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Abstract

Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth

leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common

co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This sub-

stantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of

angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts

angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of

pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain

normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the

mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms

that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an

opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progeni-

tor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required

for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of

balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory

mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
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Vascular dysfunction in chronic lung disease

Microvascular dysfunction and/or structural remodeling
(vasculopathy) is frequently, if not ubiquitously, observed
in most chronic lung diseases (CLD), including pulmonary
fibrosis (PF), chronic obstructive pulmonary disease
(COPD)/emphysema and interstitial lung disease associated
with systemic sclerosis (SSc). This vasculopathy may be
characterized by deregulated angiogenesis, pathologic
remodeling, and/or loss of microvessels.

The complex, orchestrated formation of blood vessels
that occurs during lung development provides insights into
the origins of vasculopathy later in life. The growth of new
vessels in the adult can occur through angiogenesis, which is
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new vessel growth from existing vessels and vasculogenesis,
which is new vessel growth independent of existing ves-
sels.1–6 The coordination of both processes is important in
lung development and it also plays a key role in adult-onset
lung disease.

During the fourth week of lung development in humans,
hematopoietic progenitor cells initiate vasculogenesis to
form vascular lakes.1,7,8 These structures will ultimately
become capillaries and connect with the pulmonary circula-
tion, which begins to develop separately during the seventh
and eighth week of gestation. These connections enable the
lung to carry out its primary function, which is to deliver
blood flow to alveolar capillaries where oxygen absorption
and carbon dioxide elimination occurs. The bronchial circu-
lation is a distinct system from the pulmonary circulation. It
functions to supports the airway structure of the lung and
the bronchial blood supply develops via angiogenesis from
the aorta during the ninth and 12th week of gestation.7–9

When there is obstruction of pulmonary blood flow, ische-
mic stimuli induce rapid and extensive growth of the bron-
chial circulation. Indeed, it is the bronchial circulation that
supplies the blood vessels that permit tumor growth in lung
cancer.10 In addition to tissue hypoxia, the bronchial vascu-
lature is also sensitive to local inflammatory responses.11

Inflammation promotes the release of mediators like IL-1
and IL-6 that stimulate the release of vascular endothelial
growth factor (VEGF).12 This increases bronchial vascular
density and leads to airway remodeling in asthma.9,11–15

Though its role in asthma is well-established, the impact
of these factors on other inflammatory lung diseases
like emphysema and PF is less clear.16 Some studies have
reported increased bronchial vascular density in COPD17,18

and this may contribute to the mucus production and thick-
ened airways that occur in this disease. However, other stu-
dies have shown decreased or no changes in the bronchial
vasculature.19–21 Thus, the role of the bronchial blood ves-
sels in COPD is not as clearly defined as it is in asthma.22,23

Increases in the bronchial vasculature are noted in bleomy-
cin-induced PF in mice.24 Despite these findings, most stu-
dies have concentrated on alveolar capillaries because the
alveolar parenchyma is the region most affected by fibrotic
remodeling in this disease.25–27 This review will largely focus
on factors affecting the alveolar microvasculature28 since
alterations in this region have a well-established role in the
pathogenesis of both PF and emphysema.

In most forms of CLD, development of secondary pul-
monary hypertension (PH) is associated with poor prognosis
and worsened survival,29 underscoring the importance of
better understanding the role of the pulmonary vasculature
in disease pathogenesis. The etiology of microvascular
remodeling and mechanisms through which it contributes
to the development and severity of various CLD remain
unknown, due in part to a lack of models recapitulating
early stage vasculopathy before environmental injuries, dis-
ease, or aging. The relevance of vasculopathy to the patho-
physiology of CLDs has not been resolved as conflicting

evidence depicts angiogenesis as both reparative or patho-
logic;30–41 it is possible that both of these are true in specific
contexts.

Most work to date investigating the pulmonary vascula-
ture has focused on arterial and capillary networks in the
lung; the role of lymphangiogenesis has been largely over-
looked. As a balance of existing and de novo capillary and
lymphatics is necessary for tissue homeostasis, one might
argue that their collective deregulation is paramount to
the pathophysiology of disease.

Capillary and lymph angiogenesis

The pulmonary lobule, which measures 2–3 cm in size, is the
basic functional unit of the lung. It comprises several ter-
minal bronchioles which run with pulmonary arteries and
deep lymphatics in the center. This structural unit is envel-
oped by interlobular septa containing pulmonary veins and
independent superficial lymphatics that are in communica-
tion with the pleural lymphatic system. The deep lymphatics
travel in the bronchovascular interstitium and drain the air-
ways while the superficial lymphatics are present in the inter-
lobular septa and drain alveolar regions. The structure and
function of lymphatic vessels is very different from the cir-
culatory system and they have been shown to be extremely
sensitive to interstitial stresses.42

In contrast to the circulatory system, lymphatic flow is
regulated by the movements of the body and muscle con-
traction.42 These structures are interlaced among arterioles
and venules of most soft connective tissues of the body to
aid in the regulation of fluid balance.42–47 In the adult lung,
lymphatics are localized to the bronchiolar wall and bron-
chiole associated arteries.48 Intra-alveolar lymphatics are
more difficult to distinguish but are also present, interwoven
within the alveolar-capillary interstitium.45,49 Of note, dis-
orders of these lymphatic systems could promote airway or
alveolar injury by impairing the clearance of antigens and
lung biomediators.

Angiogenesis is the sprouting and growth of new vascu-
lature from existing vascular structures. Lymphangiogenesis
is similar to capillary angiogenesis in that during develop-
ment and in the maintenance of adult tissue homeostasis,
the formation of de novo lymphatics may occur from
sprouting of lymphatic endothelial cells (LEC) from existing
vessels as well as single LEC or mesenchymal progenitors
migrating to a zone where they later connect and form
vascular structures.4,43,44,50–54 Currently, distinguishing
between LEC and angiogenic mesenchymal progenitors
in vivo is technically challenging due to the promiscuity of
lymphatic markers (prox1, lyve1, flt4). In vitro, definition
between the cell types relies on functional characteristics and
expression of multiple lineage specific markers.55,56 The
regulation of both angiogenic processes involves VEGF sig-
naling.43,44,50,57 A comparison of the distinct processes of
capillary and lymphangiogenesis is reviewed by Adams
and Alitalo.43
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During development, lymphangiogenesis is closely linked
with capillary angiogenesis.43 Their interaction and balance
is necessary for maintenance of tissue homeosta-
sis.43,44,49,51,58 During disease, angiogenesis of one may
exceed the other.4,31,32,41,42,45–47,58–71 Both angiogenesis
and lymphangiogenesis are required for wound healing
and functional tissue repair, processes deregulated in
CLD.43,50,72 Typically, lymphatic capillaries do not contain
mesenchymal cells/pericytes. However during disease, the
lymphatic capillaries may attract these cells.73 In both devel-
opmental and pathological instances, mesenchymal cells
may also form new lymphatic structures, devoid of endothe-
lium, either connected or separate from existing lymphatic
circulation.52,53,74 These abnormal mesenchymal structures
have been described in tumor angiogenesis and termed vas-
cular mimicry.75–78

Pulmonary fibrosis

PF (familial, idiopathic [IPF], and associated with SSc) is a
debilitating disease characterized by excessive matrix depos-
ition, angiogenesis, and epithelial cell hyperplasia that
impedes overall tissue function. Abnormal neovasculariza-
tion in fibrosis was first characterized in 1963 by Turner-
Warwick.79 The underlying cause of fibrotic remodeling and
microvascular dysfunction in the early stages of fibrosis is
unknown.30–32,35,45,49,58,62,70,80–84 Research suggests that
impaired cross-talk between endothelial cells and mesen-
chymal progenitors during disease drives a functional
switch of the mesenchyme to a pro-remodeling pheno-
type, modulating both vascular regression as well as fibro-
sis.85 Additionally, the relevance of angiogenesis,
microvascular remodeling, and lymphangiogenesis to
the pathophysiology of disease are an area of intense
investigation.31

A heterogenous pattern of microvascular remodeling has
been reported in PF. Microvascular density (as defined by
CD34þ cells) was reported to be greater during fibrosis in
areas of mild remodeling compared to normal lungs,
whereas fibroblast foci are described as devoid of ves-
sels.24,30,31,84,86,87 Similarly, fibrosis in SSc is associated
with an initial increase in microvessels, followed by a pro-
gressive decrease.62,65,80–82 Heterogeneity of the microvascu-
lature is largely dependent on the localization and severity of
fibrosis.30–32,84 It is not entirely clear whether these discre-
pancies in microvascular density represent reactive/compen-
satory changes or reflect the temporal heterogeneity of the
lesions that occur in PF. For example, alveolar capillaries
are increased and dilated in non-fibrotic regions but absent
in fibrotic interlobular septa.88–90 These analyses are com-
plicated by the promiscuity of lineage marker expression;
for example, CD34 may be expressed on some epithelial
cell populations including bronchoalveolar stem cells
(BASCs);91 as such there is a need to more comprehensively
define patterns of vascular remodeling in PF using multi-
marker strategies.

Abnormal lymphangiogenesis is also present in PF and
typically associated with the degree of disease sever-
ity.45,49,58,92 El-Chemaly correlated the diameter of lymph-
atics to disease severity in IPF patients,45 while the diameter
has also been correlated to survival.93 They further demon-
strated that angiogenesis in IPF patients was regulated by
short fragment hyaluronan, the extracellular matrix protein,
present in the bronchioalveolar lavage fluid and macro-
phages, not found in healthy controls.45 Lymphatic micro-
vasculature is localized to areas of remodeling where
capillaries are typically absent. Fibrosis disrupts lymphatics
in the interlobular septa94 and this impairs alveolar clear-
ance in the lung.95 These changes could perpetuate lung
fibrosis by impairing the elimination of inflammatory cells
that express TGF-b, a profibrotic cytokine that inhibits lym-
phangiogenesis.96,97 Abnormal lymphatics have been pro-
posed as a unifying mechanism for fibrogenesis.58

Intriguingly, in a murine model of PF induced by intratra-
cheal or intraperitoneal bleomycin, the development of
abnormal lymphatic structures was driven by platelet-
derived growth-factor-beta (PDGF-b), and pharmacologic
inhibition of PDGF-b attenuated lymphatic remodeling
and improved fibrosis.98 This is of particular interest as
the recently approved antifibrotic treatment nintedanib,
among its actions, inhibits PDGF-b/PDGFR-b signaling,99

raising the possibility that its efficacy may be due in part to
effects on lymphatic organization.

COPD/Emphysema

Emphysema is a form of COPD, characterized by abnormal
enlargement of the distal airspaces/alveoli, and is an import-
ant contributor to reduced lung function in patients with
COPD.100 Emphysema is a progressive disease that destroys
alveolar septa over time and causes a decrease in functional
alveolar surface area that impairs the absorption of oxygen.
Along with small airways disease and chronic bronchitis,
emphysema contributes to persistent airflow obstruction in
patients with COPD, resulting in persistent obstruction to
expiratory airflow, chronic dyspnea, and death in approxi-
mately one-third of affected patients.101 The narrowing of
the airway and the elaboration of thick mucus causes
breathlessness by impeding flow in the airways. COPD
was ranked sixth among the causes of death globally in
1990 but is projected to be the third most common cause
of death by 2020.102 Current treatment is limited and focuses
on halting further lung destruction and preserving lung
function and includes smoking cessation, bronchodilators,
steroids, and supplemental oxygen.103 A limited understand-
ing of the cellular pathogenesis of COPD has impeded the
development of effective treatments. Recent evidence has
identified alterations to the lung microvasculature during
the early pathogenesis and heterogeneity of COPD,104–107

although the underlying mechanisms are not defined.
Emphysematous loss of the alveolar capillary network

was first described by Liebow in 1959.108 However, the
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relevance of the microvasculature during the early stages of
COPD has not been resolved. The basis for a vascular com-
ponent contributing to emphysema was suggested by Wiebe
and Laursen in 1998, via quantitation of significantly
decreased capillary length and density in COPD patients
(68%), relative to controls.109 A functional basis for vascu-
lopathy as a contributor to disease pathogenesis has been
demonstrated in clinical studies comparing FEV1 to severity
of tissue remodeling and vascular perfusion. Barr et al.
defined a relationship between endothelial function, FEV1,
and percentage of emphysema using computed tomography
(CT) in ex-smokers and demonstrated that endothelial dys-
function was associated with a significant decrease in
FEV1.110 McAllister et al. defined a relationship between
emphysema and systemic vascular dysfunction105 and
Sabit et al. showed that evidence of increased arterial stiff-
ness and endothelial dysfunction was related to the severity
of airflow obstruction increasing the risk for COPD.104

Alford et al. documented increased areas of decreased
perfusion in individuals with early visual CT evidence of
emphysema, relative to emphysema-free smokers and per-
sons who had never smoked.106 Most recently, imaging of
the pulmonary vasculature in COPD patients demonstrated
that the extent of loss of vascular function correlates to the
degree and heterogeneity of emphysema/COPD.107 Many
studies exploring the mechanism(s) of vasculopathy in
COPD have focused on endothelial apoptosis.111 Alpha-
1-antitrypsin has been shown to inhibit caspase-3 activation
and apoptosis in endothelial cells, providing a potential
mechanism through which vasculopathy contributes to
emphysema in patients with alpha-1-antitrypsin defi-
ciency.112 In addition, SERPINF1 has been shown to be
elevated in patients with COPD and may contribute to
increased endothelial cell apoptosis.113 In addition to the
associative studies in humans, animal studies have suggested
a causal link between endothelial dysfunction and emphy-
sema. Antagonizing vascular endothelial growth factor
receptor (VEGFR) in rodents induced endothelial apoptosis
and the subsequent destruction of alveolar lung tissue.114

Clinical studies have also linked enhanced lymphangio-
genesis to the pathogenesis of COPD. Hardavella et al. cor-
related the lymphatic microvessel density, as determined by
Lyve1 stain, to the degree of airway obstruction, measured
by FEV1, in COPD patients vs. non-COPD smokers.46

Mori et al. followed these proof-of-principle studies with a
detailed histochemical quantification of lymphatic distribu-
tion and morphological characteristics in healthy control vs.
COPD lung tissue.48 Pathologic, de novo lymphatics were
localized in the alveolar parenchyma, not associated with
smooth muscle actin positive vessels. They were also
found at a higher density in areas of alveolar parenchymal
fibrosis. Taken together, these studies suggest that while de
novo capillary angiogenesis is halted in COPD, lymphangio-
genesis progresses, representing an imbalance of angiogen-
esis. How these lymphatic vessels contribute to the
pathogenesis of COPD remains to be determined.

However, it has been speculated that they may channel
inflammatory signals to regional lymph nodes where T cell
activation occurs. The coordination of T cell activation by
this lymphatic system could have a major impact on COPD.
T cells promote emphysema by directly injuring the lung
epithelium115 and they promote airway disease by elaborat-
ing cytokines like IL-4, -5, and -13, which induce airway
obstruction and mucus secretion.

Combined pulmonary fibrosis and
COPD (CPFE)

The presence of both emphysema and PF in the same
patient is a disorder known as combined pulmonary fibrosis
and emphysema (CPFE). Whether this reflects a distinct dis-
ease or the chance co-occurrence of two processes is a matter
of some debate. This syndrome is characterized by upper-
lobe emphysema, lower-lobe fibrosis, and abnormalities of
gas exchange that result in dyspnea.116 Pulmonary function
tests (PFTs) differ from the obstructive pattern with
increased lung volumes in COPD and the restrictive pattern
with reduced lung volumes in lung fibrosis. CPFE patients
typically present with near normal (pseudonormalized) lung
volumes and with a significantly reduced diffusing capacity
for carbon monoxide (DLCO). This reduction reflects the
severity of the gas exchange abnormalities that occur in this
disorder. Cigarette smoke exposure is a well-recognized risk
factor for the development of PF and COPD/emphy-
sema.117–119 In fact, smoking exhibits deleterious effects on
the systemic circulation118 and exacerbates systemic scler-
osis.117,120 PH is prevalent in CPFE and is the main
co-morbidity affecting survival of CPFE patients.121 In con-
trast to patients with COPD, CPFE is frequently associated
with profound system hypoxemia, suggesting that in these
patients, shunt rather than ventilation/perfusion mismatch-
ing is a primary driver of hypoxemia. This suggests that
there are some distinctions in the patterns of vascular
remodeling in CPFE and COPD.

Extracellular matrix remodeling plays an essential role in
COPD and PF but the character of the remodeling in these
syndromes differs significantly. Alveolar elastin and type III
collagen are destroyed in emphysema and replaced by fibrils
that are thickened and disorganized.122 This degrades alveo-
lar tissue and redistributes mechanical forces to disrupt
alveolar interdependence and perpetuates lung tissue
destruction.123,124 In contrast, PF is characterized by an
excessive deposition of lung collagen that obliterates distal
lung tissue structures. Though the pathogenesis is distinct,
the loss of alveolar capillary units induces similar clinical
symptoms including cough and shortness of breath.

Inflammation, deregulated vascular remodeling, pruning
of microvascular structures, and excessive lymphangiogen-
esis are present in both disorders. These shared mechanisms
likely account for the coexistence of both diseases in CPFE.
Subtle differences in these processes are probably respon-
sible for the development of fibrosis in some regions and
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emphysema in others. For example, studies suggest that
inflammation plays a lesser role in the pathogenesis of IPF
and this disease does not respond to steroid therapy.125–127

The inflammatory cells present in IPF appear to contribute
to disease pathology by coordinating fibroblast activation
and epithelial mesenchymal transition.128,129 In addition,
auto-antibodies produced by B cells attack the endothelium
to induce microvascular injury that contributes to PH and
lung fibrosis.130–133 In contrast to IPF, COPD responds clin-
ically to anti-inflammatory therapy with improved lung
function and decreased exacerbations.134 The inflammatory
cells in COPD, such as neutrophils, macrophages, lympho-
cytes, and eosinophils, release mediators that increase mucus
production, airway hyper reactivity, and lung tissue destruc-
tion.135 Thus, they play a more direct role in the disease
onset and progression. Like PF, auto-immunity triggers
the vascular injury that occurs in COPD.136,137 Since both
diseases involve immune-mediated damage to the microvas-
culature, it is not surprising that PH is so prevalent
in CPFE.

How these distinct biological processes are induced in
different regions in CPFE is unknown but likely involves
changes in inter- and intra-cellular signaling. Kusko et al.
recently published a comprehensive study comparing the
transcriptome networks of lung tissue between COPD and
IPF patients, relative to normal controls. They identified
activation of the p53/hypoxia pathway as well as alternative
splicing of PDGFA as a common factor in both diseases.138

This is intriguing since regional variations in alveolar
oxygen tension are present in the lung. The apex has com-
paratively high ventilation to perfusion ratio resulting in
increased alveolar oxygen tension. On the other hand, the
lung base has the highest blood flow and lowest ventilation-
to-perfusion ratio.139 Thus, oxygen tension at the base is
lower than the apex. These regional differences could have
differing effects on the p53/hypoxia pathway, potentially
explaining why fibrosis occurs at the bases and emphysema
at the apex.

Balance of developmental signaling pathways may also
play a role. In PF, it has been suggested that there is
increased canonical Wnt signaling, while in COPD this is
suppressed.140 We have recently shown that in the
bleomycin model of PF, persistent Wnt/B-catenin signaling
leads to enhanced proliferation of mesenchymal progeni-
tor cells but impairs differentiation. Since canonical
Wnt signaling is required for pulmonary angiogenesis, it
may be that in COPD, suppressed Wnt signaling leads to
failure of progenitor cell function, while in PF, failure
to suppress Wnt signaling culminates in a hyperproliferative
but dysfunctional microvascular network. Further work will
be required to better elucidate the shared and divergent
mechanisms of microvascular remodeling in COPD and
PF; however, taken together, the literature supports that
there is an inability to sustain functional tissue repair in
epithelial, vascular, and mesenchymal compartments in
both diseases.

VEGF: friend or foe?

The basis for a vascular component contributing to fibrosis
and emphysema has also been demonstrated in rodents via
manipulation of VEGF. VEGF is a survival factor for lung
endothelial and mesenchymal cells and decreased signaling
through its receptors results in loss of distal lung tissue
structure.141–143 Levels of VEGF are increased in early
COPD patients,144–146 and decreased in late COPD.67

VEGF is overexpressed in the skin of SSc patients80 despite
impaired angiogenesis. It is also abundant in the type 2
pneumocytes and myofibroblasts in IPF lungs.31,70

The use of the VEGF receptor tyrosine kinase inhibitor,
SU5416, as a VEGF antagonist induces vascular injury,
remodeling, subsequent PH, and loss of alveolar tissue
structure.114,147–151 Targeted knockdown of VEGF gene
expression in the lung drives septal wall destruction.152 To
date, studies have focused on endothelial cells and VEGF
deregulation as the basis for microvascular dysfunction
during COPD, while additional contributing cell types
have been largely overlooked.

Additionally, VEGF-A splice variant b has been
described as anti-angiogenic. Increased levels of
VEGF165b have been correlated with PH, fibrosis, periph-
eral artery disease, and SSc,65,80,82,146,153–155 while its signifi-
cance in lymphangiogenesis has not been described. VEGF-
A and its receptors are significantly upregulated in asthmatic
airways and this expression correlates positively with sub-
mucosal vascularity and negatively with FEV1 and airway
hyper-responsiveness.156 Thus, it is conceivable that alterna-
tive splicing of VEGF-A could dictate whether fibrotic
remodeling or airway obstruction occurs in the lung.
Indeed, alternative splicing has been implicated in a
number of respiratory diseases including COPD, IPF, and
lung cancer.138,157

Adult lung mesenchymal progenitors,
angiogenesis, and tissue remodeling

There is a precedent for multipotent adult mesenchymal
stem or progenitor cells (MPC) to stimulate capillary angio-
genesis, as well as lymphangiogenesis. Both bone marrow
derived and adipose MPC promote lymphangiogenesis in
models of tumor metastases as well as regulate the prolifer-
ation of LEC.158,159 MPC have been hypothesized to be the
precursor to pericytes.160,161 Interestingly, pericytes have
also been hypothesized to be mesenchymal stem cells
(MSC) in adult tissue.162 However, this hypothesis was
recently challenged by elegant lineage tracing analyses.163,164

It is likely that pericytes and MSC express similar cell sur-
face determinants and co-localize in the microvasculature,
yet are functionally distinct.

The current understanding of the role MPC/pericytes
play in adult lung disease, de novo angiogenesis, and vascu-
lar remodeling is controversial.30–32 Pericytes are the
‘‘smooth muscle cell’’ of the microvessels/capillary beds73

and provide stability to the vasculature by direct contact
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with endothelium and regulation of vascular tone.73 Mice
lacking pericytes die before birth due to hemorrhage.165

They participate in wound healing, tissue repair, vascular
remodeling/vasculopathy, and fibrosis.33,35,37–40,73,87,166–183

While these hypotheses are intriguing, the studies of
tissue-resident stromal progenitor cells as well as the origin
of pericyte lineages in the adult have been complicated by a
lack of unique markers to define specific cell types within
heterogeneous mesenchymal and lineage specified pericyte
populations. The lack of suitable markers to trace mesen-
chymal progenitor subpopulations and their differentiation
in the adult lung has limited our understanding of their role
in homeostasis and disease. However, the importance of
mesenchymal precursors during disease has been under-
scored by current limitations. Agha et al. recently published
a summary of MSC and their roles in fibrotic diseases of
multiple organs.184

Currently, there is no exclusive vascular cell marker to
distinguish microvascular endothelium or pericytes from
multipotent mesenchyme and their derived lineages in the
adult lung. For example, PDGFR-b, Gli-1, and Tbx4 have
been used to trace mesenchymal cells during fibrosis and
development, but these markers label mixed mesenchymal
and derived lineage populations as well as epithelial lineages

in the adult, respectively (Table 1).40,185–187 Other current
models rely on SM22 or SM-MHC driven Cre systems to
manipulate genes in lung smooth muscle179,188,189 but SM22
and SM-MHC demonstrate systemic expression.
Endothelial cell lineage tracing has been reported using
Tie-2Cre,190 which labels mesenchymal cells as well as
circulating bone marrow derived angioblasts.191 Similarly,
lymphatic vascular endothelial hyaluronan receptor-1
(lyve-1) labels both endothelium and mesenchymal progeni-
tors.52,53,74,192,193 Our recent studies validated the ATP
binding cassette G2 (ABCG2) as a reasonable label for peri-
vascular adult mesenchymal progenitors, with the caveat
that low dose tamoxifen is required for specificity.194

A second limitation to understanding the function of mul-
tipotent mesenchyme in the adult lung is the ability to trans-
late the findings from populations identified in rodent tissues
to a comparable population of primary patient cells. Because
ABCG2 is present at the cell surface, we have been able to
isolate populations of adult lung MPC from lung tissue
explants from normal and disease lungs and characterize
them in parallel to the murine models and cells.36,55,194,195

We have been able to define tissue-specific signatures of
MPC as well as pathways related to signaling, matrix, inflam-
mation, and angiogenesis disrupted in disease.194–196

Table 1. Labeling pulmonary mesenchymal subpopulations.

Lineage trace

marker Protein Putative cell population tracing Specificity Refs.

ABCG2 MDR transporter Lung MPC Perivascular adult

mesenchymal progenitors

36,166,194,196,204,208,209

ADRP Perilipin2, adipose

differentiation related

protein

Lipofibroblasts/

myofibroblasts

Alveolar typeII cells

Lipofibroblasts

251,252

Foxd1 Forkhead family

Transcription factor

Foxd1 pericytes Developing vascular/

mesenchymal lineages,

pericytes, endothelium

35,253

Gli1 Transcription factor,

associated with sonic

hedgehog signaling

Lung MSC, lung mesenchyme,

fibroblasts

Mesenchyme, fibroblasts/

pericytes

33,186,254–257

NG2 (cspg4) Neural/glial antigen 2,

membrane

proteoglycan

Differentiated pericytes Differentiated pericytes

Neural precursors

38,258

PDGFRb Tyrosine kinase receptor

for PDGFB

SMC precursors Fibroblasts, mesenchyme,

differentiated pericytes,

progenitors

183,259,260

SMA (acta2) Conserved protein

involved in cytoskeletal

structure and integrity

Vascular SMC Differentiated pericytes,

smooth muscle,

179,251

Tbx4 T-box family

Transcription factor

Developing lung mesenchyme

(vascular precursors)

Smooth muscle, endothelium,

fibroblasts, pericytes, vascular

progenitors

40,173,261,262

Tbx18 T-box family

Transcription factor

Differentiated pericytes Differentiated pericytes, smooth

muscle, glomerular mesangial

cells

164,263
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ABCG2 mesenchymal progenitor cells
and angiogenesis

The validation of ABCG2 as a marker of adult mesenchy-
mal progenitors enabled us to determine their relationship
to pericytes as well as putative function using an inducible
murine lineage tracing model system.36,166,194 The selection
of ABCG2 as a marker to define this lung mesenchymal
progenitor population was based on historical evidence
that the expression of this multi-drug resistance transporter
selects for a ‘‘side population’’ of cells that demonstrate
stem cell-like properties in adult tissues.191,197–203 Side popu-
lation selection was used to identify multipotent mesenchy-
mal and vascular precursors in the lung.194,204–211

Transitioning from the so-called ‘‘side population’’ (SP)
of cells to lineage tracing and expression of ABCG2 in adult
lung facilitated lineage-tracing studies to elucidate MPC
location and function.36,194,195 ABCG2 MPC are a perivas-
cular population of cells that share properties of differen-
tiated NG2 pericytes and are more closely related to
pericytes than fibroblasts.36 However, MPC significantly
differ from NG2 pericytes in functional properties including
contraction.36,194 We chose to evaluate naı̈ve vs. canonical
Wnt activated MPC194 because Wnt/b-catenin signaling is
biologically relevant, due to its association with tissue
homeostasis and many adult pulmonary and vascular dis-
eases.36,212–218 While Wnt signaling in adult CLD has been
well studied in terms of the epithelium, little is understood
about its role in MPC regulation of the microvasculature
and pathological angiogenesis.

DAPISMA eGFP

DAPISMA eGFPBOE

WT

Dense Remodeling Border Zone

(a)

(b)

Fig. 2. Overview of remodeling and angiogenesis in bleomycin injured mouse lung tissue. b-catenin stabilization in MPC was achieved by

engineering a conditional activator [b-catenin lacking degradation sites; Catnbloxp(ex3)], targeted to lung MPC using ABCG2CreERT2 with

reporters:Rosa26 mtomato/mGFPlox-stop.36,166,200,249,250 Mice were induced with intraperitoneal low dose tamoxifen (0.5 mg total).194 Groups: All

room air exposure; Control, or Wnt activated/b-catenin over-expressors (bOE). Two weeks following induction, 0.15 U of bleomycin or PBS

vehicle was administered intratracheally and mouse lung tissue harvested on day 14 peak fibrosis and analyzed. Immunostaining was performed on

lung tissue sections to localize smooth muscle alpha actin (SMA) and eGFP-labeled MPC lineage cells. SMA-labeled myofibroblasts in areas of

remodeling as well as muscularized microvessels, airways and vasculature. (a) Representative WTor (b) b–catenin over-expressor (bOE) mouse

lung tissue sections. DAPI was used to stain nuclei (blue). Scale bars¼ 100mM.

Homeostasis
MPC

Chronic
Lung
Disease

MVMV

MVMV
Increased 
Wnt/β-catenin activity

Injury
Inflammation

MPC Migration
De novo Angioganesis

Loss of Barrier Function

Decreased MV Density

Deregulated Angiogenesis
Chronic Inflammation
No effective REPAIR

Fig. 1. Hypothetical model showing a role for MPC during the

development of vasculopathy in disease. During tissue homeostasis,

MPC participates in the regulation of capillary microvessels. Injury

results in increased MPC b-catenin activity, and loss of MPC–MVEC

interactions. MVEC respond with decreased barrier function. MV

density decrease while MPC increase migration and abnormal

angiogenesis. We speculate that prolonged vascular remodeling at the

expense of repair results in CLD.
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b-catenin signaling regulates MSC/MPC cell specifica-
tion, cell differentiation, renewal, proliferation, and angio-
genesis.4,166,194,213,219–235 We found that conditional genetic
stabilization of b-catenin in ABCG2pos MPC resulted in
expansion of this progenitor pool in the lung. However,
the MPC did not assume contractile function or expression
of smooth muscle alpha actin, while microvessel expression
of smooth muscle alpha actin decreased. Alteration of
proper MPC function in the lung, via dysregulated Wnt/
b-catenin signaling, facilitated the finding that MPC
regulate lung microvascular homeostasis and function
(Fig. 1).194 Loss of MPC function resulted in a decreased
microvascular density, contractility, and smooth muscle cell
homoeostasis. In a murine model of bleomycin-induced
fibrosis, wild-type ABCG2pos MPC associated with both
smooth muscle alpha actin or Factor VIII positive

microvessels in alveolar tissue peripheral to the actively
remodeling regions (Figs. 2 and 3).194 However, in the
lung tissue of Wnt activated MPC (termed bOE), we
detected MPC contribution to atypical vascular structures
in the fibrotic and peripheral areas of remodeling. These
microvessels were atypical because they were devoid of
both Factor VIII expressing endothelium and smooth
muscle alpha actin (Fig. 3).194 Of note, in response to bleo-
mycin injury we detected migration of MPC, or derived
cells, along the existing alveolar vasculature (arterioles,
capillaries, and veins; Figs. 3 and 4).

Because lymphangiogenesis is deregulated in CLD, it is
reasonable to hypothesize that MPC may also influence this
process during injury and disease. We therefore analyzed the
MPC lineage labeled cells and abnormal vascular structures
for the expression of lyve-1.4,43,45,49,51–53,58,158 Lyve-1 is a

*

DAPI(c) BOE SMA eGFP

(d) 

*
*

* *

*
*

DAPI(h) BOE SMA eGFP

(i) (j)

*

Dense Remodeling Border Zone

DAPI(a) WT SMA eGFP

(b)

DAPI(e) WT SMA eGFP

(f) (g) 

Fig. 3. MPC contribution to abnormal angiogenesis in bleomycin injured mouse lung tissue. Mice were induced with intraperitoneal low dose

tamoxifen (0.5 mg total).194 Two weeks following induction, 0.15 U of bleomycin or PBS vehicle was administered intratracheally and mouse lung

tissue harvested on day 14 peak fibrosis and analyzed. Immunostaining was performed on lung tissue sections to localize smooth muscle alpha

actin (SMA) and eGFP-labeled MPC lineage cells. Representative images were taken in the areas of (a–d) dense remodeling and (e–j) border zones

outlined in Fig. 2. (a, b, e, g) WTor (c, d, h, j) b–catenin over-expressor (bOE) mouse lung tissue sections. DAPI was used to stain nuclei (blue).

Scale bars¼ 100 mM.
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(a) Lyve-1DAPI (b) Lyve-1DAPI (c) Lyve-1DAPI Bleo

(d) BOE Lyve-1 eGFP DAPI Bleo

(e) BOE Lyve-1 eGFP DAPI Bleo

Fig. 5. MPC contribute to de novo lymphangiogenesis. Immunostaining was performed on day 14 bleomycin vehicle control (a, b) or injured

(c–e) b–catenin over-expressor (bOE) mouse lung tissue sections to localize smooth muscle alpha actin (SMA) expressing vasculature, lyve-1

expressing cells/lymphatics and eGFP-labeled MPC lineage cells. DAPI was used to stain nuclei (blue). Scale bars¼ 100 mM.

DAPI(a) BOE SMA Factor8 DAPI(b) BOE SMA eGFP

(c)

Fig. 4. Enhanced intravascular migration of bOE MPC following bleomycin injury. Immunostaining was performed on day 14 bleomycin injured

b–catenin over-expressor (bOE) mouse lung tissue sections to localize smooth muscle alpha actin (SMA) expressing vasculature (a–c), Factor VIII

positive endothelium (a) and eGFP-labeled MPC lineage cells (a–c). DAPI was used to stain nuclei (blue). Scale bars¼ 100 mM.
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receptor for hyaluronan, necessary for cell migration
and metastases as well as a typical marker for
lymphangiogenesis and existing lymphatic vasculature
(Fig. 5a–c).44,52,53,74,192,236 However, lyve-1 expression is
not limited to lymphatic endothelium.56 We found that the
MPC lineage and the de novo vascular structures exhibited
heterogeneous expression of lyve-1 (Fig. 5d and e).
Heterogeneous expression of lyve-1 may be due to stage of
vessel formation and cell (MPC or endothelial) migra-
tion.43,49–53 We therefore speculate that during disease
MPC contribute to abnormal angiogenesis that contributes
to the imbalance of capillary and lymphatic microvascula-
ture (Fig. 6).

Summary

Conclusions

Capillary and lymphangiogenesis are deregulated in both
IPF and COPD, although the mechanisms by which they
co-regulate and underlie early pathogenesis of disease are
unknown. We have shown that that ABCG2pos MPC influ-
ence both the capillary microvasculature and lymphatic
angiogenesis. A balance of both is required for normal
tissue homeostasis and repair. Our current models suggest
that when lymph and capillary angiogenesis are out of bal-
ance, the non-equivalence appears to support the progres-
sion of disease and tissue remodeling. The angiogenic
regulatory mechanisms underlying both COPD/emphysema,

IPF, and SSc likely impact additional CLD including other
interstitial lung diseases, tuberous sclerosis (TSC), and
lymphangioleiomyomatosis.

Future directions

Ongoing studies are designed to elucidate the mechanisms
by which MPC influence capillary and lymphangiogenesis as
well as understanding the balance between them in normal
lung tissue, following injury, and during repair. The MPC
niche and environment regulates their function which in
turn impacts the vascular microenvironment (Fig. 1). This
is a seemingly complex interaction because the niche
involves endothelium, epithelium, vascular smooth muscle,
extracellular matrix, and environmental influences.

Cigarette smoke is a major risk factor for CLD including
COPD/emphysema and IPF, and is therefore a reasonable
candidate factor to deregulate the MPC niche. Both cigar-
ette smoke and hypoxia upregulate the expression of
ABCG2.237–239 Additionally, the MPC express the hyaluro-
nan receptors CD44 and lyve-1 which function to regulate
cell migration, Wnt, mTOR, and VEGF signaling as well as
phenotype and function.68,192,240–243 Hyaluronan is cleaved
into high and low molecular weight fragments differentially
during disease and has been characterized as altered in
COPD and IPF.46,56,68,240,241,244–246 These receptors cluster
with ABCG2 at the cell surface247 and likely regulate
cell-specific niches and their responses to the microenviron-
ments, including proliferation, apoptosis, response to
oxidant stress, and metabolism.247,248

A fundamental question that remains is how MPC repro-
grammaing disrupts capillary and lymphatic networks to
hinder the physiologic function of the lung. Establishing
these mechanisms would provide key new insights into the
pathogeneis of lung disease. Therefore, it is essential to
examine these aspects of the MPC niche, including
ABCG2 regulation of cell signaling, proliferation, and
migration, using murine models of emphysema and fibrosis
as well as isolated human MPC. The ultimate goal of these
studies is to identify novel therapeutic targets to restore
MPC and vascular function and promote pulmonary
tissue repair.
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