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Genome-wide association studies (GWASs) have been widely used to determine the

genetic architecture of quantitative traits in dairy cattle. In this study, with the aim of

identifying candidate genes that affect milk protein composition traits, we conducted a

GWAS for nine such traits (αs1-casein, αs2-casein, β-casein, κ-casein, α-lactalbumin,

β-lactoglobulin, casein index, protein percentage, and protein yield) in 614 Chinese

Holstein cows using a single-step strategy. We used the Illumina BovineSNP50 Bead

chip and imputed genotypes from high-density single-nucleotide polymorphisms (SNPs)

ranging from 50 to 777K, and subsequent to genotype imputation and quality control,

we screened a total of 586,304 informative high-quality SNPs. Phenotypic observations

for six major milk proteins (αs1-casein, αs2-casein, β-casein, κ-casein, α-lactalbumin,

and β-lactoglobulin) were evaluated as weight proportions of the total protein fraction

(wt/wt%) using a commercial enzyme-linked immunosorbent assay kit. Informative

windows comprising five adjacent SNPs explaining no <0.5% of the genomic variance

per window were selected for gene annotation and gene network and pathway

analyses. Gene network analysis performed using the STRING Genomics 10.0 database

revealed a co-expression network comprising 46 interactions among 62 of the most

plausible candidate genes. A total of 178 genomic windows and 194 SNPs on 24

bovine autosomes were significantly associated with milk protein composition or protein

percentage. Regions affecting milk protein composition traits were mainly observed on

chromosomes BTA 1, 6, 11, 13, 14, and 18. Of these, several windows were close

to or within the CSN1S1, CSN1S2, CSN2, CSN3, LAP3, DGAT1, RPL8, and HSF1

genes, which have well-known effects on milk protein composition traits of dairy cattle.

Taken together with previously reported quantitative trait loci and the biological functions

of the identified genes, we propose 19 novel candidate genes affecting milk protein

composition traits: ARL6, SST, EHHADH, PCDHB4, PCDHB6, PCDHB7, PCDHB16,

SLC36A2, GALNT14, FPGS, LARP4B, IDI1, COG4, FUK, WDR62, CLIP3, SLC25A21,

IL5RA, and ACADSB. Our findings provide important insights into milk protein synthesis

and indicate potential targets for improving milk quality.
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INTRODUCTION

Milk products are a fundamental component of many diets.
Given the increasing development and variety of milk products,
manufacturers, and scholars alike have placed a focus on
understanding milk protein content and the importance of
various milk proteins. The primary protein components of
milk include αs1-casein (αs1-CN), αs2-casein (αs2-CN), β-
casein (β-CN), κ-casein (κ-CN), α-lactalbumin (α-LA), and β-
lactoglobulin (β-LG), each of which plays different roles in
protein synthesis and metabolism in the human body. For
example, casein intake affects vascular health (Fekete et al.,
2013) and heart health (Miluchová et al., 2013), improves
sleep quality (Brennan et al., 2013), and enhances immunity
(Konstantinou et al., 2014).

Milk protein composition is a complex trait that is influenced
by both genetic and non-genetic factors, including cattle breed,
herd, and stage of lactation. Previous studies have shown that
bovine milk protein composition is heritable, with heritability
estimates ranging from 0.26 to 0.86 (Schopen et al., 2011) and
0.05 to 0.77 (Huang et al., 2012). In recent years, a number of
genes and quantitative trait loci (QTL) for milk composition
traits have been detected using candidate gene and QTLmapping
methods. The effects of milk protein variants on αs1-CN, αs2-
CN, β-CN, κ-CN, α-LA, and β-LG content have been examined
in a number of studies (Heck et al., 2009; Sanchez et al.,
2017; Viale et al., 2017). Variants of the β-CN and κ-CN
genes located on bovine chromosome (BTA) 6 and variants of
the β-LG gene located on BTA 11 have been associated with
alterations in milk protein composition (Heck et al., 2009). A
further β-LG protein variant has been associated with higher
casein content (Lundén et al., 1997; Heck et al., 2009) and a
higher cheese yield (Tsiaras et al., 2005). A previously reported
genome-wide linkage study identified important QTLs for milk
protein composition and content on BTA 1, 5, 6, 10, and 14
(Schopen et al., 2011).

Since the first application of genome-wide association
studies (GWASs) to livestock research in 2008 (Daetwyler
et al., 2008), a series of GWASs have been published on
important economic traits. Such studies are of particular
value with respect to livestock species, for which pedigrees
are complex and nuclear families are the exception rather
than the rule. Misztal et al. (2009) and Christensen and
Lund (2010) proposed a single-step genomic best linear
unbiased prediction (ssGBLUP) method that incorporates
phenotypes, genotypes, and pedigree information. The use of
this information in conjunction with genomic data allows more
precise estimations and increased detection power through
implementation of a scaled and properly augmented relationship
matrix (Legarra et al., 2009; Misztal et al., 2009). Compared
with multiple-step approaches, the ssGBLUP method yields
more accurate and consistent solutions (Forni et al., 2011;
Wang et al., 2012, 2014). In the present study, we applied
the ssGBLUP method to identify genomic regions affecting
bovine milk composition and protein content in the Chinese
Holstein cow.

MATERIALS AND METHODS

Animals and Phenotypes
The Chinese Holstein population used in this study included
614 cows from 19 farms of the Beijing Sanyuan Dairy Farm
Center and the offspring of 19 sire families. For most individuals,
we had access to both genotype data and traditional pedigree
information. Genealogical information was available for all
individuals and 598 individuals were genotyped. A total of
50mL of milk was collected from each cow by the Dairy Herd
Improvement System (DHI) laboratory of the Beijing Dairy
Cattle Center. Samples were transported to the laboratory and
stored at −20◦C until use (Li et al., 2014). The concentrations of
αs1-CN, αs2-CN, β-CN, κ-CN, α-LA, and β-LG in each sample
were quantified using commercial ELISA kits in accordance
with manufacturer instructions and expressed as the weight
proportion of total protein (wt/wt%). Furthermore, protein
percentage data were obtained from DHI reports and the casein
index was calculated as [6 casein/(6 casein + 6 whey)] × 100
(Schopen et al., 2009).

Genotyping, Imputation, and Quality
Control
Genotyping was performed using one of two versions of the
Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA,
USA). Version 1 contains 54,001 SNPs and version 2 contains
54,609 SNPs. In order to improve the accuracy of the study
results, we imputed genotypes from high-density (HD) single-
nucleotide polymorphisms (SNPs) ranging from 50 to 777K
using BEAGLE version 3.3.1 (Browning and Browning, 2007).
The data used in imputation included those for 85 Chinese
Holstein bulls genotyped with both 54 and 777K (HD) chips,
598 Chinese cows genotyped with a 54K chip, and 510 Nordic
Holstein bulls genotyped with an HD chip. This analysis enabled
us to validate the imputation accuracy for the Chinese Holstein
population in seven scenarios for cows and bulls using different
reference populations (Ma et al., 2014). Following genotype
imputation, the panel included a total of 644,400 SNPs. We
excluded SNPs with a <90% genotype call rate, minor allele
frequency (MAF) < 0.05, and an absence of Hardy–Weinberg
equilibrium (P < 10−6). Subsequent to quality control, a total of
586,304 SNPs were used for the association study. The position
of each SNP was determined using the reference bovine genome
sequence UMD_3.1.66 (http://www.ncbi.nlm.nih.gov/genome/
guide/cow/).

Genome-Wide Association Study
We conducted an association study in accordance with the single-
step genomic-BLUP approach (Aguilar et al., 2010; Christensen
and Lund, 2010; Misztal et al., 2013a). The Bayesian inference
method was used to estimate variance components, and a Monte
Carlo Markov Chain was completed for 100,000 rounds with
Gibbs sampling, of which the first 9,000 rounds were discarded as
burn-in. Within each Gibbs sample cycle, Metropolis–Hastings
samples were run for 20 iterations. Trace plots were also
inspected visually to ensure convergence had been reached.
BLUPf90 family software was used to perform related analyses
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(Tiezzi et al., 2015; Parker Gaddis et al., 2018). The ssGBLUP
model used was as follows:

y = Xβ +Wa+ e,

where y is the observation vector; X represents the corresponding
incidence matrix for fixed effects; β is a vector of fixed effects,
including overall mean, farm, lactation, and parity; W represents
a corresponding incidence matrix for random additive genetic
effects; a is the vector of additive genetic effects; and e is a vector
of residuals. The genetic variance and residual variance were
calculated using the following formula:

var

[

a
e

]

=

[

Hσ 2
a 0

0 Iσ 2
e

]

,

where σ 2
a and σ 2

e are the total additive genetic variance
and residual variance, respectively. The model accounted for
additive genetic relationships among different individuals and
the pedigree as well as genomic information by integration into
matrix H (Misztal et al., 2013b):

H−1
= A−1

+

[

0 0
0 G−1 − A−1

22

]

where A is a numerator (pedigree) relationship matrix applied
for all animals, and A22 is a numerator (pedigree) relationship
matrix applied for genotyped animals. G represents a genomic
relationship matrix. Matrix G assumed the allele frequency of the
current population and was adjusted for compatibility with A22

(Vanraden et al., 2009):

G = ZDZ−1

where D represents a diagonal matrix in which elements contain
the inverse of the expected maker variance (D = I for GBLUP)
and Z represents a matrix containing genotypes under the
correction of allele frequency (Prado et al., 2003). The animal
effects of genotyped animals were a function of SNP effects:

ag = Zu

where ag represents animal effects decomposed in genotype, u
denotes a vector of marker effects, and Z is a matrix related to
the genotype of each locus. Thus, the variance of animal effects is
expressed as

var(ag) = var(Zu) = ZDZ′σ 2
u = G∗σ 2

a ,

and the genetic additive variance can be captured by each SNP
marker provided that the weighted relationship matrix (G∗) is
not weighted. Subsequently,

G∗
= ZDZ′λ,

where λ is a normalization constant or variance ratio. Following
Vanraden et al. (2009), we defined λ as follows:

λ =
σ 2
u

σ 2
a

=
1

∑M
i−1 2pi(1− pi)

,

where σ 2
u is the genetically additive variance captured by each

SNP marker provided that G∗ is not weighted, σ 2
a is the overall

genetic additive effect, M is the quantity of SNPs, and pi is the
allele frequency of the 2nd allele of the ith marker. SNP effects
and the individual variance of each SNP were obtained using the
following equation as described by Zhang et al. (2010):

û = λDZ′G
∗−1âg = DZ′[ZDZ′]−1

âg ,

σ̂ 2
u,i = σ̂ 2

u2pi(1− pi).

Wang et al. (2012) have previously described the “Scenario
1” process for iterative re-weighting. In the first round of the
iterative process in the above formulae, we used D = I to predict
SNP effects and the variance of each SNP by virtue of G∗. In
this study, the procedure was run for one iteration based on the
realized accuracies of GEBV according toWang et al. (2012). The
weighted SNPs were used to construct the G matrices, update the
GEBV, and, consequently, the estimated SNP effects. Newmarker
effects were calculated in continuous iterations on the basis of the
weighted G∗ matrix proposed in the abovementioned formula.

The percentage of genetic variance explained by the i-th region
was calculated as follows:

Var(ai)

σ 2
a

× 100 =
Var(

∑10
j=1 ZJ ûj)

σ 2
a

× 100

where ai is the genetic value of the i-th region that consists of
five continuous adjacent SNPs, σ2a is the total genetic variance, Zj

is the vector of gene content of the j-th SNP for all individuals,
and ûj is the marker effect of the i-th SNP within the i-th region
(Zhang et al., 2010).

A significance test for SNP effects was performed using a
two-sided t-test, and the P-value of each SNP was calculated
as follows:

Pi = Pt





ûi
√

σ̂ 2
i /n

, n− 1





where Pt is the distribution function of t distribution, ûi is the
ith SNP effect, σ̂ 2

i is the genetic variance of the ith SNP, n is the

number of animals with the ith SNP. A Bonferroni correction
was applied to control for false positive associations, and the
genome significance level was defined as P < 0.01/N, where N
is the number of SNP loci analyzed. Thus, in the present study,
the significance threshold value of –log10(P) for all studied traits
was 6.52 (586,304 SNP markers) (Wu et al., 2017).

Gene Functional Annotation, Gene
Network, and Pathway Analyses
The successive calculation of variance absorbed by 5-SNP
moving windows was based on the whole genome. Windows
explaining no <0.5% of the genomic variance were selected for
gene annotation, network, and pathway analyses (Fragomeni
et al., 2014; Medeiros de Oliveira Silva et al., 2017). We used
the Biomart platform of Ensemble (Flicek et al., 2013) to
obtain gene annotations through the Biomart R package on the
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TABLE 1 | Descriptive statistics of milk protein composition traits in a Chinese

Holstein population.

Traitsa No. cows Mean Standard deviation Max Min

αs1-CN 614 35.45 17.46 72.63 1.96

αs2-CN 614 16.64 8.62 53.91 1.01

β-CN 614 31.23 10.31 69.59 2.24

κ-CN 614 7.51 1.69 23.48 0.43

α-LA 614 2.25 0.85 10.10 0.10

β-LG 614 6.93 3.67 48.64 0.18

Casein indexb 614 90.51 7.01 99.16 49.25

Protein (%) 614 3.06 0.29 4.28 2.09

Protein (kg) 614 0.75 0.32 1.82 0.36

athe six major milk proteins are expressed as a weight-proportion of the total protein

fraction (wt/wt%).
bcasein index was calculated as [Σ casein/(Σ casein + Σ whey)] × 100.

basis of the starting and ending coordinates of each window
(http://www.bioconductor.org). A pathway-enrichment analysis,
visualization, and integrated discovery (DAVID) analysis (Huang
Da et al., 2009a,b) was performed using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (Kanehisa et al., 2014)
for annotation. Manhattan plots of genome-wide association
analyses were produced in R using the CMplot package. For
candidate genes, we investigated functional protein–protein
interactions (PPIs) and the enrichment of gene ontology (GO)
using the STRING Genomics 10.0 database (Szklarczyk et al.,
2015). This analysis evaluated two types of PPI: PPIs obtained
from laboratory and curated databases and predicted PPIs based
on gene neighborhood, fusion, gene co-occurrence, protein
homology, co-expression, or text mining in the literature. A
global PPI network was constructed and limited to interactions
exhibiting high confidences with scores > 0.4.

RESULTS

In this study, we quantified milk protein composition using
ELISA kits. The descriptive statistics of the phenotypes of milk
protein composition traits are shown in Table 1. The mean
concentrations of αs1-CN, αs2-CN, β-CN, κ-CN, α-LA, and β-LG
were 35.45, 16.64, 31.23, 7.51, 2.25, and 6.93%, respectively. These
results are similar to those previously obtained using capillary
zone electrophoresis (CZE) (Schopen et al., 2011) and mid-
infrared (MIR) spectra (Sanchez et al., 2017). The most abundant
protein inmilk was αs1-CN and the least abundant was α-LA. The
allele correct rate was >96.0%, as determined through genotype
imputation. A total of 178 informative windows of five adjacent
SNPs were obtained for association with 586,304 SNPs using
ssGWAS for all chromosomes and traits studied (Table 2 and
Figures 1, 2). The main regions associated with milk protein
composition traits were found on chromosomes BTA 1, 6, 7,
11, 13, 14, and 18. There were no significant associations on
BTA 4, 19, 25, 27, or 28. A range of 11–31 significant windows
was associated with all studied traits, and windows were located
on 24 of the 29 bovine autosomes. A range of 1–31 windows

per chromosome and 9–47% genetic variance were identified.
Figures 3, 4 show the –log10(P-values) for association of the
586,304 SNPs obtained using ssGWAS for all the chromosomes
and all the studied traits. Additional details relating to the SNPs
associated with milk protein composition are shown in Table 2.
We compared the results with the cattle QTL database (http://
aaa.animalgenome.org/cgi-bin/QTLdb/BT/index) and found 118
reported QTLs related to milk protein composition traits.
Relatively concentrated areas related to milk proteins were noted
on chromosomes 6, 13, and 14. Twenty-eight QTLs related
to four milk caseins (αs1-CN, αs2-CN, β-CN, and κ-CN) and
protein yield were found on BTA 6, and 23 QTLs related to
milk protein yield were found on BTA 13. Furthermore, 41 QTLs
related to αs2-CN, α-LA, and milk protein yield were found on
BTA 14 (Figure S19).

Genome-Wide Association Study
Several informative windows on BTA 1 and 6 showed highly
significant associations with five major milk proteins (αs1-CN,
αs2-CN, β-CN, κ-CN, and β-LG), casein index, protein yield, and
protein percentage. We identified a continuous genomic region
on BTA 7 associated with αs1-CN, αs2-CN, β-CN, κ-CN, protein
yield, and protein percentage. Additionally, BTA 11, 13, and 14
each had significant associations with four studied traits (BTA
11: αs1-CN, β-CN, κ-CN, and α-LA; BTA 13: αs1-CN, αs2-CN, β-
CN, and protein yield; and BTA 14: αs2-CN, α-LA, casein index,
and protein percentage). A number of windows of BTA 18 also
had associations with αs1-CN, αs2-CN, κ-CN, protein yield, and
protein percentage.

In total, we detected 22, 13, 25, 16, 22, 11, 18, 30, and 24
informative windows for αs1-CN, αs2-CN, β-CN, κ-CN, α-LA,
11 β-LG, casein index, protein percentage, and protein yield,
respectively. Four windows (64.54–64.57 Mbp) explained 3.55%
of the genetic variance in total and the most significant SNP
(BovineHD0700018734) associated with αs1-CN was located in
a 64.5-Mbp region on BTA 7 within the SLC36A2 gene. An
important window from 87.14 to 87.16 Mbp was located on
BTA 6 within the CSN1S1 gene, which is a major gene affecting
αs1-CN in dairy cattle. The three most informative windows
explaining 40.85% of the genetic variance associated with αs2-
CN were located within a region from 18.80 to 20.02 Mbp
on BTA 14. In this region, the SNP BovineHD1400000256
showing the strongest association was located 0.9 Mbp from
the DGAT1 gene, which influences milk composition in dairy
cattle. Twelve of 25 informative windows explaining 17.29% of
the genetic variance for β-CN were clustered on BTA 21 in a
region from 47.72 to 47.85Mbp that contains the SLC25A21 gene.
A significant SNP, BovineHD2100013628, located at 87.19 Mbp
on BTA 6 was located 0.01 Mbp from the CSN2 gene, which
is a major gene influencing αs2-CN. Four windows associated
with κ-CN were located within a region from 64.54 to 64.57
Mbp on BTA 7 containing the SLC36A2 gene. A significant
SNP, BovineHD0600023887, within an informative window from
87.19 to 87.21 Mbp on BTA 6 was located 0.21 Mbp from the
CSN3 gene. A region containing 10 windows explaining 14.23%
of the genetic variance from 68.59 to 76.95 Mbp on BTA 11 was
strongly associated with α-LA. The most informative window for
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TABLE 2 | Genomic regions associated with milk protein composition traits in a Chinese Holstein population.

Traits Windowa Chr Start (bp) End (bp) Geneb VEc %

αs1-CN 19,769 1 80,273,378 80,278,372 SST 0.53668

19,774 1 80,279,371 80,285,703 – 0.97208

19,779 1 80,286,424 80,295,590 – 1.18698

162,874 6 1,169,171 1,184,671 – 0.65546

162,879 6 1,185,355 1,196,443 – 0.80933

162,885 6 1,200,729 1,213,176 – 0.70096

172,237 6 38,611,254 38,618,402 FAM184B,LAP3 0.50646

184,344 6 87,145,250 87,165,643 CSN1S1 0.74797

208,632 7 64,546,663 64,556,472 SLC36A3 0.7675

208,637 7 64,557,335 64,561,361 SLC36A2 0.84938

208,642 7 64,561,888 64,565,585 SLC36A2 0.94219

208,647 7 64,566,358 64,571,073 SLC36A2 0.98993

251,700 9 28,174,804 28,184,358 – 0.80659

324,134 11 98,031,589 9,804,0621 GARNL3, FPGS 0.76835

358,993 13 46,208,034 46,227,765 – 0.63918

358,998 13 46,239,050 46,266,967 – 0.8634

359,150 13 46,826,742 46,832,055 LARP4B, IDI1 0.96543

359,155 13 46,832,561 4,684,1024 LARP4B, IDI1 1.98644

359,160 13 46,848,858 46,863,899 DIP2C 0.52083

460,055 18 46,918,922 46,922,699 WDR62,TDRD12,LRFN3 0.92899

460,060 18 46,930,251 46,935,240 WDR62,SDHAF1,CLIP3 0.78047

634,654 30 65,849,093 65,881,094 – 0.63984

αs2-CN 19,774 1 80,279,371 80,285,703 SST 0.61328

19,779 1 80,286,424 80,295,590 – 0.7488

162,879 6 1,185,355 1,196,443 – 0.50428

208,642 7 64,561,888 64,565,585 SLC36A2 0.50889

208,647 7 64,566,358 64,571,073 SLC36A2 0.52451

251,700 9 28,174,804 28,184,358 – 0.5084

358,998 13 46,239,050 46,266,967 – 0.51412

359,150 13 46,826,742 46,832,055 LARP4B, IDI1 0.59555

359,155 13 46,832,561 46,841,024 LARP4B, IDI1 1.2275

366,525 14 1,880,378 1,923,292 MROH1,HGH1,WDR97,RPL8,DGAT1,HSF1,BOP1 9.58891

366,530 14 1,943,598 1,962,021 GPAA1,EXOSC4,RPL8 25.28515

366,535 14 1,967,325 2,002,873 GRINA,PARP10,PLEC 5.98065

460,055 18 46,918,922 46,922,699 WDR62,TDRD12,LRFN3,SDHAF1,CLIP3 0.5446

β-CN 19,774 1 80,279,371 80,285,703 SST 0.7799

19,779 1 80,286,424 80,295,590 – 0.96602

184,355 6 87,193,163 87,199,876 HSTN,CSN2 1.08121

208,632 7 64,546,663 64,556,472 SLC36A3 0.57655

208,637 7 64,557,335 64,561,361 SLC36A2 0.64355

208,642 7 64,561,888 64,565,585 SLC36A2 0.72545

208,647 7 64,566,358 64,571,073 SLC36A2 0.76805

282,267 10 42,294,691 42,301,905 – 0.51038

324,134 11 98,031,589 9,804,0621 GARNL3, FPGS 1.05629

359,150 13 46,826,742 46,832,055 LARP4B, IDI1 0.84256

359,155 13 46,832,561 46,841,024 LARP4B, IDI1 1.73651

359,258 13 47,256,972 47,267,747 ZMYND11 0.58935

399,097 15 57,483,486 57,489,517 MYO7A 0.66981

512,656 21 47,726,063 47,732,180 SLC25A21 0.82925

512,661 21 47,732,701 47,736,349 SLC25A21 1.7035

512,666 21 47,737,074 47,745,958 SLC25A21 2.03522

(Continued)
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TABLE 2 | Continued

Traits Windowa Chr Start (bp) End (bp) Geneb VEc %

512,672 21 47,747,607 47,753,773 SLC25A21 1.53975

512,677 21 47,754,497 47,765,937 SLC25A21 0.71179

512,682 21 47,769,663 47,789,155 SLC25A21 0.93541

512,687 21 47,793,083 47,801,142 SLC25A21 0.96353

512,692 21 47,803,810 47,817,554 SLC25A21 1.2754

512,697 21 47,825,966 47,829,543 SLC25A21 1.67032

512,702 21 47,830,117 47,836,983 SLC25A21 1.73322

512,707 21 47,837,917 47,843,030 – 2.07561

512,712 21 47,850,176 47,855,412 – 1.81429

κ-CN 20,211 1 82,294,481 82,305,519 – 1.10802

20,243 1 82,431,764 82,437,922 EHHADH 0.54963

175,209 6 49,471,344 49,479,118 – 0.54214

184,357 6 87,194,926 87,202,745 HSTN,CSN1S1,CSN1S2,CSN3 0.79865

184,363 6 87,204,356 87,211,731 0.50442

208,632 7 64,546,663 64,556,472 SLC36A3 0.67841

208,637 7 64,557,335 64,561,361 SLC36A2 0.70792

208,642 7 64,561,888 64,565,585 SLC36A2 0.72822

208,647 7 64,566,358 64,571,073 SLC36A2 0.73794

232,008 8 49,148,545 49,153,356 – 0.61036

315,812 11 68,286,773 68,295,787 SNRNP27 0.67319

315,817 11 68,297,079 68,318,091 CAPN14,PCBP1 1.06004

315,823 11 68,321,826 68,338,425 PCBP1 0.50539

317,833 11 75,577,993 75,582,470 0.84317

317,838 11 75,583,309 75,588,583 2.70571

460,055 18 46,918,922 46,922,699 WDR62,TDRD12,LRFN3,SDHAF1,CLIP3 0.50308

α-LA 75,815 3 10,232,899 10,236,850 – 0.56821

77,849 3 17,901,972 17,915,013 SMCP 0.88169

77,854 3 17,917,726 17,923,688 – 2.20539

154,644 5 91,452,138 91,455,698 – 0.83477

154,649 5 91,456,684 91,465,025 – 1.26306

154,654 5 91,465,793 91,471,989 – 1.49212

154,659 5 91,474,178 91,487,645 – 0.54008

155,991 5 96,740,319 96,749,944 GRIN2B 1.06207

315,887 11 68,597,446 68,610,076 TIA1 0.57891

315,893 11 68,611,558 68,619,423 – 0.54673

317,725 11 75,316,226 75,324,266 KLHL29 0.96811

317,730 11 75,325,077 75,328,297 KLHL29 2.26328

317,736 11 75,329,898 75,332,287 KLHL29 2.5407

317,745 11 75,339,255 75,342,857 KLHL29 2.32541

317,750 11 75,343,908 75,349,434 KLHL29,ATAD2B 2.47608

317,756 11 75,350,440 75,354,084 KLHL29 1.25197

318,213 11 76,936,751 76,942,341 – 0.74192

318,218 11 76,943,628 76,955,286 – 0.54323

333,946 12 27,090,788 27,095,189 – 2.99378

333,951 12 27,097,379 27,109,296 – 1.37015

366,526 14 1,892,559 1,943,598 MROH1,HGH1,SHARPIN,CYC1,RPL8,DGAT1,HSF1

,BOP1

1.04997

442,451 17 59,302,576 59,320,664 TAOK3 0.59173

β-LG 10,258 1 41,702,974 41,708,148 ARL6 0.62806

10,263 1 41,711,818 41,717,537 – 1.20529

10,268 1 41,718,143 41,724,240 – 1.41982

10,273 1 41,731,422 41,735,786 – 0.58327

(Continued)
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TABLE 2 | Continued

Traits Windowa Chr Start (bp) End (bp) Geneb VEc %

10,738 1 43,612,247 43,615,867 COL8A1 0.67198

10,743 1 43,619,121 43,622,066 COL8A1 0.57725

191,785 6 114,167,098 114,173,397 – 0.59503

251,699 9 28,174,206 28,176,701 – 1.38642

263,801 9 79,157,545 79,181,555 – 0.68722

525,321 22 23,303,686 23,317,156 IL5RA,CRBN 0.89145

643,206 30 146,085,436 146,090,954 0.57121

Casein index 10,263 1 41,711,818 41,717,537 ARL6 0.73896

10,268 1 41,718,143 41,724,240 – 0.83967

162,874 6 1,169,171 1,184,671 – 0.50837

162,879 6 1,185,355 1,196,443 – 0.65363

162,885 6 1,200,729 1,213,176 – 0.5992

191,785 6 114,167,098 114,173,397 – 0.8451

228,942 8 34,914,343 3,492,0024 – 0.50943

228,947 8 34,920,926 34,931,510 – 0.64162

251,699 9 28,174,206 28,176,701 – 1.34694

263,801 9 79,157,545 79,181,555 – 0.80926

380,353 14 65,190,322 65,210,369 – 1.35986

380,361 14 65,234,975 65,243,654 – 0.55361

424,730 16 74,232,901 74,247,827 KCNH1 0.52587

439,916 17 49,155,508 49,162,447 – 0.51494

525,321 22 23,303,686 23,317,156 IL5RA,CRBN 0.8046

588,158 26 43,246,598 43,254,505 ACADSB 0.59819

588,163 26 43,258,359 43,263,853 HMX3 0.68211

588,168 26 43,280,115 43,298,983 BUB3 0.57729

Protein

percentage

88,095 3 58,699,144 58,704,486 – 0.57847

90,093 3 67,116,998 67,135,360 MIGA1 0.91725

91,191 3 72,687,317 72,735,466 – 0.52308

91,968 3 76,691,451 76,701,563 – 0.75867

91,975 3 76,705,320 76,714,787 – 0.86154

91,981 3 76,718,920 76,728,381 – 0.84187

91,987 3 76,750,610 76,758,792 – 0.55404

137,245 5 15,966,349 15,996,910 – 0.60869

205,886 7 53,866,175 53,872,425 – 0.85908

205,891 7 53,873,542 53,879,198 – 1.16389

205,896 7 53,879,949 53,884,717 – 1.2126

205,901 7 53,885,243 53,890,802 PCDHB4 1.23202

205,906 7 53,893,497 53,910,675 PCDHB4 1.19168

205,913 7 53,922,097 53,932,408 – 0.66998

205,918 7 53,932,886 53,940,442 PCDHB6 0.55591

205,927 7 53,947,702 53,952,520 – 0.69142

205,933 7 53,959,180 53,965,425 TAF7 0.61338

205,941 7 53,972,700 53,977,311 PCDHB7 0.75775

205,946 7 53,978,290 53,984,004 PCDHB16 1.22971

205,951 7 53,986,955 53,993,012 PCDHB16 1.55122

210,377 7 70399534 70,402,362 – 0.71595

366,523 14 1,861,799 1,911,696 MROH1,HGH1,WDR97,RPL8,DGAT1,HSF1,BOP1 0.90380

366,529 14 1,923,292 1,954,317 CYC1,GPAA1,EXOSC4,MAF1 0.68963

447,290 18 1,678,695 1,681,656 COG4,SF3B3 0.50785

447,295 18 1,682,755 1,690,385 FUK 0.50909

(Continued)
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TABLE 2 | Continued

Traits Windowa Chr Start (bp) End (bp) Geneb VEc %

499,941 20 68,427,642 68,435,666 – 0.65724

499,946 20 68,442,658 68,449,729 – 0.95117

625,513 29 39,932,584 39,935,454 HRASLS5 1.32356

625,866 29 41,322,154 41,328,249 – 0.65351

625,871 29 41,330,454 41,343,749 – 0.89201

625,877 29 41,346,361 41,363,919 – 0.83036

625,883 29 41,366,511 41,373,237 – 0.73769

Protein yield

(kg)

19,769 1 80,273,378 80,278,372 SST 0.59587

19,774 1 80,279,371 80,285,703 – 1.09238

19,779 1 80,286,424 80,295,590 – 1.38891

21,033 1 87,273,950 87,286,594 – 0.58122

45,141 2 23,570,814 23,579,859 – 0.87377

45,146 2 23,581,521 23,584,485 – 1.66946

45,153 2 23,595,626 23,605,094 MAP3K20 1.31014

45,158 2 23,605,919 23,621,394 – 0.57615

162,878 6 1,184,671 1,195,799 – 0.53473

208,632 7 64,546,663 64,556,472 SLC36A3 0.61681

208,637 7 64,557,335 64,561,361 SLC36A2 0.66098

208,642 7 64,561,888 64,565,585 SLC36A2 0.70393

208,647 7 64,566,358 64,571,073 SLC36A2 0.72533

359,150 13 46,826,742 46,832,055 LARP4B, IDI1 0.50278

359,155 13 46,832,561 46,841,024 LARP4B, IDI1 1.14033

459,118 18 43,379,174 43,385,147 TDRD12 0.76653

460,050 18 46,914,865 46,918,136 TDRD12 0.51543

460,055 18 46,918,922 46,922,699 WDR62,TDRD12,LRFN3,SDHAF1,CLIP3 1.26331

460,060 18 46,930,251 46,935,240 WDR62,TDRD12,LRFN3,SDHAF1,CLIP3 1.19527

460,065 18 46,936,044 46,940,696 WDR62 0.92135

460,071 18 46,943,334 46,950,099 WDR62 0.70592

460,080 18 46,955,527 46,958,825 OVOL3,POLR2I,TBCB,CAPNS1 0.70892

460,085 18 46,960,023 46,967,172 OVOL3,POLR3I,TBCB,COX7A1 0.55181

541,509 23 235,290,93 23,541,032 – 0.52547

awindow that consists of five adjacent SNPs.
bpositional/putative candidate gene.
cgenomic variance absorbed by 5-SNP moving windows obtained using single-step genomic-BLUP.

The meaning of the bold values is that pointing out these genes is promising candidate genes affecting milk protein concentration.

β-LG was identified within a region containing six windows from
41.70 to 43.62 Mbp on BTA 1.

The two most informative windows associated with
casein index were located within a region from 65.19 to
65.24 Mbp on BTA 14. The most significant associations
with protein percentage and protein yield were clustered
on BTA 7 within a 16.50-Mbp segment that included 13
windows (53.86–70.40 Mbp) that explained 12.44% of the
genetic variance and a 3.70-Mbp segment that included eight
windows (43.37–46.96 Mbp) that explained 6.63% of the
genetic variance.

Candidate Genes and Functional Analyses
A total of 62 functional genes were located in or close to
windows that explained no <0.5% of the genomic variance. PPI
and GO enrichment analyses were performed for the 62 most
plausible candidate genes. The interaction network of proteins

encoded by these genes was more extensive and significant
than expected (46 edges identified; PPI enrichment P = 2.7
e−14; Figure 5). We also identified significantly enriched GO
terms (false discovery rate < 0.05) for four biological processes
and 12 cellular components with four to 24 of these genes for
milk protein composition traits (Table 3). On the basis of the
functional annotation results, PPI findings, and the biological
processes shown in the DAVID analysis, we finally identified
27 prospective candidate genes for milk composition traits
with biological functions, including amino acid metabolism,
amino acid transport, protein metabolism, and Golgi transport
and subsequent modification: ARL6, SST, EHHADH (BTA 1),
CSN1S1, CSN1S2, CSN2, CSN3, LAP3 (BTA 6), PCDHB4,
PCDHB6, PCDHB7, PCDHB16, SLC36A2 (BTA 7), GALNT14,
FPGS (BTA 11), LARP4B, IDI1 (BTA 13), RPL8, HSF1, DGAT1
(BTA 14), COG4, FUK, WDR62, CLIP3 (BTA 18), SLC25A21
(BTA 21), IL5RA (BTA 22), and ACADSB (BTA 26).
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FIGURE 1 | A circular-Manhattan plot for the proportion of genetic variance explained by the 5-SNP moving windows associated with the milk protein composition

traits αs1-CN, αs2-CN, β-CN, and κ-CN. The horizontal line represents windows explaining no <0.5% of the genomic variance. The four milk protein composition

traits were plotted from inside to outside, respectively. A rectangular-Manhattan version of the plot is shown in the Supplementary Figures.

DISCUSSION

In this study, we quantified milk protein composition using
ELISA kits, and we conducted a single-step GWAS using imputed
777K chips of 614 Chinese Holstein cows. A total of 178
significant windows for all studied milk composition traits were
detected, among which some windows are located within known
QTL regions on BTA 1, 6, 14, and 11 (Schopen et al., 2011;
Sanchez et al., 2017). However, in the present study, we found
no associations between regions on BTA 6 and αs2-CN or
between regions on BTA 11 and β-LG, probably due to the
different dairy populations that were selected. Several regions
were found to be located within or close to genes that are known
to have functions related to milk composition. In addition,
25 promising candidate genes for milk protein composition
were identified.

Chromosomes Containing Novel Candidate
Genes for Milk Composition Traits
On chromosome BTA 1, a total of 21 windows were
associated with αs1-CN, αs2-CN, β-CN, κ-CN, β-LG, casein

index, and protein yield. Windows associated with β-LG
and casein index were located 0.23 Mbp from the ARL6
gene, which encodes ADP ribosylation factor like GTPase
6 and is involved in membrane protein trafficking. ARL6
has been implicated in mammary gland cell membrane
trafficking and microtubule dynamics (Kahn et al., 2005;
Rao et al., 2012). The somatostatin (SST) and 3-hydroxyacyl
coenzyme A dehydrogenase (EHHADH) genes are located
in a region of BTA 1 (80.2–82.4 Mbp) that is associated
with αS1-CN, αS2-CN, β-CN, and protein yield. Somatostatin
(somatotropin release inhibiting factor, SRIF) is an endogenous
cyclic polypeptide and abundant neuropeptide with two
biologically active forms that exert a wide range of physiological
effects on neurotransmission, secretion, and cell proliferation.
Somatostatin is also potentially associated with lactation as a
signaling molecule (Lupoli et al., 2001). The protein encoded
by EHHADH is a bifunctional enzyme and one of the four
enzymes of the peroxisomal beta-oxidation pathway. This gene is
highly inducible via peroxisome proliferator-activated receptor α

(PPARα) activation and has a key influence on milk composition
traits (Houten et al., 2012).
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FIGURE 2 | A circular-Manhattan plot for the proportion of genetic variance explained by the 5-SNP moving windows associated with the milk protein composition

traits α-LA, β-LG, casein index, protein percentage, and protein yield. The horizontal line represents windows explaining no <0.5% of the genomic variance. The five

milk protein composition traits were plotted from inside to outside, respectively. A rectangular-Manhattan version of the plot is shown in the Supplementary Figures.

We detected 30 windows between 53 and 64 Mbp on BTA 7
that were associated with αs1-CN, αs2-CN, β-CN, κ-CN, protein
yield, and protein percentage. Twelve adjacent windows (53.86–
53.99 Mbp) were strongly associated with protein percentage
and contain multiple genes (PCDHB4, PCDHB6, PCDHB7,
and PCDHB16), including the protocadherin beta gene cluster,
which is critically involved in the establishment and function of
specific cell–cell neural connections in humans (Tan et al., 2010).
Moreover, two common contiguous windows within SLC36A2
(64.56–64.57 Mbp) were associated with six milk protein
composition traits (αs1-CN, αs2-CN, β-CN, κ-CN, protein yield,
and protein percentage). SLC36A2 plays a key role in amino
acid transport across the plasma membrane as well as the
transport of glucose and other sugars, bile salts and organic acids,
metal ions, and amine compounds (Edwards et al., 2018), and
may therefore have pleiotropic effects for several milk protein
composition traits.

On BTA 11, we identified a region of 17 windows from
68 to 98 Mbp that was associated with αs1-CN, β-CN, κ-CN,
and α-LA. There was a strong association between α-LA and a

region of five windows (68.28–68.61 Mbp) located 0.1 Mbp from
the GALNT14 (polypeptide N-acetylgalactosaminyl transferase
14) gene, a member of the polypeptide N-acetylgalactosaminyl
transferase (ppGalNAc-Ts) protein family. These enzymes
catalyze the transfer ofN-acetyl-D-galactosamine to the hydroxyl
groups on serines and threonines of target peptides. The
encoded protein participates in protein metabolism (Wang
et al., 2003). Therefore, GALNT14 has potential effects on α-
LA. Additionally, a segment at 98 Mbp associated with αs1-
CN and β-CN was located 0.4 Mbp from the FPGS gene. The
folylpolyglutamate synthase enzyme encoded by FPGS plays
a central role in establishing and maintaining both cytosolic
and mitochondrial folylpolyglutamate concentrations. Further,
FPGS is involved in several key metabolic pathways, including
those associated with folate biosynthesis and the metabolism of
vitamins and cofactors. Therefore, FPGS potentially serves as a
bridge between metabolism and synthesis for αs1-CN and β-CN
(Oppeneer et al., 2012).

We detected a total of 13 windows on BTA 13 that were
associated with αs1-CN, αs2-CN, β-CN, and protein yield. Two
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FIGURE 3 | A circular-Manhattan plot for significance [–log10(P-values)] of the association of 586,304 SNPs based on analyses using ssGWAS located on 24 Bos

taurus autosomes and the X chromosome with the milk protein composition traits αs1-CN, αs2-CN, β-CN, and κ-CN. The horizontal line represents a false discovery

rate of 1%. The four milk protein composition traits were plotted from inside to outside, respectively. A rectangular-Manhattan version of the plot is shown in the

Supplementary Figures.

of these windows (46.82–46.84 Mbp) were located 0.40 Mbp
and 1.7 Mbp from the LARP4B and IDI1 genes, respectively.
LARP4B encodes a member of an evolutionarily conserved
protein family and is implicated in RNA metabolism and
translation. This protein family includes five sub-families: one
genuine La protein and four La-related protein (LARP) sub-
families. LARP4B may stimulate amino acid transport as a
cytoplasmic protein (Mattijssen and Maraia, 2016). IDI1 plays
a key role in the metabolism of nutrients in the liver and is
involved in milk protein synthesis. Therefore, both LARP4B and
IDI1 are promising candidate genes for milk protein composition
traits (Shi et al., 2018).

On BTA 18, a total of 14 windows were associated with
αs1-CN, αs2-CN, κ-CN, protein yield, and protein percentage.
The COG4 and FUK genes were noted in a region containing
two adjacent windows (16.78–16.90 Mbp) that were associated
with protein percentage. COG4 (component of oligomeric
Golgi complex 4) is a protein-coding gene that is involved
in the structure and function of the Golgi apparatus, whereas
FUK (fucokinase) is involved in protein metabolism and

transport to the Golgi and subsequent modification. Thus,
COG4 and FUK may play key roles in the transport of milk
proteins. The WDR62 (WD repeat domain 62) gene was
also located in a region that included nine windows (43.37–
46.96 Mbp) with significant associations with αs1-CN, αs2-
CN, κ-CN, protein yield, and protein percentage. WRD62
encodes a c-Jun N-terminal kinase scaffold protein. Scaffold
proteins such as WRD62 simultaneously associate with various
components of the MAPK signal pathway and play a crucial
role in signal transmission and MAPK regulation. The MAPK
pathway regulates cellular proliferation and differentiation, in
part by controlling protein translation machinery (Sciascia
et al., 2013). Therefore, WDR62 may play a significant role
in milk protein synthesis. Additionally, the CLIP3 (CAP-Gly
domain-containing linker protein 3) gene, which encodes a
member of the cytoplasmic linker proteins of 170 family, was
located 0.28 Mbp from this region. Members of this protein
family contain a cytoskeleton-associated protein glycine-rich
domain and mediate the interaction of microtubules with
cellular organelles.
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FIGURE 4 | A circular-Manhattan plot for significance [–log10(P-values)] of the association of 586,304 SNPs based on analyses using ssGWAS located on 24 Bos

taurus autosomes and the X chromosome with αs1-CN, αs2-CN, β-CN, and κ-CN. The horizontal line represents a false discovery rate of 1%. Five milk protein

composition traits (α-LA, β-LG, casein index, protein percentage, and protein yield) were plotted from inside to outside, respectively. A rectangular-Manhattan version

of the plot is shown in the Supplementary Figures.

Finally, 11 contiguous windows associated with β-
CN were located from 47.72 to 47.85 Mbp on BTA 21
containing the SLC25A21 (solute carrier family 25 member
21) gene, which encodes a protein that participates in
amino acid metabolism (Scarcia et al., 2017). On BTA 22,
we detected an informative window (23.30–23.31 Mbp) that
was significantly associated with β-LG and casein index
and included the IL5RA (interleukin 5 receptor subunit
alpha) gene. As a novel milk protein gene, IL5RA activates
multiple downstream Jak-STAT signaling pathways and is
involved in proteasome-mediated ubiquitin-dependent protein
catabolism. On BTA 26, three adjacent windows (43.24–
43.29 Mbp) that were significantly associated with casein
index were located proximal to the ACADSB (acyl-CoA
dehydrogenase short/branched chain) gene, the encoded protein
of which is involved branched-chain amino acid catabolism
(Liu et al., 2013).

Chromosomes Containing Known
Candidate Genes for Milk Composition
Traits
We identified 16 windows on BTA 6 (87.19–87.21 Mbp) that
were associated with αs1-CN, αs2-CN, β-CN, κ-CN, β-LG,
casein index, and protein yield. This segment included the
casein gene cluster containing the CSN1S1, CSN1S2, CSN2,
and CSN3 genes, which encode αs1, αs2, β, and κ casein,
respectively. The casein gene cluster has a strong influence on
casein synthesis in bovine milk, and polymorphisms in this
region have significant effects on milk protein composition
and cheese-making abilities (Grosclaude, 1988; Grisart
et al., 2002). Additionally, a window associated with αs1-
CN located at 38.61 Mbp was 0.11 Mbp from the LAP3
(leucine aminopeptidase 3) gene. As a known gene affecting
milk production traits, LAP3 is involved in arginine and
proline metabolism and affects protein maturation and
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FIGURE 5 | Protein network of the 62 most probable candidate genes detected, according to STRING v10.0 action view.

degradation (Zheng et al., 2011), thereby potentially affecting
casein synthesis.

A 2-Mbp region of BTA 14 (18.61–20.02 Mbp) containing
six windows was associated with αs1-CN, β-CN, κ-CN, and α-
LA. In this region, we identified the SNP BovineHD1400007026
as being most significantly associated with αS1-CN, αS2-CN, β-
CN, κ-CN, α-LA, and protein yield. Several genes were identified
in this region, including DGAT1, which has major effects on
milk protein, milk fat content, and mineral composition in
bovine milk (Schennink et al., 2007; Bovenhuis et al., 2016). The
RPL8 gene, located 2.7 Mbp from this region, probably plays an
important role in the transcriptional regulation of DGAT1 and
may exert significant effects on milk production traits in dairy
cattle (Jiang et al., 2010, 2014). Therefore, bothDGAT1 and RPL8
are important candidate genes for milk protein composition
traits. Additionally, the HSF1 gene, located 0.6 Mbp from this

region, is involved in ERK signaling and the cellular response to
heat stress. The protein encoded by HSF1 is rapidly induced in
response to temperature stress and binds heat shock promoter
elements. HSF1 has a significant effect on milk production
mediated by a lysine-232/alanine polymorphism in the bovine
DGAT1 gene (Winter et al., 2002). Therefore, HSF1 may have
indirect effects on milk proteins such as αs1-CN, β-CN, κ-CN,
and α-LA.

CONCLUSIONS

In the present study, we identified a total of 178 genomic
windows and 194 SNPs on 24 bovine autosomes that were
significantly associated with milk protein composition or protein
percentage, including six genomic regions on chromosomes
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TABLE 3 | Gene Ontology (GO) functional enrichment with false discovery rate (FDR) < 0.05.

Pathway ID Description Gene count FDR

Biological Process GO.1903494 Response to dehydroepiandrosterone 4 2.16E-06

GO.1903496 Response to 11-deoxycorticosterone 4 2.16E-06

GO.0032570 Response to progesterone 4 2.25E-05

GO.0032355 Response to estradiol 4 0.000345

Cellular Component GO.0005796 Golgi lumen 4 2.45E-06

GO.0070013 Intracellular organelle lumen 16 4.22E-05

GO.0044446 Intracellular organelle part 23 0.000109

GO.0044428 Nuclear part 12 0.00617

GO.0043227 Membrane-bounded organelle 24 0.0103

GO.0044444 Cytoplasmic part 19 0.0143

GO.0043231 Intracellular membrane-bounded organelle 22 0.0227

GO.0043229 Intracellular organelle 23 0.0238

GO.0005737 Cytoplasm 23 0.0247

GO.0031981 Nuclear lumen 10 0.0247

GO.0043226 Organelle 23 0.0397

GO.0044431 Golgi apparatus part 5 0.0483

BTA 1, 6, 11, 13, 14, and 18. Within these regions, we
identified the following 27 candidate genes for milk composition
traits: ARL6, SST, EHHADH, CSN1S1, CSN1S2, CSN2, CSN3,
LAP3, PCDHB4, PCDHB6, PCDHB7, PCDHB16, SLC36A2,
GALNT14, FPGS, LARP4B, IDI1, RPL8, HSF1, DGAT1, COG4,
FUK, WDR62, CLIP3, SLC25A21, IL5RA, and ACADSB. The
findings of this study provide an important foundation
for future fine-mapping studies to more precisely elucidate
the mutations affecting milk protein composition traits in
dairy cattle. Future studies should establish causative links
between candidate variants and milk protein phenotypes using
functional analyses.

DATA AVAILABILITY

The genotype and phenotype data of the samples used in the
present study are available from the FigShare Repository: https://
figshare.com/s/206a2bcbf0cb0e4c2564

ETHICS STATEMENT

Milk samples were collected from farms that periodically
undergo quarantine inspections. The entire collection process
was performed in strict accordance with a protocol approved by
the AnimalWelfare Committee of China Agricultural University
(permit number: DK996).

AUTHOR CONTRIBUTIONS

SZ conceived and designed the study, and revised the
manuscript. CZ performed the phenotype collection,
sample collection, data analysis, and drafted the manuscript.
CL participated in the experimental design and drafted
the manuscript. SL, WC, and SS participated in sample

collection. QZ participated in data interpretation and
manuscript revision. All authors have read and approved the
final manuscript.

FUNDING

This work was supported by the 863 project (2013AA102504),
the National Science and Technology Programs of China
(2011BAD28B02), National Key Technologies R & D Program
(2012BAD12B01), the Beijing Dairy Industry Innovation Team,
China Agricultural Research System (CARS-36), and the Xinjiang
Province Key Technology Integration and Demonstration
Program (201230116). We are deeply grateful to all donors who
participated in this program.

ACKNOWLEDGMENTS

We thank Prof. Jianfeng Liu for valuable discussion and their
colleagues in the molecular quantitative genetics team at the
National Engineering Laboratory for Animal Breeding of China
Agricultural University, and all those who have contributed to the
present study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00072/full#supplementary-material

Table S1 | Single-nucleotide polymorphisms showing the most significant

association with six major milk proteins, casein index, protein percentage, and

protein yield.

Figure S1 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with αs1−CN.

Frontiers in Genetics | www.frontiersin.org 14 February 2019 | Volume 10 | Article 72

https://figshare.com/s/206a2bcbf0cb0e4c2564
https://figshare.com/s/206a2bcbf0cb0e4c2564
https://www.frontiersin.org/articles/10.3389/fgene.2019.00072/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhou et al. GWAS for Milk Protein Compositions

Figure S2 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with αs2-CN.

Figure S3 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with β-CN.

Figure S4 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with κ-CN.

Figure S5 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with α-LA.

Figure S6 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with β-LG.

Figure S7 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with casein index.

Figure S8 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with protein percentage.

Figure S9 | Manhattan plot for the proportion of genetic variance explained by the

5-SNP moving windows associated with protein yield.

Figure S10 | Manhattan plot for the –log10 (P-value) of single SNP associated

with αs1−CN.

Figure S11 | Manhattan plot for the –log10 (P-value) of single SNP associated

with αs2-CN.

Figure S12 | Manhattan plot for the –log10 (P-value) of single SNP associated

with β-CN.

Figure S13 | Manhattan plot for the –log10 (P-value) of single SNP associated

with κ-CN.

Figure S14 | Manhattan plot for the –log10 (P-value) of single SNP associated

with α-LA.

Figure S15 | Manhattan plot for the –log10 (P-value) of single SNP associated

with β-LG.

Figure S16 | Manhattan plot for the –log10 (P-value) of single SNP associated

with casein index.

Figure S17 | Manhattan plot for the –log10 (P-value) of single SNP associated

with protein percentage.

Figure S18 | Manhattan plot for the –log10 (P-value) of single SNP associated

with protein yield.

Figure S19 | Genetic map for 118 QTL related to milk protein composition.
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