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Stearoyl-CoA-desaturase-1 regulates gastric cancer stem-like
properties and promotes tumour metastasis via Hippo/YAP
pathway
Yunhe Gao1, Jiyang Li1, Hongqing Xi1, Jianxin Cui1, Kecheng Zhang1, Jiabing Zhang2, Yanmei Zhang3, Wei Xu3, Wenquan Liang1,
Ziwei Zhuang1, Pengpeng Wang1, Zhi Qiao1, Bo Wei1 and Lin Chen1

BACKGROUND: Stearoyl-CoA desaturase-1 (SCD1) is reported to play essential roles in cancer stemness among several cancers. Our
previous research revealed significant overexpression of SCD1 in primary gastric cancer stem cells (GCSCs), with its functional role
still unknown.
METHODS: We stably established three primary GCSCs by sphere-forming assays and flow cytometry. Protein quantification and
bioinformatics analysis were performed to reveal the differential protein pattern. Lentivirus-based small-interfering RNA (siRNA)
knockdown and pharmacological inhibition approaches were used to characterise the function and molecular mechanism role of
SCD1 in the regulation of GC stemness and tumour metastasis capacity both in vitro and in vivo.
RESULTS: SCD1 was found to increase the population of GCSCs, whereas its suppression by an SCD1 inhibitor or knockdown by
siRNA attenuated the stemness of GCSCs, including chemotherapy resistance and sphere-forming ability. Furthermore,
SCD1 suppression reversed epithelial-to-mesenchymal transition and reduced the GC metastasis probability both in vitro and
in vivo. Downregulation of SCD1 in GCSCs was associated with the expression of Yes-associated protein (YAP), a key protein in the
Hippo pathway, and nuclear YAP translocation was also blocked by the SCD1 decrease.
CONCLUSIONS: SCD1 promotes GCSC stemness through the Hippo/YAP pathway. Targeting SCD1 might be a novel therapeutic
strategy, especially to suppress GC metastasis and sensitise chemotherapy.
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BACKGROUND
Gastric cancer (GC) is the third most commonly diagnosed cancer
and the fifth leading cause of cancer mortality worldwide.1 Cancer
metastasis and therapy failure are considered as the main causes
of GC-related deaths,2 but the underlying mechanism is poorly
understood. Therefore, identifying novel genes/targets and
elucidating the molecular mechanisms of progression and
metastasis of GC are important.
Recently, mounting evidence has emerged in support of the

cancer stem cells (CSCs)/tumour-initiating cell model3 for leukae-
mia4 and a wide range of solid tumours,5–7 including gastro-
intestinal cancers.8–10 CSCs are now regarded as the GC origin, and
are implicated in cancer recurrence and chemotherapy resis-
tance.11 Our previous study established stably passaged primary
CSCs from GC metastatic sites, which exhibited enhanced stem-
like properties and increases in GC stem cell (GCSC) markers.12

Considering the fact that dysregulated protein patterns in GCSCs
have hardly been investigated,13 we performed iTRAQ (isobaric
tags for relative quantification) analysis to explore the possible

regulation mechanism of GCSCs. As a result, we found that a
lipogenesis-associated protein, stearoyl-CoA desaturase-1 (SCD1),
was most upregulated. SCD1 is an important enzyme located in
the endoplasmic reticulum (ER), which catalyses desaturation of
lipids.14 However, the role and function of SCD1 in GC or GCSCs
have not been clearly elucidated.
In this study, we report the proteomic profiles of intracellular

proteins in primary GCSCs and functional analysis of dysregulated
proteins. Moreover, we explored the clinical significance of the
most upregulated protein, SCD1, and its association with CSC
properties. Whether SCD1 promoted stemness was assessed by
SCD1 knockdown (SCD1-KD) or SCD1 inhibitor treatment, and its
suppression sensitised GC cells to chemotherapy. Furthermore, we
explored the mechanism underlying the regulation of SCD1 in
GCSCs. Collectively, we investigated the expression pattern of
GCSCs and the biological functions of the most upregulated
protein, SCD1, providing new insights into the treatment of GC,
especially targeting their stem-like properties, such as tumour
metastasis and chemotherapy resistance.
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METHODS
Cell culture
The commercial cell lines HGC-27, NCI-87, BGC-7901 and GES-1
were purchased from Shanghai Cell Bank and were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen, CA, USA)
according to the manufacturer’s instructions. Adherent cells were
maintained in a standard condition at 37 °C with 5% CO2. Primary
GC cells were obtained and cultured as previously described.12,15

Briefly, fresh human GC tissues were obtained immediately after
resection from patients who underwent gastrectomy in a Chinese
PLA General Hospital (PLAGH). All samples were transported to the
laboratory on ice within 30 min and disaggregated mechanically,
followed by digestion with 1 mg/ml collagenase I and 1mg/ml
collagenase IV (Life Technologies, Waltham, MA, USA) at 37 °C for
1–1.5 h. Tumour digestion was terminated and then seeded into
ultra-low-attachment six-well plates with modified DMEM/F12, 2%
B27 (Invitrogen), 1% ITS (insulin–transferrin–selenous acid, Corn-
ing, NY, USA), epidermal growth factor (20 ng/ml, Peprotech,
Hartford, CT, USA), basic fibroblast growth factor (10 ng/ml,
Peprotech), leukemia inhibitory factor (10 ng/ml, Peprotech) and
gastrin I (10 ng/ml, Peprotech).
This study was approved by the institutional Review Board of

the PLAGH, and all patients provided written informed consent.
This study was conducted in accordance with the Declaration of
Helsinki. The clinicopathological information was extracted from
the electronic medical record system.

Protein extraction and preparation
Cell monolayers (adherent cells) or sphere cells (CSCs) were grown
until a confluence of 70–80% in 100-mm plates or ultra-low-
attachment six-well plates, and then washed three times with
phosphate-buffered saline and harvested with a scraper or by
centrifugation. After incubation at 100 °C for 10min and two
consecutive cycles of vortexing, samples were centrifuged at 4 °C
for 10min at 10,000 × g. Quantification of protein lysates was
measured with a Protein BCA assay Kit (Bio-Rad, CA, USA). Protein
extracts from cancer cells were aliquoted and stored at −80 °C
until further analysis.

iTRAQ labelling and relative quantification
Equal amounts of proteins from adherent and sphere cells (200
μg) were precipitated and mixed with 4 μg of trypsin (Sigma-
Aldrich, MO, USA) at a final ratio of 1:50, and incubated overnight
at room temperature. After protein digestion, peptides were then
labelled with iTRAQ reagents into two groups according to the
manufacturer’s instructions: one is sphere cells with reagents 126,
127 and 131, and another is adherent cells with reagents 128, 129
and 130. Labelled samples were fractionated using a 75 × 150-μm
Zorbax 300SB-C18 column (Microm, Aubrun, CA) in a high-
performance liquid chromatography, 20AD HPLC system (Shi-
madzu, Kyoto, Japan).
A TripleTOF 5600 (Applied Biosystems, CA, USA) coupled with

an Easy-nLC1000 system (Thermo Fisher Scientific, USA) was used
for protein identification and quantification. Peptides were
subjected to nanoelectrospray ionisation tandem mass spectro-
metry through the TripleTOF 5600 coupled in line to the HPLC
system, with an electrospray voltage of 2.2 kV and capillary
temperature of 270 °C. The analytical cycle included a MS survey
scan and the scan range was 300–1650m/z.
ProteinPilot 2.0.1 software (Applied Biosystems) and MascotTM

(Matrix Science Inc., Boston, MA, USA) were applied to search
against the NCBInr database.

Database search and bioinformatic analysis
Biological functional analysis of the different modulated proteins
detected by iTRAQ quantification was performed according to
their functions, biological process and cellular component, using
the String 9.0 software.16 Differentiated protein expression was

considered to be significant when the expression was increased or
decreased with a fold change of 1.5 and a p value <0.05 in
biological replicates (Supplementary Table S1).

Western blotting
Cells were lysed with RIPA extraction reagent (Beyotime, Beijing,
China) supplemented with a protease inhibitor cocktail. Cell protein
lysates were separated by sodium dodecyl sulfate–polyacrylamide
gel electrophoresis and transferred to nitrocellulose membrane
(Millipore) and incubated with specific antibodies, for example,
SCD1, Yes-associated protein (YAP) and so on. β-actin antibody was
used as the control. Specific brands were detected by enhanced ECL
chemiluminescence reagent. Detailed information of antibodies is
given in Supplementary Table S2.

RNA extraction and quantitative real-time RT-PCR
Total RNA was extracted from GC tissues or cancer cells using
TRIzol reagent (Invitrogen) according to the manufacturer’s
instructions. First-strand complementary DNA (cDNA) was synthe-
sised using HiscriptQ RT SuperMix for quantitative PCR (qPCR)
(Vazyme, Nanjing, China) on a 7900HT system (Applied Biosystem,
Waltham, MA, USA). The PCR primers used to amplify target genes
are shown in Supplementary Table S3. The results were normal-
ised to the expression of β-actin, and the relative levels of
messenger RNA (mRNA) were analysed by the 2−△△CT method;
each sample was analysed in triplicate.

Immunohistochemical staining
Immunohistochemical staining was performed on 93 cases of GC
and their paired adjacent tissues according to the standard method
described previously using the following antibodies: anti-SCD1
(ab19862, 1:100, Abcam, Cambridge, UK), anti-YAP1 (14074S, 1:200,
Cell Signaling Technology (CST), Danvers, MA, USA), anti-E-cadherin
(14472S, 1:100, CST), anti-vimentin (5741S, 1:20, CST), anti-N-
cadherin (13116S, 1:100, CST) and anti-TEA domain transcription
factor 1 (TEAD1) (ab133533, 1:100, Abcam). Immunohistochemical
(IHC) staining scores were evaluated based on the ratio and intensity
of stained cells following the methods described in the previous
study.12 A categorisation of expression into three groups was based
on the scores: negative, moderate and positive expression

Spheroid-forming assay
Digested cells from GCs or GC cell lines were cultured to form
spheres in ultra-low-attachment six-well plates (Corning) at a
density of 10,000 cells/ml with modified medium described above.
All cells were routinely checked for mycoplasma contamination
with PCR test. The primary cells were cultured for at least 3 weeks
or until the appearance of tumourspheres (diameter >100 μm).

Annexin V apoptosis and cell-cycle assays
Cell apoptosis was measured 48 h after treating with A939572 or
infected with lentivirus using the APC-Annexin V Apoptosis
Detection Kit (BD Bioscience, NJ, USA) according to the manufac-
turer’s instruction. After double staining with APC-Annexin V and
propidium iodide (PI), the cells were analysed with a flow cytometer
(FACScan, BD Bioscience). The apoptosis results were then extracted
and analysed by the FlowJo 10.0.7 software (FlowJo, Ashland,
OR, USA).
Cells for cell-cycle analysis were stained with PI using DNA

labelling solution kit (Cytognos, Spain) following the protocol, and
were analysed by FACScan. The percentages of the cells in G0–G1,
S and G2–M phase were counted and compared using Modfit LT
3.1 (Verity Software, Topsham, ME, USA.)

Gene-set enrichment assays
We downloaded The Cancer Genome Atlas (TCGA) Stomach
Adenocarcinoma HTSeq-FPKM data using UCSC Xena (http://xena.
ucsc.edu). A total of 370 GC cancerous tissues had RNA sequence
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data. GSEA was performed to compare the differences in molecular
pathways in cell process between the low and high SCD1 expression
groups (cut-off at median value) on the data from stomach
adenocarcinoma dataset of TCGA, following the protocols of the
description by Subramanian et al.17 GSEA was conducted using GSEA
3.0.0 (http://www.broadinstitute.org/gsea/).

Lentivirus construction and transfection
For lentivirus construction, oligonucleotides with targeting
sequences were used for the cloning of small-interfering RNA
(siRNA) in the hU6-MCS-CMV-puro lentiviral vectors (GeneChem Co.,
Shanghai, China). The three recombinant lentiviruses with siRNA-
SCD1 were produced by co-transfection of 293T cells with plasmids
pHelper 1.0 and pHelper 2.0 (GeneChem Co.). Lentivirus-containing
supernatant was harvested 48 h after transfection and concentrated
by ultracentrifugation (2 h at 50,000 × g). The detailed sequences of
target siRNA are listed in Supplementary Table S4. Transfection of
the siRNAs was performed with Hitrans G (GeneChem) according to
the manufacturer’s instruction. Stably transfecting clones were
validated by quantitative real-time RT-PCR (qRT-PCR).
Overexpression plasmids and siRNAs of YAP were transfected

into cells using Lipofectamine 2000 (Invitrogen). The knockdown
sequence of YAP was as follows: siYAP, 5′-GACATCTTCTGGTCA-
GAGA-3′. A full-length YAP cDNA was synthesised by GeneChem
Company (Shanghai, China), and cloned into plasmid-CMV/MCS//
SV40/Neomycin. At 48 h post transfection, the modified cells were
harvested for western blot and qRT-PCR validation.

Cell proliferation and chemotherapy sensitivity analysis
Cell proliferation assay was performed with Cell Counting Kit-8
(CCK-8, Dojindo, Kumamoto, Japan). The cells were grown in 96-
well plates and cultured at 37 °C and 5% CO2 atmosphere. The
cells were plated in DMEM-F12 (Invitrogen) at a density of 5000
cells per well in 96-well plates. CCK-8 assays were performed at 0,
24, 48 and 72 h after being seeding. CCK-8 reagent (10 μl) was
added to each well, and the cells were incubated for 1 h at 37 °C.
The modified cells were treated with chemotherapy reagents,

including 25 μg/ml 5-fluorouracil (5-Fu) and 10 μg/ml oxaliplatin
(Sigma-Aldrich, St. Louis, MO, USA). Viable cell counts were
estimated by CCK-8 assays by measuring the optical density at
450 μm.

In vivo tumorigenicity and tumour metastasis assay
Six-week-old male severe combined immunodeficiency (SCID)
mice were purchased from Vital River Laboratory Animal
Technology (Beijing, China) and raised in an accredited Specific
Pathogen Free Animal Facility at Chinese PLA General Hospital. All
protocols were approved by the Institutional Animal Care and Use
Committee of the Chinese PLA General Hospital.
Twenty SCID mice were randomly divided into the following four

groups (five mice per group), which included suspensions of
modified HSC034 cells: (1) negative control siRNA (siNC), (2) SCD1-
KD, (3) siNC+ A939572 (5 μM/ml) and (4) SCD1-KD+ oxaliplatin
(10 μg/ml) cells (1 × 106 cells) by injecting into the rear flank of mice.
Tumour growth was evaluated using a Vernier calliper every 2 days,
and the tumour volume was calculated with the formula: V= 0.5 ×
length ×width2.
The aforementioned modified cancer cells were also injected

through tail veins of 20 mice (randomly divided into four equal-
sized groups). Mice were inspected every 2 days and sacrificed by
isoflurane anaesthesia and cervical dislocation at 4 months after
injection. Solid tumours and organs were removed and examined
in vision and under a microscope. Tumours were then fixed by
formalin for 24 h and then embedded in paraffin.

Statistical analysis
The results obtained from qPCR, spheroid formation assays, flow
cytometry analysis, invasion and migration assays were determined

by two-sided Student’s t test. Numeric variables were shown as the
means with their standard deviations. Pearson’s χ2 test was applied
to assess the association between SCD1 status and clinicopatholo-
gical variables. Pearson’s correlation analysis was used to calculate
the correlation between SCD1 and YAP, TEAD1. All statistical
analyses were performed using the SPSS 25.0 software (SPSS Inc.,
Chicago, IL, USA). Survival curves of progression-free survival (PFS)
and overall survival (OS) were drawn using the Kaplan–Meier
method, and the statistical significance was calculated by log-rank
test. A p value <0.05 determined the statistical significance.

RESULTS
Differential expression profiles of the whole proteome in GCSCs
revealed by protein quantification and bioinformatic analysis
In our previous study, we established GC stem-like cells (GCSLCs)
from GC hepatic metastasis sites by sphere-forming assays.12 After
serial passaging (Fig. 1a), as well as flow cytometric analyses, we
determined their stemness as the population of GCSCs. To explore
GC stemness-associated protein profiles, we performed iTRAQ-
based proteomics analysis of three GCSC lines and their
differentiated cells (Fig. 1b, c). As a result, 3095 proteins or
peptides were identified, including 2883 non-significantly modu-
lated proteins and 212 dysregulated proteins (Supplementary
Table S1). Among them, 74 were downregulated and 138 were
upregulated.
The list of modulated proteins was used to investigate the

molecular pathways altered in GCSCs by String 9.0 analysis. As a
result, the most striking pathways involving the upregulated
proteins in GCSCs compared with differentiated cells were lipid
metabolic pathways (Fig. 1d). Correspondingly, protein network
analysis also showed an important role of lipid metabolic
pathways in the dysregulated protein interactions (Fig. 1e).

SCD1 is upregulated in metastatic GCs/GCSCs and associated with
poor prognoses
Among the overexpressed proteins, SCD1 was found to be the
most upregulated (Supplementary Table S1, fold change= 7.23,
p < 0.001). SCD1 is an important enzyme located in the ER, which
catalyses desaturation of lipids and thus participates in the lipid
metabolic process.14 To verify the expression of dysregulated
proteins in GCSCs, we performed western blotting and qRT-PCR
analysis of the most five upregulated proteins in GCSCs and their
corresponding differentiated cells. The results showed that the
protein levels of these molecules were in accordance with the
results of the iTRAQ analysis (Fig. 2a). Immunohistochemical
staining was also performed to examine the protein expression
level of SCD1 in patient samples. The results showed moderate-to-
strong expression of SCD1 in the cytoplasm and nucleus
(Supplementary Fig. S1a). Combining the validation results with
the bioinformatic analysis, we therefore chose the most upregu-
lated protein (SCD1) as the main target protein in this study.
To identify the role of SCD1 in GC and GCSCs, we analysed the

mRNA sequencing data of 376 GC tissues (GC group) and 37
adjacent gastric mucous tissues (adjacent group) in TCGA. We
found that SCD1 transcriptional levels were higher in tumour
tissues than in adjacent non-tumour tissues (p= 0.01, Fig. 2b, left
panel). We also examined SCD1 mRNA expression in samples of
primary cancers and metastatic sites from our institute by qRT-
PCR. The results showed more significantly increased expression in
metastatic GC tissues than in primary tumours (p < 0.001, Fig. 2b,
right panel).
The associations of SCD1 mRNA expression and the major

clinicopathological features of the 93 GC cases are presented in
Supplementary Table S5. Overexpression of SCD1 compared with
adjacent normal tissues was significantly associated with the
pTNM stage (p < 0.001) and distant metastasis (p= 0.038). In terms
of prognosis prediction, upregulation of SCD1 was also a negative
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predictor for both OS and PFS in TCGA and PLAGH databases
(Fig. 2c, d).
We then examined 93 GC patient specimens and analysed the

expression of SCD1 in tumour tissues and their adjacent counter-
parts by qPCR analysis (Fig. 2e). Approximately 58% of patients
showed upregulation of SCD1 mRNA in their tumour tissues
compared with non-tumour counterparts.
To further examine whether SCD1 downregulation functionally

regulated the traits of GCSCs, we performed both SCD1-KD
experiment using a lentivirus-based approach and pharmacologi-
cal inhibition. First, western blot analysis showed relatively high
expression of SCD1 in primary GC cell line HSC034SF (034SF)
among a panel of GC cell lines and a gastric mucosal cell line (GES-
1) (Fig. 2f). Therefore, the HSC034 cell line was chosen for KD and
further experiments. The HSC034 cell line was transfected with
siNC and three SCD1-KD siRNAs. Expression levels of SCD1 were
assessed by western blot analysis and qPCR (Fig. 2g). The results
showed significant decreases of SCD1 protein in SCD1–KD2 and
SCD1–KD3 groups, between which the SCD1–KD2 group had the
highest decrease. Therefore, the SCD1–KD2 group was chosen for
further experiments. Moreover, we used A939572 (MCE) as the
pharmacological inhibitor to suppress SCD1 expression.18 Both
concentrations of 5 and 10 μM/ml MCE inhibited SCD1 expression
efficiently (Fig. 2h).

SCD1 regulates self-renewal, chemoresistance and stem cell
marker expression of GC cells
To determine whether SCD1 regulated the self-renewal of GCSCs,
control cells and SCD1-KD- or A939572-treated cells were
subjected to a spheroid formation assay. Compared with control
cells, significantly less and smaller spheroids were observed in
assays of treated cells (Fig. 3a). To further investigate whether
SCD1 regulates the stem cell population in GC cells, we measured
and compared the expression of three stem cell markers, CD44,9

Lgr519,20 and CD133,21 in SCD1-KD cells and their controls by flow
cytometry. Transcriptional stemness markers, such as Sox-2, Oct-4
and Nanog, were also measured by qRT-PCR.22 We found that
SCD1-KD- and A939572-treated cells exhibited significant
decreases in those markers (Fig. 3b, c).
Another important biological feature of CSCs is resistance to

chemotherapy.23 We therefore compared the viability of two cell
lines treated with commonly used chemotherapeutic drugs for GC,
oxaliplatin and 5-Fu, by CCK-8 assays. HSC034 cells showed lower
viability as the concentration of the A939572 was increased.
However, in another cell line with low SCD1 expression, HGC-27,
A939572 did not significantly affect cell proliferation (Fig. 3d).
HSC034 cells were more sensitive to oxaliplatin when SCD1 was
downregulated, whereas no significant changes were detected in
HGC-27- or 5-Fu-treated cells.
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SCD1 regulates invasion, migration and epithelial-to-mesenchymal
transition of GC cells
A major feature of CSCs is their high metastatic potential.
Matrigel-coated invasion and Matrigel-uncoated migration
transwell assays showed that SCD1 downregulation in HSC034
cells impaired their invasiveness and migratory potential
(Fig. 4a). Downregulation of SCD1 also suppressed the wound-

healing ability of HSC034 cells compared with control cells
(Fig. 4b, c). IHC staining in the GC tissues demonstrated that
overexpression of SCD1 was associated with the expression of
mesenchymal markers, vimentin and N-cadherin, but negatively
correlated with the expression of E-cadherin (Supplementary
Fig. S1c). Furthermore, knockdown of SCD1 in HSC034 cells
reversed the molecular changes in E-cadherin, vimentin and
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N-cadherin expression, which revealed a more epithelial cell-like
phenotype (Fig. 4d).

SCD1 downregulation impairs YAP expression and nuclear
translocation, and leads to G1 arrest of GC cells
SCD1 was recently reported to be involved in the activation of
several oncogenic signalling pathways (e.g. the Wnt/β-catenin
pathway) in other cancers.24 Therefore, to explore the targeted
pathways involved in SCD1 regulating stemness of gastric cancer,
we performed GSEA of common tumour-related pathways. The
GSEA results showed distinct upregulation of the Hippo/YAP
pathway (Fig. 5a, normalised enrichment score (NES)= 1.85, false
discovery rate (FDR) q value= 0.033) and cell cycle pathway (NES
= 2.18, FDR q value=0.027). Therefore, we explored the correlation
between SCD1 and Hippo pathway. IHC scores showed that in GC
tissues, SCD1 was correlated with the expression of two key Hippo
pathway proteins, TEAD1 and YAP (Fig. 5b).25 In addition, cell cycle
and apoptosis analyses were performed to explore the function of
SCD1. As a result, we found that HSC034 cells treated with
A939572 and SCD1-KD cells had higher apoptotic rates than siNC
cells (Fig. 5c). Moreover, cells treated with A939572 and SCD1-KD

cells showed higher cell-cycle arrest with significantly more cells in
the G1/G0 phase and fewer cells in the G2/S phase of the cell cycle
compared with siNC cells (Fig. 5d). Western blot analysis also
showed that the level of the key G1/S-transition protein cyclin D1
was decreased accordingly (Fig. 5e). The protein levels of YAP,
phosphorylated YAP (p-YAP) and TEAD1 were also decreased by
SCD1-KD or treatment with A939572 (Fig. 5e). qRT-PCR assay
revealed that the transcriptional level of YAP and TEAD1 mRNA
was decreased after SCD1-KD (Fig. 5f).
To further determine the role of YAP in SCD1 regulating the

stemness of GCSCs, YAP–siRNA was transfected into HSC034 cells
to suppress the YAP expression. Subsequent sphere-forming and
transwell assays found that YAP knockdown could lead to similar
inhibitory effect on self-renewal and invasion capacity as SCD1-KD
did. On the other hand, overexpression of YAP in HSC034 cells
tends to partially reverse the inhibitory effect that was induced by
SCD1-KD (Fig. 5g, h).
Moreover, IHC staining showed that nuclear expression of YAP

was decreased when SCD1 was almost absent (Fig. 5i). We next
simultaneously examined nuclear and cytoplasmic expression of
YAP in HSC034 cells when SCD1 was downregulated, and found

siNC

SCD1 KD

5

4

3

2

1

0

R
el

at
iv

e 
m

R
N

A
 le

ve
ls

S
ph

er
oi

d 
nu

m
be

r 
(D

>
10

0
μm

)

Sox-2 Oct-4 Nanog

+A939572

100

50

0
siNC

siNC

+A939572

+A939572

SCD1 KD

SCD1 KD

SCD1 inhibitor (A939572) Oxaliplatin (10 μg/ml) 5-Fu (25 μg/ml)

SCD1 inhibitor (A939572) Oxaliplatin (10 μg/ml) 5-Fu (25 μg/ml)

Time (h)Time (h)Time (h)
0 12

1.0

100 101 102 103 104

3 μM siNC Blank
SCD1 KD

siNC
SCD1 KD

siNC
SCD1 KD

SCD1 KD5 μM
10 μM

3 μM
5 μM
10 μM

100 101 102 103 104 100 101 102 103 104

100 101 102 103 104 100 101 102 103 104
100 101 102 103 104

100

150

ba

dc

150

100

50

0

200
CD44
74%

siNC

Lgr5
54.5%

CD133
19.1%

CD133
9.29%

CD133
11.5%

Lgr5
4.7%

Lgr5
26.9%

+A939572 SCD1 KD

CD44
14.9%

CD44
27.2%

150

100

50

0

200

100

50

0

C
ou

nt

300

200

100

0

C
ou

nt

C
ou

nt

300

300

200

200

100
100

0 0

0

50

100

150

200

250

0

50

50

0

100

100

150

150

200

250

C
ou

nt

C
ou

nt

101 102

FL3-H :: CD44 PE-CY7

FL2-H :: Lgr5 PE FL2-H :: Lgr5 PE

FL3-H :: CD44 PE-CY7
103 104 100 101 102 103 104 100 101 102 103 104

1.0 1.0

0.5 0.5 0.5

0.0 0.0 0.0

1.0

0.5

0.0

1.0
1.0

0.5 0.5

0.0 0.0

24 36 48

0 12 24 36 48 0 12 24 36 48 0 12 24 36 48

0 12 24 36 48 0 12 24 36 48

Time (h)Time (h)Time (h)

H
G

C
-2

7
H

S
C

03
4

C
D

13
3

Lg
r5

C
D

44
C

el
l v

ia
bi

lit
y 

ra
te

 (
O

D
45

0
nm

)
C

el
l v

ia
bi

lit
y 

ra
te

 (
O

D
45

0
nm

)

C
el

l v
ia

bi
lit

y 
ra

te
 (

O
D

45
0

nm
)

C
el

l v
ia

bi
lit

y 
ra

te
 (

O
D

45
0

nm
)

C
el

l v
ia

bi
lit

y 
ra

te
 (

O
D

45
0

nm
)

C
el

l v
ia

bi
lit

y 
ra

te
 (

O
D

45
0 

nm
)

Fig. 3 Downregulation of SCD1 attenuated the stem-like properties of gastric cancer stem cells. a Knockdown or inhibition of SCD1
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that the protein level of YAP was significantly decreased in the
nucleus, but not in the cytoplasm (Fig. 5j).

SCD1 downregulation attenuates GCSC tumorigenicity and the
metastasis-dependent Hippo–YAP pathway in vivo
To determine whether SCD1 affects tumour growth and
metastasis in vivo, SCD1-KD HSC034 cells and cells treated with
A939572 or oxaliplatin were injected subcutaneously or via the tail
vein into SCID mice. All mice developed tumours at the injection
sites afterwards, except two did not (one in the SCD1-KD and one
in the SCD1-KD each treated with oxaliplatin group). As a result,
the average size of tumours generated by SCD1-KD cells and cells
treated with the SCD1 inhibitor was significantly smaller than

those generated by control cells (Fig. 6a, b). The tumour
metastasis models established by tail-vein injection had higher
rates of liver and lung metastases when injected with untreated
HSC034 cells, whereas SCD1-KD cells and cells treated with the
SCD1 inhibitor/chemotherapy led to lower development of
metastatic tumour sites (Fig. 6c, d).

DISCUSSION
Recently, mounting evidence has suggested that CSCs play an
essential role in cancer initiation and progression.11,26 Proteomics
has been adopted as a powerful method to efficiently determine
protein networks responsible for CSC pathophysiology and
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elucidate the molecular mechanisms of CSCs.27 In the present
study, we employed proteomics analysis to explore the key
functional proteins in GCSCs and the involved pathways, as well as
the underlying mechanism. Interestingly, metabolic pathways,
especially lipogenesis pathways, were highly upregulated in
GCSCs compared with differentiated cells. Lipogenesis is vital to
maintain the stemness properties of cancers.28 When we

examined the dysregulated proteins in detail, expression of
SCD1 was ranked as the highest. SCD1 has been widely studied
in metabolic diseases, such as diabetes and obesity.29,30 In
addition, some studies have indicated the biological role of
SCD1 in solid tumours, such as hepatocellular cancer and lung
cancer,31,32 either through ER stress or the Hippo/Yap pathway.
Although evidence suggests that SCD1 is important for cancer
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progression and stemness properties, the role of SCD1 in GCSCs
remains to be investigated, especially in terms of metastasis and
chemotherapy failure.
qPCR and western blot analysis showed that SCD1 was highly

expressed in GCSCs and more than 58% of GC patients. In SLCs

derived from patients and tumour tissues of metastatic cases,
SCD1 expression was more predominant. Furthermore, upregu-
lated SCD1 protein expression in GC patients was significantly
correlated with their worse survival. Downregulation approaches
for SCD1 in vitro and in vivo were then used to examine the
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functional role of SCD1 in GCSCs. First, SCD1 was found to play a
regulatory role in GCSCs, including regulating expression of
surface markers CD44, CD133 and Lgr5, and the sphere-forming
ability of GCSCs. Second, we found that SCD1 inhibition or
knockdown increased some chemotherapeutic effects in GC cells
with high SCD1 expression. In addition, SCD1 suppression
attenuated the migration/invasion and wound-healing ability of
GC cells. Consistently, overexpression of SCD1 was correlated with
the presence of mesenchymal markers in GC tissues, while GC
cells demonstrated mesenchymal-to-epithelial transition pheno-
type after SCD1 downregulation. Notably, the in vivo xenograft
assays also confirmed the inhibitory effects on tumour growth and
metastasis after SCD1 downregulation.
Next, we elucidated the downstream mechanism of SCD1 by

several bioinformatics analyses. Although a relationship between
SCD1 and the Hippo pathway has been found in other CSCs,32,33 the
precise role of SCD1 in GC has not yet been addressed. Our study
revealed the protein relevance of SCD1 and the Hippo pathway, as
well as a cell-cycle-related pathway. Subsequent experiments
demonstrated that SCD1 suppression also led to G1 arrest and a
higher apoptosis rate in GC cells. We showed for the first time in this
study that key proteins of the Hippo signalling pathway, YAP and
TEAD1, were correlated with SCD1 expression, and SCD1 inhibition
led to YAP suppression. In addition, SCD1 downregulation decreased
the expression of p-YAP and caused YAP disassembly in GC cell
nuclei, which also attenuated the Hippo pathway activation. Further
rescue assays revealed that overexpression of YAP could partially
reverse the inhibitory effect on GCSCs induced by SCD1-KD. Taken
together, these results suggested that SCD1 promotes the GC
stemness through the Hippo/YAP pathway.
The highlight of this study lies in uncovering the functional role

of SCD1 in inhibiting the tumour invasion/metastasis potential
and chemotherapy resistance both in vivo and in vitro. Further-
more, we found that A939572 suppressed self-renewal, migration/
invasion and chemotherapy resistance of GC cells, which makes
SCD1 an attractive therapeutic target. Inhibiting genes controlling
cell lipogenesis, such as SCD1, has been reported to overcome
therapeutic resistance in various cancers.34,35 Interestingly, in this
study, we found that oxaliplatin rather than 5-Fu sensitised SCD1-
KD cells to chemotherapy. This may indicate that oxaliplatin is a
cell-cycle-independent drug that augments the efficacy of cell-
cycle arrest caused by SCD1 downregulation. Therefore, oxaliplatin
combined with A939572 in SCD1-overexpressing GC patients
might achieve better inhibition of tumour growth and metastasis.
In conclusion, we identified a novel GCSC-associated protein,

SCD1, and found that SCD1 regulates stemness, including
tumorigenesis, chemoresistance and metastasis, via Hippo/YAP
pathways in this study (Fig. 6e). Targeting GCSCs with an SCD1
inhibitor in combination with cell-cycle-independent chemother-
apy appears to be a promising, novel therapeutic strategy for
treating GC, especially to prevent tumour metastasis and sensitise
to chemotherapy.
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