascomycete fungus Zymoseptoria 
tritici (Goodwin et al., 2011), which was downloaded from the Joint 
Genome Institute of the U.S. Department of Energy (https://mycoc 
osm.jgi.doe.gov/Mycgr 3/Mycgr3.home.html). Simulated long reads 
were produced in the same way as for wheat and assembled with unicy-
cler. Ten homologous protein query sequences were downloaded from 
the GenBank nr database (Clark et al., 2016) and are listed in Table 2. 
These simulations demonstrated the behaviour of slag with a simple, 
relatively nonrepetitive genome. Assembly accuracy for the second 
and third simulated sets was measured by percentage identities in 
blastn output from contigs against the relevant reference genome.

2.3  |  Real data

Illumina reads (2 × 150 bp), PacBio long reads, a finished assembly 
and coordinates of gene models of Zea mays inbred line B73 were 
downloaded respectively from NCBI SRA and RefSeq as acces-
sions ERR3288215– ERR3288217, ERR3288290– ERR3288295 and 
GCF_000005005.2, and the file GCF_000005005.2_B73_RefGen_
v4_genomic.gff. Adapters and low- quality reads were removed with 
fastp (Chen et al., 2018). The remaining 87.4 Gb of bases constituted 
36.4× coverage of the 2.4- Gb maize genome (Dong et al., 2017). 
Illumina reads (2 × 250 bp) and an assembly were downloaded from 

NCBI SRA and RefSeq for Triticum aestivum cv. “Stanley” as acces-
sions SRR9125476 and GCA_903994154.1. Adapters and low- 
quality regions were removed with htstream (Hunter et al., 2020), 
and leftover singleton reads were removed with a perl script. The 
remaining 178.5 Gb constituted 10.5× coverage of the 17- Gb wheat 
genome (Montenegro et al., 2017). Fifty maize protein sequences 
were downloaded from the NCBI nr database for 10 enzyme activi-
ties, which are listed in Table 3. A local assembly was produced for 
each enzyme activity.

2.4  |  Benchmarking vs. atram2 and srassembler

slag was benchmarked against atram2 version 2.1.1 and sraassembler 
version 1.0.0; attempts to run kollector failed due to unmet depend-
encies. Local assemblies were produced for the 10 enzyme activi-
ties listed in Table 3, using the real reads of maize “B73” and wheat 
“Stanley” described in Section 2.3, and also half and one- quarter 
of the Stanley set. Read databases were prepared beforehand with 
makeblastdb, atram_preprocessor.py, or an invocation of srassembler 
itself, and read preparation was not included in runtime statistics. 
Each run was set up to execute 21 cycles of read retrieval and as-
sembly. Under GNU/Linux and SLURM, each run was given exclusive 
access to a node of the Brown supercomputing cluster at Purdue 
University, and each was allowed to use 10 of the 24 cores on the 
node. Each run had use of the full 96 Gb of memory and all disk space 
accessible to the node for a maximum of 30 hr. However, the bench-
marking jobs ran consecutively on different but identical nodes as 
assigned by the cluster's SLURM scheduler. Runtime and memory 
usage were reported with the SLURM sacct utility, and contig counts 
and lengths were noted from the assemblers’ output. Percentage 
identity with the “B73” and “Chinese Spring” (version 2.0) genomes 
was parsed from blastn output of contigs from the cycle that had 
produced the longest mean contig length.

slag used spades (Bankevich et al., 2012) to assemble “B73” reads 
and cap3 (Huang & Madan, 1999) to assemble “Stanley” reads. spades 
ran with phredoffset = 33 but otherwise default options. On the 
other hand, cap3 ran with options “- b 20 - m 2 - n - 4 - g 5 - s 600 - p 83 
- o 40 - y 150 - z 3 - h 25 - j 70,” which tend to produce longer contigs at 
the risk of merging similar sequences. atram2 ran spades with atram2’s 
default options. Both slag and atram2 used a blast e- value of 1e- 10 
for initial alignments of the founding protein sequences to reads, but 

Gene Mmodel e-  value Accession no. Description

TraesCS1B01G472200.1 No hit

TraesCS1B01G473100.1 8e- 22 VAH23875.1 Unnamed protein product

TraesCS1B01G481000.1 2e- 44 VAH23967.1 Unnamed protein product

TraesCS1D01G379300.1 No hit

TraesCS1D01G398900.1 9e- 28 XP_020178387.1 Tropinone reductase homolog At5g06060- like

Note: The closest meaningful blast hit in GenBank nr is reported, if there is one. Otherwise the closest blast hit is reported, or no hit is reported if 
there was none at 1e- 20.

TA B L E  1  (Continued)

TA B L E  2  Target protein accessions from GenBank nr for 
local unicycler assemblies of simulated long reads derived from 
Zymoseptoria tritici

Accession Description

AAD23831.1 NAD- dependent formate dehydrogenase

AAD40111.1 3- Isopropylmalate dehydrogenase

AAL30834.1 Anaphase- promoting complex protein

ABD92790.2 Mitogen- activated protein kinase

ABD94604.1 Nonribosomal peptide synthetase

ACS91347.1 Serine/threonine- protein kinase

ADU79051.1 DNA lyase

AKA94181.1 Lanosterol 14- alpha- demethylase

ALP48286.1 RNA polymerase II second largest subunit

ANQ91929.1 Eburicol 14 alpha- demethylase

https://mycocosm.jgi.doe.gov/Mycgr3/Mycgr3.home.html
https://mycocosm.jgi.doe.gov/Mycgr3/Mycgr3.home.html
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slag tightened the e- value to 1e- 20 for subsequent alignments. slag 
used the “increment” option (extincrement = 10) to slowly increase 
the set of available reads at successive cycles, while atram2 was not 
similarly restricted.

In contrast to atram2, which had been installed previously on 
the Brown cluster, srassembler was compiled as srassembler_mpi for 
multithreaded execution using “make mpi with- boost = [path to 
boost/1.64.0_gcc- 4.8.5/include].” Our attempts to run the alterna-
tive, supplied singularity mpi container failed to run multithreadedly. 
Also, initial trials revealed that the default configuration for srassem-
bler did not work for large genomes, since far too many reads were 
retrieved from repetitive sequence to allow more than one cycle of 
retrieval and assembly. Instead, the benchmarking runs used “- Z 400 
- A 0 - n 21 - b 1 - x 0 - z 1 - d 500 - i 1000 - m 1000 - M 200000” and 
changes of vmatch parameters e and l to 1 and 45 for vmatch_protein_
init, 1 and 100 for vmatch_extend_contig, 2 and 100 for vmatch_pro-
tein_vs_contigs, and 1 and 100 for vmatch_reads_vs_contigs. A single 
mismatch in a 100- base match corresponded to a blastn e- value of 
5e- 51 in 20 test cases. These settings slowly increased the number 
of returned reads in consecutive cycles in accordance with slag’s 
strategy. Even with these settings, it was feasible to run srassembler 
only four times on maize reads, with a time limit of 80 hr per run. For 
the fourth srassembler run, which was seeded with isocitrate dehy-
drogenases, it was necessary to reduce parameters i and m to 700, 
since all first- cycle contigs were shorter than 1000 bases.

For comparison of contig counts, the seeding protein sequences 
were also aligned to the B73 version 4.0 and Chinese Spring version 
2.0 genomes with tblastx. A perl script then sorted the hit starts and 
ends in the genome scaffolds and called hits wherever a start was 
greater than the previous end. The script called genes wherever the 
gap between successive hits exceeded 10,000 bases.

2.5  |  Local assembly and bench verification of 
wheat sequences

Pyrosequencing (454) single reads of Chinese Spring wheat were down-
loaded from cerealsdb (Wilkinson et al., 2012). Four local assemblies 

were seeded with four Hessian fly- responsive wheat sequences that 
encode dirigent- like proteins. These included HfrDrd (Hessian fly- 
responsive disease resistance dirigent- like protein; GenBank acces-
sion JX501668), a nearly full- length cDNA cloned from H9- Iris wheat 
(Subramanyam et al., 2013); two related wheat dirigent sequences 
amplified using forward and reverse primers (Subramanyam et al., 
2013) designed from HfrDrd, designated as HfrDrd2 (GenBank acces-
sion KU178997.1) and HfrDrd3 (KU170958.1); and 1.2 kb of upstream 
promoter sequence cloned from HfrDrd2. The 30 resulting contigs 
were mutually aligned with blastn (Zhang et al., 2000) at an e- value 
of 1e- 08, and a custom Perl script found the depth of nonself blast 
hits of the contigs relative to one another at each nucleotide posi-
tion and also the first and last positions where mutual alignment ex-
ceeded a minimum depth. The subsequence between these positions 
was scanned for single nucleotide polymorphism (SNP) positions with 
no nonself coverage. Wherever such positions were separated by at 
least a minimum product length, but less than a maximum product 
length, primer3 (Untergasser et al., 2012) attempted to find PCR prim-
ers such that the SNP was at or next to the 3′ end of one primer. The 
resulting contig- specific tiling primers (Table 4 in part) for two HfrDrd 
and two HfrDrdA contigs were used to verify sequence assembly with 
staggered 600– 1100- bp amplicons.

For PCR, each 50- µl reaction contained 200 µm dNTPs (Bioline 
USA), 190 ng of genomic DNA template extracted from the wheat line 
“Chinese Spring,” 0.5 µm of forward and reverse primers, 1× Phusion 
HF buffer, and 1 U of Phusion High Fidelity DNA polymerase (New 
England Biolabs). PCR was performed with the following parameters: 
98°C denaturation for 30 s; 30 cycles of 98°C for 30 s, contig- specific 
annealing temperature (3°C above the lower melting temperature of 
the two primers [Tm] as determined by the Tm calculator at www.neb.
com) for 30 s, 72°C for 30 s; followed by 10 min of extension at 72°C. 
The PCR amplicons were run on 1% agarose gels in Tris- acetate- EDTA 
buffer and stained with ethidium bromide to test for a single PCR 
product for each reaction. The PCR amplicons were purified using the 
MinElute PCR Purification kit (Qiagen) and then Sanger sequenced 
directly by the Purdue Genomics Core Facility.

Local assemblies from Chinese Spring reads (Wilkinson et al., 
2012) were also seeded with an expressed sequence tag (EST) of 

TA B L E  3  Ten groups of maize enzyme accessions used to target local assemblies in maize and wheat

Activity GenBank accession nos.

Cellulose synthase NP_001104955.2, NP_001104956.2, NP_001104959.2, NP_001105236.2, NP_001105574.1, NP_001105672.1, 
NP_001292792.1

Ferredoxin NP_001104851.1, NP_001136908.1, NP_001150750.1, NP_001336742.1, XP_020394593.1, XP_020405634.1

Hexokinase NP_001123599.1, XP_008672065.1, XP_008674565.1, XP_008675068.1

Histone deacetylase NP_001104901.1, NP_001105402.2, XP_008673398.1, XP_008677775.1, XP_020396306.1

Isocitrate dehydrogenase AQK53344.1, AQK89292.1, AQK97039.1, AQK88693.1, NP_001295424.1, ONM16007.1, ONM58401.1

Peptidylprolylisomerase AQK62104.1, AQK70996.1, AQL06400.1, ONM03151.1, ONM04876.1, ONM54033.1

Phosphoglucoisomerase NP_001105368.1, XP_008651420.1

Phosphoglucomutase NP_001105405.1, NP_001105703.1, XP_008675355.1, XP_020395615.1

Sucrose synthase XP_008645119.1, XP_008679107.1, XP_020399433.1, XP_023156234.1

Transaminase NP_001149818.2, NP_001278682.1, XP_008645517.1, XP_008668890.1, XP_008672129.1

http://www.neb.com
http://www.neb.com
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unknown function (GenBank accession CA666657) and with 
two unrelated Hessian fly- responsive genes, Hfr- 1 (AF483596.1; 
Williams et al., 2002) and Hfr- 2 (AY587018.1; Puthoff et al., 2005). 
The contigs most similar to the seeding sequences were identified 
with blastn. Contig indels and SNPs were identified with multalin 
(Corpet, 1988) relative to the seeding sequences.

Genomic, homologous and upstream promoter sequences of 
Hfr- 1 were confirmed by cloning. The genomic sequence of Hfr- 1 
was amplified from 100 ng of H9- Iris wheat genomic DNA and its 
homologs from 100 ng of Chinese Spring wheat genomic DNA by 
PCR using Ex Taq polymerase (Takara Bio) following the manufactur-
er's instructions. Primers (Table 4) for PCR were designed from the 
nearly full- length cDNA sequence (GenBank accession AF483596). 
PCR was carried out with the following parameters: 95°C denatur-
ation for 1 min; 35 cycles of 95°C for 1 min, 55°C for 1 min, 72°C for 
1 min; followed by 7 min extension at 72°C. The promoter region 
upstream of Hfr- 1 was cloned from 100 ng of H9- Iris wheat genomic 
DNA using the Genome Walker Kit (Clontech) following the manu-
facturer's instructions. To verify the Hfr- 2 promoter sequence gen-
erated by the local assembly program, PCR primers were designed 
from the assembly- generated sequence to amplify the promoter 
region, with the forward primer 1.5 kb upstream of the 5′ untrans-
lated region (UTR), and the reverse primer within the Hfr- 2 coding 
region (Table 4). PCR was carried out using 100 ng of H9- Iris wheat 
genomic DNA with PfuTurbo hot- start DNA polymerase (Agilent 
Technologies) following the manufacturer's instructions. PCR was 

performed with the following parameters: 95°C denaturation for 
2 min; 30 cycles of 95°C for 30 s, 60°C for 30 s, 72°C for 1 min 45 s; 
followed by 10 min extension at 72°C. The 1.7- kb PCR amplicon was 
gel purified with the QIAquick gel extraction kit (Qiagen). For the 
EST (GenBank accession CA666657), two sets of PCR primers were 
designed (Table 4) from the most- matching contig sequence gener-
ated by the local assembly program to amplify a longer sequence 
from H9- Iris wheat. The first set of PCR primers was designed such 
that the amplicon would overlap the original seed sequence by 
145 bp and advance 1.6 kb in the 3′ direction and the second set of 
PCR primers was designed to overlap the first amplicon by 151 bp 
and proceed 3′ an additional 1.6 kb, including 750 bp of the section 
matching known genes by blastn search. PCR was performed as it 
was for Hfr- 2. All amplicons were cloned into pCR4 TOPO TA vector 
(Invitrogen) and sequenced by the Purdue Genomics Core Facility.

3  |  RESULTS

3.1  |  Choice of read selection and stopping 
criterion

Initial trials showed that contigs could grow, shrink and grow again 
over consecutive cycles, and therefore it was not a good idea to stop 
slag once a target- matching contig had stopped growing. Therefore, 
trials were run for a set number of cycles. The choice of 21 cycles 

TA B L E  4  Primers for PCR validation of local assemblies

Target Forward Reverse

Contig 28- 1 CGCTTGCGTCTGTACTGTGTT CGAAAGAACTCACGAAACACG

Contig 28- 2 GCTAACTTGCACTTGTTCTCG CATATGATAAAACCCACCTCG

Contig 28- 3 CAAATGCATTAAATAGCGTGC GGTCCTTGATGCTTGTGTTCT

Contig 16- 1 AGCTGAATGATAAATGCGGTA TGGTGAGGTAGCAGGAACTACT

Contig 16- 2 TGCACTCCATTGATATTTCTCG CCAAACCCAAAAGGAAAAGTC

Contig 21- 1 TGCTAAGTGCGTACAAAAGGAA AATTGGTGCAAGAACAAGTGAC

Contig 21- 2 TTGCTATTTCTAGCCCCATCC CTTGTGAAGCGTACACGAATG

Contig 24- 1 CTCGGAAGTTTATGGTAACCG CCACCACTCAAACAACCACTA

Contig 24- 2 ATCCTTGGGTCAGGTTCTCAT ACTTGAAGAAGCGTCAGCTCT

Contig 24- 3 TTTGCCTGTTGAGATGCATAG ACGGTTGTACTTCCTCCATCA

Contig 24- 4 CCACTAGCGCAAATCCCTGTA ACTGAAGGCAAGATGGGGTCT

Contig 24- 5 CTCGGTATTTTCTTGGGATTTG CTTTGACTGGCGGTATACGAG

Contig 24- 6 CGGAGCTGTACAAGGAGAGAC AGTGTCTATCCCGAAAGCAGA

Hfr- 1 genomic ACACGCACACACACAATCCT CAACACCCAGGCACGTACTA

Hfr- 1 promotera TGGTGGTCTCCAAGGTGAAAGACTGA TTAGCTAGGATTGTGTGTGTGCGTGTGT

Hfr- 1 CS copy1 TCCAGAAAACCCCAGATGCT CAACACCCAGGCACGTACTA

Hfr- 2 promoter ACTGGCCTTCATGGCTGCCCAGATCCAA CTCTCCTCGCTCCCTGCTTGCACGCTAC

CA666657 #1 CCTCTCCCGAACAATGGAAGGATTGC GGCACGGATCTTGATGCAGAATGGAT

CA666657 #2 AAGGTTCATCAAAATCAATTTCGTTGTCG CGGAGGATGGGATGCTCTCAATGACAA

Note: Forward and reverse PCR primers are listed 5′– 3′.
Abbreviation: CS, Chinese Spring.
aNested Genomewalker primers are listed.
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seemed long enough to exhaust growth of target- matching con-
tigs in most instances, so all further trials were run with 21 cycles. 
Furthermore, the fixed- increment read- selection criterion produced 
the longest contigs in early trials, and an appropriate choice of incre-
ment increased the chance that a maximum- length target- matching 
contig would be reported before shrinkage began. Therefore, all fur-
ther trials used the fixed- increment option.

3.2  |  Contig growth

The naively expected behaviour is a monotonic increase in con-
tig length over cycles, at least for target- matching contigs. Such 
a monotonic increase was observed only for unicycler assembly 
of long reads from the small, relatively nonrepetitive genome of 
Zymoseptoria tritici (Figure 1a). In all other instances, the com-
petitive recruitment of reads to target- matching contigs and non-
matching contigs affected and ultimately curtailed the growth of 
target- matching contigs. Relatively monotonic growth (Figure 1b) 
could grade through episodic, stepwise growth (Figure 1c) to no 
growth at all when the first cycle exhausted all overlapping, match-
ing reads (Figure 1d). More generally, contigs shrank after one or 
more cycles as additional reads fed the growth of nonmatching con-
tigs that recruited reads away from matching contigs, or as a long 
contig was split in the subsequent cycle. The resulting trend could 
be upward (Figure 1e), level (Figure 1f) or downward (Figure 2a). 
Single- cycle peaks (Figure 2b) and limit cycles (Figure 2c,d) occurred 
occasionally. Sometimes growth could break free of a limit cycle as a 
higher fraction of reads was assembled (Figure 2e).

3.3  |  On- target percentage

The fraction of contigs that matched target sequence varied 
widely among target sequences, as can be seen from the counts of 
target- matching and overall contigs in Figures 1 and 2. Generally 
the number of target- matching contigs was nearly constant while 
nontarget- matching contigs increased in later cycles, as is particu-
larly evident in Figure 2b, e. Consecutive cycles could differ greatly 
in total contig count as contigs were merged, split or assembled as 
distinct (Figures 1f and 2f).

3.4  |  Contig length

In most cases the longest contig was the same for target- matching 
and overall contigs (Table 5). Where they differed, the longest over-
all generally came from a run- ending cycle that failed to produce 
a target- matching contig. Lengths varied 1000- fold among assem-
blers and read types. Longer reads resulted in longer contigs, and 
modern assemblers produced longer contigs than cap3, while requir-
ing greater read depth to produce any assembly at all. In the par-
ticular case of fragmented long reads assembled with phrap, double 

fragmentation yielded shorter contigs than single fragmentation be-
cause the “minprogress” variable had been set, which ended the run 
once consecutive cycles produced longest matching contigs fewer 
than 100 nucleotides different in length.

Percentage identities and maximum lengths of target- matching 
maize contigs varied by enzyme group (Table 6), to display the varia-
tion in number of given target sequences and the size of the under-
lying gene families, of which cellulose synthase is the largest (Little 
et al., 2018; Penning et al., 2019). Contig length varies by assembler 
much as in Table 5, and for any given assembler, contig length varies 
among the enzyme groups. spades produced longer contigs than phrap 
or cap3 on short reads, possibly because it could use paired- end re-
lationships that were necessarily broken to run phrap or cap3. phrap 
easily produced much longer assemblies on long reads, where phys-
ical linkage in the long reads reduced the number of similar reads 
derived from unlinked loci that were summoned to the subsequent 
cycle of assembly. There was enough consistency in the ranking of 
short- read contig lengths for a given assembler to suggest that the 
length of unique sequence varied around the different loci.

For comparison, the median length of a high- confidence wheat 
gene model, as calculated from the gff3 file for the IWGSC genome 
assembly (International Wheat Genome Sequencing Consortium, 
2018), is 1922 bp, and the median length of the 50 targeted gene 
models is 2203.5 bp. The longest local wheat contigs based on short 
reads were generally shorter than the median size of a wheat gene. 
Similarly, the median length of a maize gene model in the B73 ge-
nome assembly (Jiao et al., 2017) is 2402 bp, and the median length 
for the targeted gene models was 3598 bp. The median of longest 
cap3 local maize assemblies based on short reads (1989.5 bp) was 
shorter than either of these, as were seven of 10 longest contigs 
based on short reads.

The ratios of longest contig lengths to first- cycle contig lengths 
for seven combinations of read length and assembler are given in 
Table 7. These ratios are binned in increments of 0.4. Few initial con-
tigs were more than doubled in length at their longest, except with 
phrap and once- fragmented long reads. There was no evident reason 
for phrap not similarly lengthening the doubly- fragmented reads.

3.5  |  Contig accuracy

Contig accuracy, measured as percentage matching to reference 
genomes, is reported in the last column of Table 5 and the lower 
row of each couplet in Table 6. As expected, increased read ac-
curacy and depth of coverage both favoured accurate assembly. 
Assemblers that identify and attempt to correct erroneous reads 
(i.e., canu and spades) outperformed unicycler, which pastes pieces 
of reads together and then tries to polish the result (Wick et al., 
2017). Neither phrap nor cap3 was consistently as accurate as canu 
or spades, and neither was consistently more accurate than the 
other with short reads; phrap was more accurate with low- coverage 
short reads in wheat and less so in maize. However, phrap appeared 
to be markedly more accurate than cap3 for once- fragmented long 
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reads in both wheat and maize, where cap3 was only as accurate as 
the reads themselves. Neither phrap nor cap3 improved upon the 
accuracy of doubly fragmented long reads. There is no obvious 
explanation for the relatively lower accuracy of ferredoxin with 
singly fragmented long reads (Table 6).

The cap3, phrap and spades assemblies were less accurate than the 
individual short reads in their input for wheat, and only spades matched 

the accuracy expected of individual short reads in maize. For short 
reads from maize, the mean percentage identity of retrieved reads 
for the cycles that produced the longest target- matching contigs was 
99.43% against the B73 reference genome, vs. 99.57%, 98.92% and 
97.11%, respectively, for the spades, cap3 and phrap assemblies col-
lectively based on the same reads. For short reads from wheat, the 
mean percentage identity of retrieved reads was 99.38% against the 

F I G U R E  1  Examples of changes in contig length and count over cycles of read retrieval and assembly. Solid, dashed and dotted blue lines 
are respectively the longest length, mean length and count of target- matching contigs. Solid, dashed and dotted black lines are respectively 
the longest length, mean length and count for all generated contigs. (a) Monotonically increasing contig length with cycle number in 
Zymoseptoria tritici. Simulated long reads were assembled with unicycler. A single contig was produced at each cycle. (b) Relatively monotonic 
contig growth in wheat for simulated short reads assembled with spades. (c) Stepwise contig growth of maize transaminase for actual short 
reads assembled with cap3. (d) Constant contig size for singly fragmented, simulated long reads in wheat assembled with phrap. (e) Irregular, 
generally increasing contig size for singly fragmented, simulated long reads in wheat assembled with phrap. (f) Irregular, generally level contig 
size for singly fragmented simulated long reads in wheat assembled with phrap
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Chinese Spring reference genome, vs, 98.76%, 97.30% and 98.56% 
respectively for the spades, cap3 and phrap assemblies collectively 
based on the same reads.

Initial inspection suggested that the error frequency was higher 
near the ends of contigs. Therefore, mismatches of contig and refer-
ence sequence were tabulated in the closest blastn alignment over 

three intervals: the terminal 100 bases at each end of the contig 
and the remaining bases covering the middle of the contig. Over all 
contigs produced with cap3 from short reads, the mean mismatch 
frequency was 1.35% per base in the terminal segments and 0.60% 
per base in the middle segment. This difference was significant by a 
paired- data t test (p = 2.3e- 10, df = 372).

F I G U R E  2  More examples of changes in contig length and count over cycles of read retrieval and assembly. Line types and colours 
conform to Figure 1. (a) Irregular contig size, generally decreasing between cycles 5 and 18, for singly fragmented simulated long reads 
in wheat assembled with phrap. (b) Conspicuously peaked contig length at cycle 14 for singly fragmented simulated long reads in wheat 
assembled with phrap. (c) Alternating contig lengths for singly fragmented simulated long reads in wheat assembled with phrap. (d) Limit 
cycle with three values of contig length for singly fragmented simulated long reads in wheat assembled with phrap. (e) Brief alternation of 
contig lengths for cycles 10– 14 from singly fragmented simulated long reads in wheat assembled with phrap. (f) A second instance of greatly 
fluctuating length and count of contigs similar to Figure 1f
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Assembly accuracy might differ between contig subsequences 
that match a gene and subsequences from the same contig that 
match outside a gene. To test this possibility, we extracted the en-
tire sequence of the gene models in the B73 reference genome that 

matched the short- read cap3 contigs, aligned the contigs to the gene 
models with blastn, and compared the output percentage identities 
with the percentage identities from contigs aligned to the whole ref-
erence genome, using only the closest blast hit for each contig. Either 

TA B L E  6  Length and percentage nucleotide identity to the B73 genome assembly for longest contigs produced at any cycle of local 
assembly

Group N SRcap3 SRphrap SRspades LR1cap3 LR1phrap LRcanu

Cellulose synthase 7 4341 5983 6934 2435 80,550 37,544

0.987 0.959 0.998 0.913 0.955 0.994

Ferredoxin 6 1899 2534 3917 1685 72,297 67,820

0.995 0.984 0.998 0.899 0.916 0.998

Hexokinase 4 1817 2040 6488 1425 51,448 73,014

0.987 0.970 0.996 0.912 0.961 0.998

Histone deacetylase 5 1950 2325 4574 3652 94,221 37,815

0.993 0.977 0.996 0.904 0.963 0.993

Isocitrate dehydrogenase 7 1670 2070 6430 2107 58,619 68,339

0.988 0.984 0.995 0.908 0.963 0.997

Peptidylprolylisomerase 6 1919 2179 4493 2157 70,564 85,620

0.987 0.957 0.993 0.915 0.955 0.999

Phosphoglucoisomerase 2 2029 4313 5932 1108 78,023 — a

0.974 0.960 0.997 0.916 0.952 — 

Phosphoglucomutase 4 4627 4567 4851 1656 52,436 85,954

0.997 0.993 0.994 0.904 0.955 0.996

sucrose synthase 4 3519 4417 5471 2904 72,015 57,554

0.998 0.977 0.995 0.908 0.941 0.993

Transaminase 5 2249 2513 3516 1417 59,944 57,996

0.992 0.985 0.993 0.911 0.958 0.995

Matching contigs
Nonmatching contigs

50 373 140 285 129 85 26

2 1 3 0 0 0

Note: Key to fields: Group, enzyme activity or count of contigs that did or did not match the genome of B73; N, count of target protein sequences; 
SRcap3, cap3 assembly of separated 2 × 150- bp reads; SRphrap, phrap assembly of separated 2 × 150- bp reads; SRspades, spades assembly of 
2 × 150- bp reads; LR1cap3, cap3 assembly of PacBio reads singly fragmented to 600- bp chunks; LR1phrap, phrap assembly of PacBio reads singly 
fragmented to 600- bp chunks; LRcanu, canu assembly of intact PacBio reads. Read coverage and mean contig accuracy are given in Table 5. Key to 
rows: for each enzyme function, the top row is the length of the longest contig obtained with the field- designated assembler, and the bottom row 
is the fraction of bases that match the B73 genome over all target- matching contigs. The nonmatching contigs match bacterial variants of isocitrate 
dehydrogenase and phosphoglucomutase.
acanu assembly failed for phosphoglucoisomerase.

Program
Read 
length

Read 
depth

1.00– 
1.39

1.40– 
1.79

1.80– 
2.19

2.20– 
2.59

2.60– 
2.99 3.00+

cap3 2 × 150 5× 7 22 10 5 2 4

phrap 2 × 150 5× 9 16 12 6 3 4

spades 2 × 150 60× 0 32 10 1 2 4

cap3 7– 14kf 5× 29 4 1 0 0 0

phrap 7– 14 kf 5× 3 6 6 9 5 18

cap3 7– 14kd 5× 20 10 8 7 4 0

phrap 7– 14kd 5× 42 5 2 0 0 0

Note: The six numerical columns at right are counts of seeding sequences that produced a ratio 
of maximum contig length to initial contig length within the stated range. Code kf indicates single 
fragmentation, while kd indicates double fragmentation.

TA B L E  7  Distribution of lengthening of 
longest contigs for 50 seeding sequences 
over 21 cycles of slag operating on 
simulated reads from Triticum aestivum
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both identities were equal, as expected for contigs that matched 
entirely within a gene model, or the identities were unequal, as 
expected if the contig extended beyond the gene. The percentage 
identities were compared by a two- tailed, paired- data t test in R for 
all contigs and also for only contigs whose identities differed. For all 
target groups, mean contig identity to the whole genome (99.13%) 
exceeded mean identity to gene models only (98.72%, p = 4e- 05, 
df = 364), while for contigs with unequal identities, mean identity to 
the whole genome (98.44%) more obviously exceeded mean iden-
tity to gene models only (95.66%, p = 1e- 05, df = 53). For only the 
very large family of cellulose synthases, mean identity to the whole 
genome (99.04%) and to gene models only (98.73%, p = 0.028, 
df = 133) were almost identical to the values for all groups.

The simulations with a 7- kb random founding sequence reveal 
the most frequent types of misassembly that can occur with phrap 
and possibly other assemblers. Figure 3 is illustrative. In this example, 
medium- length reads (300– 900 bp) were simulated from nine variant 
alleles of the nine- fold duplicated locus, which contained an 1800- 
base relatively conserved core subsequence and more divergent 
flanking subsequences as detailed in the Materials and Methods. The 
figure appears as horizontal bars that represent the contigs aligned 
relative to a common ancestor (base sequence) at the bottom. SNP 
positions are indicated by vertical line segments on each bar. The 
central region is clearly evident by its lower SNP frequency. SNP po-
sitions on the contig bars are colour coded by their source allele. A 

completely accurate reconstruction of the alleles would require nine 
contiguous horizontal bars, each with a uniform colour of SNP posi-
tions. In Figure 3, none of the bars appears this way. Instead, there are 
13 contigs, where eight contigs represent individual flanking regions 
with an almost entirely uniform colouring of SNP positions, and four 
contigs are chimeras of flanking regions from different alleles. Contig 
13 differs; it is a consensus of all nine alleles and thus does not re-
construct any single allele. Such consensus contigs were uncommon 
among independent simulations, but association of flanking regions 
in chimeric contigs was seemingly random, as expected since no read 
spanned the central conserved region.

In an example with phrap assembly of real pyrosequencing reads 
of Chinese Spring wheat, two instances of probable misassembly in-
volved an inverted- repeat structure. The local assembly was seeded 
with GenBank protein accession BAC99512.1, a putative caffeic acid 
3- O- methyltransferase from japonica rice. The affected contigs were 
3090 and 6327 nucleotides long, and in each contig the repeats them-
selves were closely similar but not identical. The inverted repeats flanked 
a short, core sequence of 56 bases in the first contig and 37 bases in the 
second contig. The first 20 bases of both core sequences were identical. 
Three reads fully spanned the core bases in the first contig, and one read 
fully spanned the core bases in the second, although 169 and 162 addi-
tional reads respectively matched the core bases in part at an e- value of 
0.01. None of the structure matched any entry for miniature inverted- 
repeat transposable elements in P- MITE (Chen et al., 2014).

F I G U R E  3  Detailed alignment of a phrap assembly of simulated pyrosequencing reads to the simulated genome from which the reads 
were sampled. Thirteen contigs represent nine simulated alleles of a 7- kb locus. Polymorphic nucleotide (SNP) positions are colour- coded by 
allele of origin. The bottom contig in black shows superimposed all variant positions, and a central, conserved region is evident by a paucity 
of SNPs, as intended. This central region exceeds any read in length, it is under- represented in the assembly, and the assembled copies of 
it in contigs 10 and 11 are consensuses of two different alleles. Contig 13 is a consensus sequence of multiple alleles throughout. Contigs 
1– 8 represent a single left or right flank of an allele, and contigs 9– 12 are flanks of different alleles joined in the central region. The depicted 
contig depth (9) equals the number of alleles (9), which was typical for alleles that differed this much in sequence
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3.6  |  Contig polishing

An initial test, which involved four seed sequences, considered the 
optimal number of iterations to polish long- read- based contigs with 
much more accurate short reads. At each cycle, the contigs that oth-
erwise would have advanced directly to the next cycle were sub-
jected to five iterations of racon (Vaser et al., 2017). As shown for 
three target sequences in Figure 4, the first iteration of polishing 
improved accuracy from 90% to 97%, but each subsequent itera-
tion slightly reduced accuracy to only 96% after five rounds. Each 
round of polishing slightly decreased mean contig length and mean 
length of blastn alignment. Furthermore, five rounds of polishing 
took about 10 times more runtime than the rest of slag.

3.7  |  Comparison to atram2 and srassembler

slag was compared under standard conditions with atram2 for the 
10 maize enzyme activities given in Table 3 and the four read data 
sets described in Section 2.4. Because of its slowness, srassembler 
was compared using four of the 10 proteins, ferredoxins, hexoki-
nases, histone deacetylases and isocitrate dehydrogenases. Means 
of several contig and runtime descriptors are given in Table 8. The 
first row gives the number of runs that completed at least one cycle 
of read retrieval and assembly. slag completed 21 cycles for all pro-
teins and data sets, whereas atram2 failed to produce an assembly 
with one enzyme group with half- Stanley and nine enzyme groups 
with quarter- Stanley. The only group that yielded any atram2 con-
tigs with quarter- Stanley was cellulose synthases, the largest known 
gene family in grasses, where paralogues increased the depth of 
highly similar reads. Thus slag with cap3 was more robust to low read 
coverage than atram2 with spades. srassembler yielded B73 contigs 
with all four tested enzyme groups, but isocitrate dehydrogenases 
required a parameter change (i and m to 700 from 1000) to work.

In Table 8, the number of atram contigs was filtered for match-
ing the seeding protein sequence at 1e- 10, while the counted slag 
contigs matched the seeding sequence at 1e- 20. The calculation of 
the contig/locus ratio is given in Table 9. There was no consistent 
relationship of contig count and estimated locus count over the 
four data sets, although atram deviated more highly. As expected 
from the stringent matching required to recruit reads, srassembler 
produced fewer contigs than slag or atram2, and the fraction of 
blastable loci returned as contigs was also lower. srassembler was 
bound by the number of contigs that passed the minimum length 
criterion in the initial cycle, and only once did the number at later 
cycles exceed that.

slag was slower than atram2 on average, while both slag and 
atram2 were much faster than srassembler, which was hindered by 
the slowness of vmatch alignment. The mean speed advantage of 
atram2 conceals its highly variable mean runtime per cycle (Table 10), 
which ranged from 103 to 2584 s for “B73” and 205 to 7966 s for 
the full “Stanley” read set. slag was faster than atram2 for four of 
10 enzymes in “B73,” four of 10 enzymes in full “Stanley” and all 

nine enzymes in half “Stanley.” In the last case, atram2 spent most 
of its time preparing and running the protein- to- nucleotide align-
ment at the first cycle, and subsequent cycles were quick. It appears 
from Table 10 that slag runtime scaled at least superlinearly with 
size of the reads database. In the extreme cases, slag was 16.8 times 
slower than atram2 in “B73” transaminases to 17.5 times faster in 
half- ”Stanley” sucrose synthases. There was no significant Pearson 
correlation of atram runtime to slag runtime for the “B73” read set 
(r = −.298, p = .40), the full “Stanley” read set (r = −.207, p = .57) or 
the half- ”Stanley” read set (r = .480, p = .19).

Further examination revealed that only 10 of 40 atram2 runs com-
pleted all 21 cycles (Table 11). Four more runs stopped when con-
secutive cycles did not alter the contigs, which is a normal stopping 
criterion for atram2. The remaining 26 runs failed in some way, mostly 
during spades assembly, where 10 runs did not yield contigs at all and 
10 more failed in subsequent cycles, which prematurely limited contig 
length. In six cycles, the database was locked; all six involved the larg-
est, full- ”Stanley” read set. It is not obvious if this happened because 
this was the largest read set, or because all these runs happened con-
secutively over a single time period. The case of exceeded time limit, 
full- Stanley transaminases, completed 13 cycles and had collected 
2 million reads in the 14th cycle when the 30 hr expired. However, no 
contigs matched the seeding protein sequences after the fifth cycle. 
Instead, the assembly had gone off into repetitive sequence.

slag’s memory usage was proportional to the size of the reads 
database (Table 8). slag used somewhat more memory than atram2 
except with half- ”Stanley.” Thus atram2’s memory usage was not pro-
portional to the size of the read set, and actually was greater for 
half- ”Stanley” than for full- ”Stanley.” In contrast, srassembler used 
less than 0.1% as much memory as slag. Neither slag nor atram2 
consistently used more virtual memory than the other, but virtual 
memory requires disk access, which greatly slows program execu-
tion. Variation in virtual memory usage might account for most of 
the variation in atram2’s run time. srassembler used less than 1% as 
much virtual memory as slag. Page faults reflect the need to read in 
pages of virtual memory and thus the ability of a program to cache 
needed information. Here, atram2 had five to nine times the transfer 
of pages to and from disk that slag had, and srassembler appeared not 
to page much at all.

F I G U R E  4  Effect of short- read polishing on contig length and 
accuracy in singly- fragmented long reads of wheat assembled with 
cap3. Solid line is contig length, dashed line is blast- hit length, and 
dotted line is percentage identity vs. the Chinese Spring genome. 
Means are presented for all target- matching contigs from all 21 
cycles of assembly
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3.8  |  Laboratory verification of assemblies 
in wheat

Local assemblies were verified in the laboratory for four unrelated 
wheat genes: Hessian fly- responsive disease resistance dirigent- like 
protein (HrfDrd), Hessian fly responsive gene 1 (Hfr- 1), Hessian fly 
responsive gene 2 (Hfr- 2) and an anonymous EST (GenBank acces-
sion CA666657). Four HfrDrd variants (HfrDrd, HfrDrd2, HfrDrd3 
and HfrDrd2- promoter) seeded local assembly, and they collectively 
yielded 30 contigs. Based on blastn alignments, eight contigs most 
closely matched HfrDrd, 16 contigs most closely matched HfrDrd2, 
none most closely matched HfrDrd3, one contig most closely 
matched the HfrDrd2- promoter and five contigs did not match any 
of the seed sequences at an e- value of 1e- 05 or closer.

Contig- specific primers for HfrDrd2 contig28 amplified three 
overlapping fragments representing 2228 bp of sequence, includ-
ing the entire coding region. The sequencing results shared 99.9% 
identity with the locally assembled sequence. Two overlapping 
fragments were amplified from HfrDrd2 contig 16 representing 
1823 bp of sequence, 241 bp of which included the first exon of 
HfrDrd2, while the remaining sequence was 5′ to the coding region. 
The sequencing result was 99.9% identical to the locally assembled 
sequence. Two overlapping fragments were amplified from HfrDrd 
contig 21 representing 757 bp of sequence, which spanned a region 
5′ to the coding region through part of exon 2. The resulting se-
quence was 92.6% identical to the assembled sequence. Finally, six 
tiled fragments were amplified from HfrDrd contig 24 representing 
3999 bp of sequence, all 3′ to the coding region and 97.9% identical 
to the locally assembled sequence.

Local assembly seeded with the 1267- bp coding region of Hfr- 
1, previously cloned from wheat line H9- Iris, provided eight contigs 
from 490 to 7667 nucleotides in length that shared 85%– 100% iden-
tity with the seeding sequence. The perfectly matching contig also 
matched 1050 bp of upstream promoter sequence of Hfr- 1, which 
had been obtained previously from H9- Iris by genome walking, and 
it provided an additional 2548 bp of 5′ sequence. Apart from one 
SNP, the three locally assembled introns matched the introns that 
had been previously cloned from H9- Iris. Two previously cloned 
copies of Hfr- 1 from Chinese Spring wheat were also identified 
among the eight locally assembled contigs. One copy matched the 
same contig as the H9- Iris version at 99.9% (one single- base indel 
in 1254 bp total), and the other copy matched a different contig at 
99.7% (four SNPs in 1252 bp total).

To obtain the promoter sequence of Hfr- 2, local assembly was 
seeded with 1727 bp of Hfr- 2 coding sequence. Eight of the resulting 
16 contigs were 99% identical to the seed sequence. Primers were 
designed from the two contigs that went furthest 5′ to the seeding 
sequence. These two contigs differed by a 2- bp indel within the 5′ 
UTR and a 16- bp indel ~130 bp 5′ to the 5′ UTR. The obtained clones 
included both versions, confirming both sequences and providing 
promoters for two copies of the gene.

Local assembly produced three contigs that were 93%, 95% 
and 99% identical to the 392- bp EST seeding sequence. The TA
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99%- matching contig was 4.5 kb in length and matched Aegilops 
tauschii cytosolic acetyl- CoA carboxylase (Acc- 2) and putative amino 
acid permease towards the 3′ end (bases 3421– 4284; e- value = 0.0 

by blastn). The cloned regions differed from the local assembly by 
only two single- base indels, confirming that the annotated section 
and EST belong to the same gene.

TA B L E  9  Calculation of expected loci and contig/loci ratio

Program slag atram sra slag atram slag atram slag atram

Read set B73 B73 B73 CS full CS full CS half CS half CS quarter CS quarter

e- value 1e- 20 1e- 10 1e- 50 1e- 20 1e- 10 1e- 20 1e- 10 1e- 20 1e- 10

Contig count 25.50 57.3 4.00 44.00 101.9 36.30 48.33 28.70 131.00

Loci in genome 34.9 59.4 8.75 32.9 51.3 32.9 51.3 32.9 51.3

Contig:loci ratio 0.73 0.96 0.46 1.34 1.99 1.10 0.94 0.87 2.55

Note: Contig count came from Table 8. Number of loci was estimated from the distribution of blastn hits in the appropriate genome, with a minimum 
of 10,000 bases between loci.

Read set Enzyme
slag cycle 
duration (s)

atram2 cycle 
duration (s) Ratio

Zea Cellulose synthase 3589.90 855.33 4.197

Zea Ferredoxin 1609.24 3049.90 0.528

Zea Hexokinase 1720.48 2023.14 0.850

Zea Histone deacetylase 2494.33 2583.86 0.965

Zea Isocitrate dehydrogenase 1827.24 344.33 5.307

Zea Peptidylprolyl isomerase 4696.67 496.86 9.453

Zea Phosphoglucoisomerase 1658.00 103.11 16.080

Zea Phosphoglucomutase 1750.10 2292.52 0.763

Zea Sucrose synthase 2657.57 1082.00 2.456

Zea Transaminase 2055.24 122.00 16.846

Full Stanley Cellulose synthase 1312.67 252.43 5.200

Full Stanley Ferredoxin 223.05 793.50 0.281

Full Stanley Hexokinase 414.52 308.25 1.345

Full Stanley Histone deacetylase 389.29 230.57 1.688

Full Stanley Isocitrate dehydrogenase 978.90 460.17 2.127

Full Stanley Peptidylprolyl isomerase 582.81 205.48 2.836

Full Stanley Phosphoglucoisomerase 346.67 1512.31 0.229

Full Stanley Phosphoglucomutase 215.52 1836.75 0.117

Full Stanley Sucrose synthase 1777.62 400.89 4.434

Full Stanley Transaminase 531.05 7966.31 0.067

hemiStanley Cellulose synthase 407.29 1458.00 0.279

hemiStanley Ferredoxin 80.62 155.00 0.520

hemiStanley Hexokinase 164.71 509.00 0.324

hemiStanley Histone deacetylase 90.81 669.00 0.136

hemiStanley Isocitrate dehydrogenase 196.10 638.00 0.307

hemiStanley Peptidylprolyl isomerase 155.67 — — 

hemiStanley Phosphoglucoisomerase 104.33 143.44 0.727

hemiStanley Phosphoglucomutase 71.62 220.00 0.326

hemiStanley Sucrose synthase 217.33 3820.62 0.057

hemiStanley Transaminase 178.95 667.00 0.268

Note: Duration included the initial alignment of protein queries to the nucleotide reads database.

TA B L E  1 0  Mean cycle durations for 
slag and atram2 subdivided by enzyme 
and read set
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4  |  DISCUSSION

slag robustly produced local assemblies with at least one assembler 
in each of the tested situations, including challenging examples from 
hexaploid wheat and simulations with long- read sequencing depth 
as low as 5×. The usefulness of the assemblies depends upon the 
intended purpose, read accuracy, sequencing depth and the choice 
of assembler parameters, but in favourable instances the assemblies 
suffice for primer design and estimation of variant count in multi-
gene families.

In general, contigs can stop growing because of gaps in read cov-
erage resulting from low read depth or removal of particular reads 
as putative contaminants based on GC content. In unique sequence, 
contigs can grow continuously to chromosomal length. However, in 
repeat- rich sequence, contig growth is self- limiting and depends on 
the relative length of reads and repeats. Nascent contigs compete 
for reads, and contigs in repetitive regions tend to be a consensus 
of multiple loci, so that they do not match or join the ends of contigs 
centred in unique regions.

Contig accuracy with slag depends upon read accuracy, read 
depth and assembly method. An assembler can be confused by many 
similar but differing variant reads from paralogues, especially if the 
assembler attempts to correct read errors on the basis of variant 
frequency. This might explain why cap3 assemblies with ~97% accu-
racy were less accurate than the individual Illumina reads that were 
assembled.

Two plausible uses of slag are (i) identification of genes in a novel 
genome and (ii) obtaining sequence as a basis of targeted genetic 
markers for linkage or deletion mapping or analysis of population 
structure. Either use can require PCR primers or baiting sequences 
for the production of targeted, accurate reads. Primers require a 
more accurate assembly than baits. If x is the probability that an in-
dividual base was correctly called in the assembly, then the proba-
bility of two exactly matching primers of lengths m and n is x(m + n). 
For two 20- base primers and x = 0.990, this is only 0.669 and in-
creases to 0.818 for x = 0.995. When highly accurate reads are avail-
able, it might be better to derive primers from individual reads that 
match desired sites in the assembled contig. Alternatively, target 
baits with >85% sequence identity probably suffice if given lowered 

hybridization temperature, according to the hybridization study of 
He et al. (2005).

The intended use determines the assembly strategy to use. 
Exon- specific baits or primers do not require abutting repetitive el-
ements, and relatively short, coding- sequence contigs are not only 
sufficient but desirable. Complete genes or promoters need longer 
contigs, even at the risk of a significant frequency of chimeric mis-
assemblies of similar loci, since comparison to the source reads is 
always possible. Calling multiple alleles in a heterozygous polyploid 
requires high accuracy and very probably long reads to get suffi-
cient polymorphism without the chimerism exhibited in Figure 3.

Local assemblers can follow two distinct strategies to include 
additional reads in a growing contig. One strategy, used in an earlier 
version of slag, uses some portion of each end of a contig to query 
the reads database, and then assembles the end- matching reads 
with the contig to produce the next iteration of the contig. However, 
if the assembly only uses the querying end of the contig, with the 
expectation of joining it later to the core of the contig, there is a 
risk of losing homology to the seeding sequence. This conceivably 
happened with atram2 with full- ”Stanley” transaminases. The other 
strategy, used currently in slag, is to query reads with the whole 
contig and then assemble only the matching reads. The latter strat-
egy allows contigs to grow and shrink in successive iterations as the 
number of reads increases in increments.

A fair comparison of slag to other local assemblers is difficult, be-
cause slag and atram2 have many parameters that potentially interact 
to affect the rate of contig growth and the propagation of nontarget 
contigs. In the tests reported here, slag’s increment parameter was 
probably set too conservatively to match the rate of contig growth 
often seen with atram2. slag’s increment setting ideally should in-
crease with greater read depth, and in the benchmarking tests it was 
constant across read depths. Furthermore, setting the cap3 parame-
ter – p to the default value of 0.93 would have increased contig count 
and accuracy at the expense of contig length. For assembling distinct 
alleles from a heterozygote, setting – p to 0.97 would be necessary.

The database sharding strategy of atram2 promises efficient 
search of read sets, and atram2 was much faster than slag when 
that strategy worked as intended. However, there were instances 
where the reverse was true, where atram2 became bogged down 

Outcome

B73 Stanley

B73 Full Stanley Half- Stanley Quarter- Stanley

21 completed 6 2 1 0

No contigs updated 3 1 0 0

Assembly failed after first cycle 1 0 8 1

Assembly failed at first cycle 0 0 1 9

Database locked 0 6 0 0

Out of time 0 1 0 0

Note: The wall time limit for each run was 30 hr. atram2 stopped in four instances where contigs did 
not grow between cycles of read retrieval. In all but one instance of assembly failure, spades’s exit 
status was 21, which was apparently related to insufficient read depth for the diversity of reads.

TA B L E  11  Ending status of atram2 runs
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in its management of virtual memory or started to assemble con-
tigs based on repetitive sequence, as evidenced by the presence of 
contigs that did not match the seeding protein sequences. slag was 
more robust than atram2: slag completed all 21 prescribed cycles for 
all tested enzymes and read sets, while atram2 completed only 13 
of 40 runs without errors, and only nine of those went the full 21 
cycles. Admittedly, the benchmarking tests emphasized the ability 
to assemble shallow read depths, but even with deep read coverage, 
atram2 sometimes failed because of database locking.

Comparison to srassembler was greatly impeded by srassembler’s 
slowness in selecting reads with vmatch, despite its splitting the 
reads database about as much as atram2. srassembler seemed to pro-
duce very good assemblies as far as they went, but it was impractical 
to test it thoroughly.
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