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Abstract: Demand for high-performance biocomposites is increasing due to their ease of processing,
low environmental impact, and in-service performance. This study investigated the effect of boric
acid modification of wood flour on polycarbonate (PC) wood composites’ thermal stability, fire
retardancy, water absorption, and creep behavior. The composites’ fire retardancy increased with
increasing wood flour content, and their char residue increased by 102.3% compared to that of
pure PC. However, the water absorption of the resulting composites increased due to the hydroxyl
groups of the wood flour. Wood flour also improved the composites’ anti-creep properties. The
excellent fire retardancy and anti-creep properties of wood–PC composites expand their use in the
construction sector.

Keywords: polycarbonate; boric-acid treatment; wood flour; biocomposites; fire retardancy;
dimensional stability; creep behavior

1. Introduction

Nowadays, wood–polymer composites (WPCs) as a potential material have cap-
tured both researchers’ and manufacturers’ attention due to their advanced characteris-
tics, such as rot resistance, durability, low cost, dimensional stability, high stiffness, and
strength [1–3]. They are widely used in buildings, decoration, transport, furniture, and
decking areas [4]. WPC is expanding rapidly since its emergence, and its production is in-
creasing [5]. However, both lignocellulose and polyolefin are flammable. Hence, improving
the fire retardancy of biocomposites to expand their utilization to other sectors.

Ammonium polyphosphate (APP) [6–8], metal hydroxides [9,10], and intumescent
flame retardant [11,12] are among the approaches used to improve the fire retardancy of
biocomposites. The common fire-retardant mechanisms of WPCs are inherited from the
plastic matrix; that is, the nature of the plastic matrix plays an important role in the fire
retardancy of biocomposites. Moreover, composites’ strength decreases with increasing
fire-retardant content due to their hygroscopicity and poor compatibility [13–15]. Hence, it
is important to improve the properties of the matrix for the performance of biocomposites.

Interestingly, polycarbonate (PC) has advanced transparency characteristics, dimen-
sional stability, fire resistance, high heat distortion temperature, outstanding impact resis-
tance, and low creep [16,17]. Combining PC and boric-acid-treated wood flour resulted
in biocomposites with improved thermal stability [18]. The PC biocomposites showed
outstanding mechanical properties comparable to wood and engineered wood products,
such as oriented strand board (OSB) and plywood [18]. Cellulose has been filled into PC
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to prepare biocomposites based on engineering plastic [19]. PC combined with cellulose
produced highly improved composites (100% improvement) compared to neat PC [20]. Ad-
vantages of wood fibers include low cost, biodegradability, renewability, and low density,
making wood–PC composites environmentally friendly [21–23]. Moreover, lignocellulosic
fibers improved the biocomposites’ fire retardancy compared to neat polymer [24]. In-
creasing wood flour content improved the biocomposites’ flame retardancy. Ignition time,
peak heat release rate, and rate of burning decreased, whereas the duration of burning
increased [25]. Based on the above findings, wood flour/PC composites are suitable for
applications where fire retardancy is essential.

However, lignocellulosic fibers are hydrophilic, increasing the water absorption of the
resulting biocomposites. Generally, the mechanical properties of biocomposites decrease
after water uptake because water molecules change the structure and properties of fibers,
the matrix, and the interface between fibers and polymers [2,26]. Water molecules damage
the crystalline structure of lignocellulosic fibers and the polymer chain reorientation. The
water uptake process can also affect shrinkage. When the fiber–polymer matrix interface
is exposed to moisture, the fibers tend to swell after water absorption, resulting in shear
stress development at interfaces, leading to their debonding. The water absorption of
polyolefin-based biocomposites increases with the increase in lignocellulosic fiber con-
tent [27]. Furthermore, water absorption is closely related to biocomposites’ durability
and weather resistance [28,29]. Thus, the investigation of water absorption is essential
for biocomposites.

Zhang et al. [18] found that wood flour reacted with PC chains through esterification,
different from the polyolefin-based WPCs. Esterification will not be observed if the PC
is replaced by polyolefin. The compatibility between wood and PC is better than that
of wood and polyolefin due to the polar functional groups of PC. Wood flour is evenly
distributed in the PC content due to similar polarities [18]. Moreover, a high processing
temperature would impact the properties of wood flour, further changing the properties of
the composites. This indicates that the structure of wood flour/PC composites is different
from that of wood flour/polyolefin composites. Based on the above analysis, it can be sum-
marized that the difference between wood flour/PC composites and wood flour/polyolefin
composites is not simply changing the polymer matrix. Thus, it is necessary to explore the
fire retardancy and water absorption of the wood flour/PC composites.

Hence, this study explored the effect of borated wood flour content on the fire
retardancy and water absorption properties of wood flour/PC composites to promote
their application. The fire retardancy of borated wood flour/PC composites was inves-
tigated. The microstructure of char layers of wood flour/PC composites explained their
fire-retardant mechanism.

2. Materials and Methods
2.1. Materials

Polycarbonate particles (Makrolon 6485, supplied by Polyone Co., Avon Lake, OH,
USA), with a melt flow index of 10 g·10 min−1 (according to ISO 1133, 300 ◦C, 1.2 kg) and
a density of 1.2 g·cm−3 were used. The pure PC has a fire-retardant grade of UL 94 V0.
Wood flour (30–80 mesh) was ground from poplar (Populus tremuloides L.) veneers provided
by LVL Global, an industrial wood mill in northeast Quebec, Canada. Sigma-Aldrich
(Oakville, Canada) provided the boric acid, which is an analytical grade reagent.

2.2. Preparation of Wood–PC Biocomposites

Wood flour was treated using a boric acid solution of 5 wt% by soaking for 2 h. Then,
the wood flour was filtered and dried to a moisture content of 2%. The boric acid treatment
successfully improved the thermal stability of wood flour [30]. The PC particles were dried
at 100 ◦C for 10 h in a laboratory oven. The PC particles and the treated wood flour were
extruded at 210 ◦C using a HAAKE PolyLab OS Rheodrive (Thermo Electron (Karlsruhe)
GmbH, Karlsruhe, Germany) at a speed of 50 rpm. The wood flour content varied from
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0 to 40 wt%, as shown in Table 1. Test samples for mechanical and water absorption were
produced using an injection molding machine (MARS II 130/600, Haitian, China). The
injection temperature varied from 230 to 245 ◦C, and the mold temperature was 90 ◦C. The
injection and holding pressures were set at 140 and 70 MPa, respectively. The preparation
of wood flour/PC composites without boric acid treatment failed due to the degradation of
wood flour. Samples for the cone calorimeter (CONE) test were prepared using a hydraulic
laboratory press (Fontijne Presses b.v., Vlaardingen, The Netherlands) at a temperature of
230 ◦C, and a pressure of 20 MPa held for 4 min. Then, samples were cooled down under
the same pressure to room temperature.

Table 1. Formulations of the wood flour-PC composites.

Composition WPCC0 WPCC10 WPCC20 WPCC30 WPCC40

Wood flour (wt. %) 0 10 20 30 40
Polycarbonate (wt. %) 100 90 80 70 60

2.3. Characterization

The fire retardancy of the resulting composites was characterized using a cone
calorimeter and a vertical burning test. The cone calorimeter tests were carried out accord-
ing to the ISO 5660-1-2002 standard with a heat flux of 50 kW·m−2. The cone test measures
the heat release rate (HRR), the total heat release (THR), the smoke production rate (SPR),
and the total smoke production (TSP). Three replicate samples were tested and averaged
for each formulation. Furthermore, a vertical burning test was carried out according to
the UL94 standard. Test samples of 80 × 10 × 3.2 mm3 were suspended vertically and
ignited with a gas flame for 10s, and the total burning time (from ignition to extinction)
was recorded. Finally, a KEYENCE 3D microscope (VK-X150K, KEYENCE, Osaka, Japan)
was used to analyze the microscopic structure of the composites charring residues after the
vertical burning test.

The water absorption test was conducted according to the ASTM D 570 standard.
Samples with a diameter of 50 mm and a thickness of 3.2 mm were dried at 50 ◦C for
24 h and then placed in distilled water at room temperature. Dimensions were measured
using a micrometer with an accuracy of ±0.001 mm, while weights were measured using
a laboratory balance with an accuracy of ±0.001 g at different intervals up to 720 h. We
used six replicates for each formulation and measured the thickness at five parallel points
for each sample. Furthermore, the two-hour boiling water immersion test was also carried
out according to the ASTM D 570 standard. Six replicates with five parallel measurement
points were used for each formulation in the boiling water immersion test.

The creep behavior of the wood flour/PC composites was characterized using a
thermomechanical analysis instrument (Q400, TA Instruments, New Castle, DE, USA) with
a three-point bending mold under a nitrogen atmosphere. Specimens with dimensions of
13 × 5 × 1 mm were loaded at a constant force of 0.1 N for 600 s at 50 ◦C.

The resulting composites’ creep curves were fitted by the Burgers and Findley’s
models to analyze their viscoelasticity using the Origin 2017 (OriginPro 2017, OriginLab,
Northampton, MA, USA) software. The Burgers model, consisting of one Maxwell element
and one Kelvin–Voigt element connected in series, is described by Equation (1) [31]:

ε =
σ

E1
+

σ

E2

(
1 − exp

(
−t

E2

η2

))
+ t

σ

η1
(1)

where ε is the total strain accumulated after the time t after the stress σ is applied. E1 and
E2 represent the modulus of elasticity of the springs in the Maxwell and Kelvin–Voigt units,
respectively. η1 and η2 are the corresponding damping viscosities. Equation (2) describes
Findley’s model:

ε(t) = ε0 + Atn (2)
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where ε(t) is the time-dependent creep strain, while ε0 is the instantaneous elastic strain. A
is the magnitude of the transient creep strain, and n is a constant.

3. Results and Discussion
3.1. Fire Retardancy

Figures 1 and 2 and Table 2 show the fire retardancy parameters of the wood–PC
composites. These parameters include HRR, the peak of HRR (PHRR), total heat release,
total smoke release, ignition time (IT), mass loss rate (MLR), and flaming dripping. IT
(Table 2), HRR (Figure 1), and PHRR (Table 2) decreased with increasing wood flour
proportion. Compared to PC, the lower thermal stability of wood flour can explain this
result [18,19]. The changes in IT were rather marginal, which is consistent with the previous
study [32]. The effect of wood flour content on IT is not obvious. Although a limiting
oxygen index (LOI) test may help differentiate the effect of wood content, the previous
literature cautioned against using the LOI to measure the flammability of WPC. In a
real fire situation, factors such as lower oxygen accessibility and higher air velocity and
temperature can influence the LOI of the composites [33]. The HRR of the resulting
composites decreased gradually with increasing wood flour content (Figure 1b). The
PRHH of composites fell from 332.3 kW m−2 for neat PC to 187.9 kW m−2 for WPC40. The
heat release rate decreased by 43.5%. The THR also reduced with the increase in wood flour
content. The previous literature reported similar findings [34,35]. The decrease in heat
release rate can be explained by the fact that the burning heat of wood flour is lower than
that of polymers due to its high oxygen element content [36]. The slope of the THR curve
is representative of flame spread. Hence, adding wood flour decreased the flame spread
of the resulting composites, as shown in Figure 1b. Similar to HRR, the SPR gradually
reduced with increasing wood flour content (Figure 1c), and the TSP curves in Figure 1d
show similar results. The degradation of wood flour produced char layers, playing a crucial
role in smoke suppression [37].
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Figure 2. Mass retention curves of wood flour/PC composites (a) and the mass residue of the resulting composites at
500 s (b).

Table 2. Combustion parameters of wood flour/PC composites.

Samples IT (s) PHRR (kW m−2) Flaming Dripping Self-Extinguishing

Neat PC 88 332.3 No Yes
WPC10 28 298.3 No Yes
WPC20 31 216.3 No Yes
WPC30 31 182.8 No Yes
WPC40 32 187.9 No Yes

Moreover, the mass fraction of residue of the resulting composites quickly decreased
with the irradiation time after ignition. After approximately 400 s, the mass retention
curves tended to level off. However, the combustion of composites with 10% wood flour
content was short. HRR and SPR curves show similar trends. This may be due to the fact
that the wood flour content is too low to form a protective char layer, and the thermal
stability of the wood flour is lower than PC. The residues rate at 500 s increased by 102.27%
from 10.99% of neat PC to 22.23% of WPC40 (Figure 2). Mass retention can be attributed
to the suppressing effect on the flame combustion, accumulating more char during the
combustion. Moreover, the vertical burning test did not show any flaming dripping for all
tested samples during combustion. Additionally, a self-extinguishing phenomenon was
observed for all samples (Table 2). Neat PC is self-extinguishing, whereas wood flour is the
opposite [36]. In summary, wood flour and PC have a synergistic effect on fire retardancy
in the wood–PC composites.

3.2. Morphological Characterization

The digital photos of wood–PC composites, neat PC, and WPC10 showed evident
inflation after the CONE test. This is because PC degradation produced a large amount of
carbon dioxide (CO2) [38]. Meanwhile, the vaporized CO2 could also dilute the flammable
gases and oxygen during burning, acting as gas-phase fire retardancy. Hence, the pure PC
is self-extinguishing after the removal of the fire resource. However, the inflation of the char
residue decreased when the content of wood flour was more than 20%. Additionally, the
surface of the residual carbon became flat (Figure 3). Wood flour degraded and formed char
layers, suppressing the overflow of volatile gases and burning the composites. Furthermore,
the foamed char reduced the thermal conductivity at the material interior, enhancing the
fire retardancy of wood flour/PC composite, which was in accord with the above CONE
analysis results.

The morphology of the char layers measured by a laser microscope revealed that
the char of pure PC seemed smooth and dense (Figure 4a). A uniform porous carbon
framework of char after combustion was also observed (Figure 4b). With the addition of
wood flour, an inhomogeneous and relatively loose structure with many flaws appeared
on the surface of the char layer. Wood flour formed this loose char structure. Hence,
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the biochar can prevent heat and flammable gases from penetrating the PC. The biochar
increased with increasing wood flour content in composites (Figure 4).
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3.3. Water Absorption

Figure 5 shows that the water absorption and the thickness swelling of the wood
flour/PC composites increased with time and increased wood flour content. The water
absorption of composites with 40% wood flour content is about 5.3 times more than
pure PC. The wood flour has many free hydroxyl groups on its surface, leading to water
absorption [39]. However, the hydrophobic PC matrix is considered the nonabsorbent
part of the biocomposites. When immersing the biocomposites in water, the free hydroxyl
groups of wood flour formed hydrogen bonds with water molecules [40]. An increasing
number of hydroxyl groups of wood flour appeared on the surface of the biocomposites
with increasing wood flour content, increasing water uptake. The previous literature
reported a similar phenomenon for both wood polypropylene composites and wood
HDPE composites [41,42]. For the two-hour boiling water test, the water absorption of
the biocomposites did not change obviously with increasing wood flour content. This
indicates the excellent hydrothermal stability of the composites. Moreover, the trend of the
thickness swelling of the biocomposites in the boiling water test was similar to that in the
water absorption test at room temperature. Upon immersion, wood flour on the surface of
composites uptakes water and swell; then, the water is transferred from one cell to another
over time [39].

Polymers 2021, 13, x  8 of 11 
 

 

 
Figure 5. Water absorption (a) and thickness swelling (b) of wood-PC composites at room temper-
ature, and water absorption (c) and thickness swelling (d) in two-hour boiling water test. 

3.4. Creep Properties 
Creep is an important property for composites since it is indicative of the potential 

structural applications. Wood content, polymer nature, wood particle size, test time, tem-
perature, applied stress, and humidity influence the creep behavior of biocomposites. 
Generally, the creep behavior is more severe for biocomposites than for wood due to the 
nature of polymers [43]. In the current study, the creep strain of the wood–PC composites 
decreased with higher wood flour content (Figure 6), in good agreement with previous 
findings for wood–polypropylene composites [44]. The reason for this may be that wood 
flour restricted the stretching, bending, and slipping of PC molecular chains, which is in 
good agreement with the modulus results of the composites [18]. Furthermore, the rigidity 
of wood flour is higher than that of pure PC plastic, which increases the anti-creep prop-
erty of the resulting wood flour-PC composites [40,45]. 

Creep occurs due to the viscoelastic deformation of the biocomposites, including 
elastic deformation and viscous flow. Hence, the Burgers and Findley’s models analyzed 
the composites’ viscoelastic (creep) performance [30]. Compared to the Burgers model, 
Findley’s power law model produced a better fit to the data, as shown in Figure 6 and 
Table 3. Generally, the Burgers model describes the entire creep process well, including 
instantaneous deformation, viscoelastic deformation, and viscous deformation. The vis-
coelastic deformation usually occurs in the early stage of creep behavior caused by mo-
lecular chain relaxations and extensions. In contrast, the viscous part is the long-term 
creep strain attributed to the slippage of molecular chains [46]. However, the resulting 
composites did not contain all three phases for the short-term creep test in this study, 
especially not the total viscoelastic stage. This explains why the Burgers model did not 
entirely fit the short-term experimental data. Findley’s power law model fitted the exper-
imental data well. It does not clearly distinguish the two parts of the second stage and 

Figure 5. Water absorption (a) and thickness swelling (b) of wood-PC composites at room temperature, and water absorption
(c) and thickness swelling (d) in two-hour boiling water test.

3.4. Creep Properties

Creep is an important property for composites since it is indicative of the potential
structural applications. Wood content, polymer nature, wood particle size, test time,
temperature, applied stress, and humidity influence the creep behavior of biocomposites.
Generally, the creep behavior is more severe for biocomposites than for wood due to the
nature of polymers [43]. In the current study, the creep strain of the wood–PC composites
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decreased with higher wood flour content (Figure 6), in good agreement with previous
findings for wood–polypropylene composites [44]. The reason for this may be that wood
flour restricted the stretching, bending, and slipping of PC molecular chains, which is in
good agreement with the modulus results of the composites [18]. Furthermore, the rigidity
of wood flour is higher than that of pure PC plastic, which increases the anti-creep property
of the resulting wood flour-PC composites [40,45].
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Creep occurs due to the viscoelastic deformation of the biocomposites, including elas-
tic deformation and viscous flow. Hence, the Burgers and Findley’s models analyzed the
composites’ viscoelastic (creep) performance [30]. Compared to the Burgers model, Find-
ley’s power law model produced a better fit to the data, as shown in Figure 6 and Table 3.
Generally, the Burgers model describes the entire creep process well, including instanta-
neous deformation, viscoelastic deformation, and viscous deformation. The viscoelastic
deformation usually occurs in the early stage of creep behavior caused by molecular chain
relaxations and extensions. In contrast, the viscous part is the long-term creep strain
attributed to the slippage of molecular chains [46]. However, the resulting composites
did not contain all three phases for the short-term creep test in this study, especially not
the total viscoelastic stage. This explains why the Burgers model did not entirely fit the
short-term experimental data. Findley’s power law model fitted the experimental data well.
It does not clearly distinguish the two parts of the second stage and does not represent
well the viscosity stage. Therefore, it may be more suitable to fit only short-term creep data.
The results were in good agreement with the previous literature [43,47].

Table 3. Parameters of Burgers model and Findley’s power law model.

Burgers Model Findley’s Power Law Model

Wood Flour Content E1 (MPa) E2 (MPa) η1 (MPa s) η2 (MPa s) R2 ε0 A n R2

0% 6391.482 1378.851 890,473.587 6951.743 1.00 −6.4998 × 10−4 0.00336 0.27717 0.995
10% 8158.469 1787.585 958,608.082 36,341.878 1.00 −1.09 × 10−3 0.00248 0.33628 0.995
20% 11,716.722 2089.627 1,086,001.610 48,037.217 1.00 −9.1809 × 10−4 0.00363 0.2847 0.995
30% 21,637.338 2286.305 1,070,591.423 70,117.161 1.00 −8.4842 × 10−4 0.00474 0.26555 0.996
40% 13,531.938 2410.191 1,142,779.012 43,057.373 1.00 −2.2283 × 10−4 0.00977 0.16832 0.998

4. Conclusions

In this study, we prepared wood flour/PC composites using injection molding by
improving the thermal stability of the wood flour with boric acid and explored the effect of
wood flour content on their fire retardancy, water absorption, and creep properties. The
results indicate that the wood flour/PC composites had good fire retardancy and were self-
extinguishing. Furthermore, the cone calorimeter test parameters, namely, HRR, THR, SPR,
and TSP, decreased with increasing wood flour content. However, the water absorption of
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the composites increased with an increase in wood flour content. Moreover, the creep of the
resulting composites decreased with increasing wood flour content. Adding wood flour
reduced the cost of PC composites. It improved the fire retardancy and anti-creep properties
of the resulting composites. Expanding the use field of biocomposites and promoting their
technological development are among the practical implications of this study.
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