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During the progression of necroptosis and pyroptosis, the plasma membrane will

become permeabilized through the activation of mixed lineage kinase domain like

pseudokinase (MLKL) or gasdermin D (GSDMD), respectively. Recently, the progression

of apoptotic cells into secondary necrotic cells following membrane lysis was shown to

be regulated by gasdermin E (GSDME, or DFNA5), a process dependent on caspase

3-mediated cleavage of GSDME. Notably, GSDME was also proposed to negatively

regulate the disassembly of apoptotic cells into smaller membrane-bound vesicles known

as apoptotic bodies (ApoBDs) by promoting earlier onset of membrane permeabilisation.

The presence of a process downstream of caspase 3 that would actively drive cell lysis

and limit cell disassembly during apoptosis is somewhat surprising as this could favor

the release of proinflammatory intracellular contents and hinder efficient clearance of

apoptotic materials. In contrast to the latter studies, we present here that GSDME is

not involved in regulating secondary necrosis in human T cells and monocytes, and also

unlikely in epithelial cells. Furthermore, GSDME is evidently not a negative regulator of

apoptotic cell disassembly in our cell models. Thus, the function of GSDME in regulating

membrane permeabilization and cell disassembly during apoptosis may be more limited.

Keywords: DFNA5, secondary necrosis, apoptotic cell disassembly, apoptotic bodies, apoptosis, gasdermin,

GSDME

INTRODUCTION

Permeabilisation of the plasma membrane during programmed cell death is regulated
by a number of distinct molecular factors. For necroptosis, a programmed form of
necrosis, plasma membrane permeabilisation is mediated through the phosphorylation
and activation of MLKL (mixed lineage kinase domain like pseudokinase) by RIP3/RIP1
necrosome (1). In contrast, plasma membrane permeabilisation during pryoptotic cell death,
another form of programmed necrosis, is mediated by caspase 1/4/5 (11)-cleaved GSDMD
(gasdermin D) (2). Activation of MLKL and GSDMD can subsequently trigger their targeting
toward the plasma membrane through interacting with phosphatidylinositol-4,5-bisphosphate
and oligomerisation. This eventually leads to membrane permeabilisation and release of
proinflammatory intracellular contents (1, 2). Additionally, it has been shown that, GSDME
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(gasdermin E, also called DFNA5), a GSDMD-related family
member, is activated by caspase 3-mediated cleavage, and its
expression level dictates the different forms of cell death (3).
Upon caspase 3 activation, GSDME-deficient cells (e.g., GSDME
knockout, HeLa cells and Jurkat T cells) first undergo apoptosis
followed by secondary necrosis at later stages, whilst cells
expressing high GSDME level (e.g., GSDME overexpression,
neuroblastoma cells, and skin melanoma cells) proceed rapidly
to membrane permeabilisation via similar mechanisms as MLKL
and GSDMD (3). The latter phenomenon was also observed
in bone marrow-derived macrophages (BMDMs), a cell type
that expresses clearly detectable level of GSDME, by Rogers
et al. (4). These two studies have challenged the dogma that
the progression of apoptotic cells into secondary necrotic cells
following membrane permeabilisation is an unregulated process
and a consequence of impaired cell clearance. However, it is
worth noting that Lee et al. (5) has recently demonstrated that
GSDME is not required for secondary necrosis in caspase 1−/−

caspase 11−/− BMDMs treated with flagellin, cytochrome c or
FasL.

In addition to impaired secondary necrosis, Rogers et al.
(4) also reported that the loss of GSDME promoted apoptotic
cells to undergo disassembly and generate apoptotic bodies
(ApoBDs) (4), suggesting an intriguing inverse relationship
between secondary necrosis and ApoBD formation (the latter,
a well-known hallmark of apoptosis). We have previously
described apoptotic cell disassembly as a highly regulated
process controlled by three distinct morphological steps, namely
apoptotic membrane blebbing, the formation of thin membrane
protrusions known as apoptopodia and beaded apoptopodia,
and the detachment of discrete ApoBDs from the apoptotic cell
or other ApoBDs (6). In this study we used two established
apoptotic cell disassembly models (7, 8) to examine the role of
GSDME in regulating the balance between secondary necrosis
and ApoBD formation. Interestingly, loss of GSDME expression
in both human Jurkat T cells and THP-1 monocytes did not
inhibit the progression apoptotic cells into secondary necrotic
cells or promote cell disassembly during apoptosis.

MATERIALS AND METHODS

Reagents
Reagents were obtained as follows: trovafloxacin, doxycycline
and mitoxantrone (Sigma-Aldrich, MO), anti-Fas (clone CH11,
Millipore, MA), annexin A5 (A5)-PE (BD Biosciences, CA) and
TO-PRO-3 (Life Technologies, NY).

Cell Culture
Human Jurkat T cells and THP-1 monocytes were obtained from
ATCC and cultured in complete RPMI media. Complete RPMI
constituted of RPMI 1640 medium (Life Technologies),
10% (vol/vol) fetal bovine serum (FBS, Bovogen, New
Zealand), penicillin (50 U/ml) and streptomycin (50 mg/ml)
(Life Technologies), and 0.2% (vol/vol) MycoZap (Lonza,
Switzerland). Human A431 squamous epithelial cells (Lonza)
were cultured in MEM (Lonza) supplemented with 10% FBS,

penicillin (50 U/ml) and streptomycin (50 mg/ml), and non-
essential amino acid and L-glutamine (Thermofisher Scientific,
MA).

CRIPSR/Cas9 Gene Editing
A doxycycline-inducible sgRNA vector CRISPR/Cas9
system was used to generate gene disruptions as previously
described (9). Jurkat T and THP-1 cells stably expressing
Cas9 endonuclease and mCherry were generated by lentiviral
transduction using pFUCas9mCherry plasmid. GSDME
targeting sgRNA were generated by annealing the following
oligonucleotides 5′ TCCCGTCGGACTTTGTGAAATACG-3′

and 5′AAACCGTATTTCACAAAGTCCGAC-3′, and ligating
into pFgh1tUTG plasmid. Jurkat T and THP-1 cells expressing
Cas9 and mCherry were single cell sorted using FACS Aria II
(BD Biosciences). The stably-Cas9-expressing cells were then
infected with lentiviral supernatant containing GSDME targeting

sgRNA pFgh1tUTG constructs. Jurkat T cells were treated
with doxycycline (1µg/ml) treatment for 72 h and mCherry
(indicative of Cas9) and GFP (indicative of sgRNA) positive
cells were single cell sorted using FACS Aria II. For THP-1 cells,
mCherry and GFP positive cells were bulk sorted using FACS
Aria II and treated with doxycycline (1µg/ml) for 7 days.

Immunoblotting
Samples were lysed at 4◦C in lysis buffer [20mM HEPES pH
7.4, 1%, IGEPAL R© CA-630, 10% glycerol, 1% Triton X-100,
150mM NaCl, 50mM NaF, protease inhibitor cocktail tablet
(Roche, CH)], analyzed by SDS-PAGE and immunoblotted using
the following antibody dilutions: anti-GSDME (1:1,000, clone
EPR19859, Abcam), anti-ERK2 (1:1,000, clone D-2, Santa Cruz),
anti-β actin? (1:4,000, clone AV-15, Sigma-Aldrich), in 3% BSA
in PBST (0.1% Tween). Blots were incubated in secondary HRP-
conjugated donkey anti-rabbit (1:5,000,Millennium Science, AU)
or sheep anti-mouse (1:5,000, Millennium Science) antibodies in
5% milk in PBST (0.1% Tween). HRP signal was developed using
ECL (GE Lifesciences) and captured using the Syngene G:Box gel
documentation and analysis system (Syngene, MD).

Induction of Apoptosis
Cells in 1% BSA or complete RPMI were induced to undergo
apoptosis with UV irradiation (150 mJ/cm2) using Stratagene
UV Stratalinker 1800 (Agilent Technologies, CA) and incubated
at 37◦C in humidified atmosphere with 5% CO2 for 4 h or as
indicated. In certain experiments as indicated, apoptosis was
induced with anti-Fas treatment (0.5µg/ml, Merck, Germany).
For A431 cells, apoptosis was also induced using mitoxantrone
(4 ng/ml, Sigma-Aldrich, MO) and incubated at 37◦C in
humidified atmosphere with 5% CO2 for 4–6 h.

Microscopy
Cells were seeded in a 4 or 8 chambered NuncTM Lab-TekTM

II chambered coverglass (Nunc, Denmark) prior to induction
of apoptosis and drug treatment. For Jurkat T and THP-
1 cells, chambers were pre-treated with poly-L-lysine (Sigma
Aldrich). A431 cells were seeded 16 h prior to induction of
apoptosis. Time-lapse differential interference contrast imaging
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was performed at 37◦C with 5% CO2 using Spinning Disc
Confocal microscope (Zeiss, Germany) with ×63 oil immersion
objective. Image processing and analysis was performed using
Zeiss imaging software (Zeiss).

Flow Cytometry Analysis of Cell Viability,
Cell Lysis, and ApoBD Formation
Samples were stained with A5-PE (1:200 dilution) and TO-PRO-
3 (0.5µM) in 1× A5 binding buffer (BD Biosciences) at room
temperature (RT) in dark for 10min. Samples were analyzed
using FACSCanto II Flow cytometer (BD Biosciences). Data
analysis was performed using FlowJo software (version 9.8.5,
FlowJo, OR) as previously described (10). Briefly, necrotic cell
(TO-PRO-3high) was separated from other events (TO-PRO-
3low/intermidate). The latter population was further gated into
two groups: (i) SSChigh A5low/intermediate, used to identify viable
cells (FSChigh TO-PRO-3low), and (ii) the remaining events,
for further determination of apoptotic cells (FSChigh A5high)
and ApoBDs (FSClow A5intermedidate/high). The level of ApoBD
formation was reflected by ApoBD formation index, the ratio
between ApoBDs and apoptotic cells in the sample.

Lactate Dehydrogenase (LDH) Release
Assay
LDH release assay was performed as previously described (11)
using a LDH Cytotoxic Assay Kit II (Abcam). Briefly, cell lysis
was determined by detecting release of cytosolic LDH in culture
supernatants. Cells were induced to undergo apoptosis by UV
irradiation or anti-Fas treatment in a 96 well plate in complete
RPMI at 37◦C, 5% CO2 in humidified atmosphere for either 4
or 16 h. Cell suspensions were centrifuged at 300 g for 10min to
remove cells and the supernatant was centrifuged at 3,000 g for
20min to remove cell debris. Resultant supernatant was added to
LDH reaction mix for 30min at RT. Absorbance was measured at
450 nm using SpecraMax M5e Plate reader (Molecular Devices,
CA) and data was analyzed using SoftMaxPro 5.2 software
(Molecular Devices).

Statistics
Data is represented as + s.e.m. Statistical significance was

determined using One-way analysis of variance (ANOVA)
followed by Turkey post-hoc test or, where appropriate, unpaired
students’ two-tailed T-test. P < 0.05 were considered significant.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

RESULTS

The expression of GSDME was detected in human Jurkat T
cells, and induction of apoptosis by UV irradiation promoted the
generation of a GSDME fragment at∼35 kDa that corresponded
to the caspase-cleaved GSDME noted in previous studies (3, 4)
(Figure 1A). To investigate the role of GSDME in membrane
permeabilisation and cell disassembly during apoptosis, we
generated GSDME−/− Jurkat T cells by CRISPR/Cas9-based
gene editing approach (Figure 1B and additional GSDME−/−

Jurkat T cell lines shown in Figure S1A). We then determined
whether loss of GSDME will lead to a reduction in Jurkat T cells

progressing to secondary necrosis upon apoptotic stimulation
by monitoring the release of the cytosolic protein lactate
dehydrogenase (LDH) into the culture supernatant [also used in
(3, 4)]. Surprisingly, all GSDME−/− Jurkat T cell lines exhibited
similar levels of necrotic lysis as Cas9 control cells at 4 and 16 h
post-apoptosis induction by UV (Figure 1C and Figure S1B) or
anti-Fas treatment (Figure S2). To quantify the progression of
apoptosis, we performed flow cytometry analysis using A5 (detect
exposure of phosphatidylserine) and TO-PRO-3 (membrane-
impermeable nucleic acid stain, only entering cells through
caspase 3/7-activated plasma membrane channel pannexin 1
(PANX1) during early stages of apoptosis or upon membrane
permeabilisation). Comparable levels of necrosis (TO-PRO-3high

A5high cells) were consistently detected in Cas9 control and
GSDME−/− Jurkat T cells (Figures 1D,E and Figure S1C).

Furthermore, using our recently established multi-parametric
gating strategy (10) on the flow cytometry dataset, we were able to
quantify and compare the level of ApoBD formation by apoptotic
Cas9 and GSDME−/− cells. Unexpectedly, GSDME−/− Jurkat
T cell lines were found to generate similar levels of ApoBDs
as Cas9 control cells (Figure 1F and Figure S1D), suggesting
that GSDME is not a negative regulator of the apoptotic cell
disassembly process in this cell model. In contrast, loss of PANX1,
a previously described negative regulator of ApoBD formation
(8), in Jurkat T cells markedly promoted the generation
of ApoBDs upon UV (Figure 1G) or anti-Fas treatment
(Figure S3). Next, we used time-lapse differential interference
contrast (DIC) microscopy to visualize our observations and
confirmed that Cas9 control and GSDME−/− Jurkat T cells
were able to display typical apoptotic morphologies such as
dynamic membrane blebbing over 4 h post apoptosis induction
without apparent effect on secondary necrosis (Figure 1H and
Videos 1, 2).

Similar results were also observed for THP-1 monocytic
cells, in which GSDME is evidently expressed and cleaved
during apoptosis (Figure 2A). Compared to control THP-1
cells (untreated isgGSDME), THP-1 cells deficient in GSDME
(isgGSDME + dox; Figure 2B) did not show a reduction in
the level of membrane permeabilised cells (Figures 2C,D) or
enhanced cell disassembly during apoptosis (Figures 2E,F).
Furthermore, A431 epithelial cells (expressing a relatively higher
level of GSDME than Jurkat T cells and THP-1 monocytes,
Figure 2G) induced to undergo apoptosis by UV-irradiation
or mitoxantrone treatment can readily undergo apoptotic
cell disassembly (12) (Figure 2H). Collectively, these data
suggest that GSDME is dispensable for secondary necrosis and
is not a negative regulator of apoptotic cell disassembly
in Jurkat T and THP-1 monocytic cells. Furthermore,
caspase-mediated activation of GSDME during apoptosis
does not limit apoptotic cell disassembly in A431 epithelial
cells.

DISCUSSION

It is important to understand the mechanistic basis of
programmed necrosis as the exposure of intracellular contents
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FIGURE 1 | Loss of GSDME does not affect the level of secondary necrosis and ApoBD formation in Jurkat T cells. (A) Expression of GSDME and proteolytic

processing of GSDME during UV-induced apoptosis (150 mJ/cm2 ) in Cas9 Jurkat T cells. (B) Loss of GSDME protein expression with CRISPR/Cas9-mediated

GSDME gene disruption in Jurkat T cell clonal populations. GSDME expression in (A,B) were detected using immunoblotting analysis. (C) Levels of cell lysis in Cas9

control and GSDME−/− Jurkat T cells treated with UV irradiation was quantified based on the release of LDH into the culture supernatant (n = 3). (D) Representative

flow cytometry plots of viable, apoptotic and necrotic cells generated by Cas9 control and GSDME−/− Jurkat T cells treated with UV irradiation to induce apoptosis.

(E) Levels of viable, apoptotic and necrotic cells in Cas9 control and GSDME−/− Jurkat T cells treated with UV irradiation to induce apoptosis was determined by flow

cytometry (n = 3). (F) Formation of ApoBDs from apoptotic Cas9 control and GSDME−/− Jurkat T cells (n = 3). ApoBD formation index determined by the number of

ApoBDs divided by the number of A5+ apoptotic cells. (G) Disassembly of apoptotic Cas9 and PANX1−/− Jurkat T cells was monitored by live DIC microscopy and

flow cytometry (n = 3). (H) Live DIC microscopy images monitoring morphologies of UV-irradiated Cas9 control and GSDME−/− Jurkat T cells over 4 h. Error bars

represent s.e.m. Data are representative of at least two independent experiments. P-values were determined by directly comparing a GSDME−/− clone to Cas9

control at that particular timepoint, using One-way ANOVA post-hoc using Turkey’s test in (C,E,F) or unpaired Student’s two-tailed t-test in (G). ***P < 0.001, NS = P

> 0.05.

is linked to autoimmune response, inflammation and tissue
injury (13–15). In this study, we show that GSDME is not
required for cells to progress into secondary necrosis and does
not negatively regulate apoptotic cell disassembly. One might
attribute the discrepancy between previous studies (3, 4) and this
study to the cell type-dependent role of GSDME, which may

correlate with its expression level. However, while we cannot
eliminate this possibility, several lines of evidence do question the
previously proposed role of GSDME in apoptosis. Even though
GSDME was expressed at a lower level in Jurkat T and THP-1
monocytic cells as compared to A431 epithelial cells, expression
and cleavage of GSDME during apoptosis were clearly evident
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FIGURE 2 | Expression level of GSDME does not alter secondary necrosis and ApoBD formation in other cell models. (A) Expression of GSDME and proteolytic

processing of GSDME during UV-induced apoptosis (150 mJ/cm2 ) in THP-1 monocytes. (B) Loss of GSDME protein expression with CRISPR/Cas9-mediated

GSDME gene disruption upon doxycycline (dox) treatment of isgGSDME THP-1 cells. (C) Levels of cell lysis, reflected by LDH release, in untreated and dox-treated

isgGSDME THP-1 cells (n=3). Flow cytometry analysis showing (D) the levels of viable, apoptotic and necrotic cells and (E) ApoBD formation index of UV-irradiated

untreated and dox-treated isgGSDME THP-1 cells (n = 3). (F) Live DIC imaging of untreated and dox-treated isgGSDME THP-1 cells over 4 h post-UV irradiation. (G)

Expression of GSDME and proteolytic processing of GSDME during UV-induced apoptosis (150 mJ/cm2 ) in A431 epithelial cells, in comparison to Jurkat T and THP-1

cells. GSDME expression in (A,B,G) were detected using immunoblotting analysis. (H) Live DIC imaging of A431 cells treated with UV or mitoxantrone (4 ng/mL, 5 h) to

induce apoptosis. Error bars represent s.e.m. Data are representative of at least three independent experiments. NS = P>0.05, unpaired Student’s two-tailed t-test.

in these cell types. Whether a yet to be identified mechanism(s)
is present in these cell types/lines that could limit the proposed
function of GSDME remains to be determined. In addition, it is
worth noting that although GSDME−/− bone marrow-derived
macrophages [a cell type that expresses clearly detectable level
of GSDME (4, 5)]was initially found to exhibit an impairment
in undergoing secondary necrosis following treatment with

etoposide or vesicular stomatitis virus (4), recent studies reported
GSDME is not required for secondary necrosis in caspase 1−/−

caspase 11−/− bone marrow-derived macrophages treated with
flagellin, cytochrome c or FasL (5). Thus, GSDME-mediated
secondary necrosis may not be a predominate consequence of
apoptosis and may only occur under specific conditions for a
certain cell type. In support of the former concept, there is
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ample evidence in the literature demonstrating the ability of
apoptotic T cells (8), thymocytes (8, 16), B cells (17), monocytes
(7), fibroblasts (8), smooth muscle cells (18), epithelial cells (12),
and endothelial cells (19) to exhibit morphological hallmarks of
apoptosis including membrane blebbing and ApoBD formation
without early onset of secondary necrosis to disrupt the
progression of cell disassembly.

As described earlier, apoptotic cell disassembly is generally

regulated by three sequential morphological steps including
membrane blebbing, thin membrane protrusion formation and

cell fragmentation into ApoBDs (6). It is therefore logical to

argue that if membrane permeabilisation does occur prior to
the final cell fragmentation step, earlier onset of secondary
necrosis driven by any mechanism could negatively regulate
ApoBD formation. However, from the point of view of apoptotic
cell clearance, it is surprising that a process downstream of
caspase 3 (e.g. GSDME cleavage) would actively drive early onset
of secondary necrosis, an undesirable event during apoptosis.
In fact, apoptotic cells prevent membrane permeabilisation
mediated through, for example, pyroptosis (cleavage of GSDMD
by caspase 3 to generate non-membrane lytic form of GSDMD)
(20). Simultaneously, apoptotic cells also release “find-me”
signals and expose “eat-me” signals to promote cell clearance by
phagocytes to limit secondary necrosis (21, 22). It is important to

acknowledge that we are still at the early stages in understanding

the function of GSDME, however, in the context described in this
study, GSDME does not regulate secondary necrosis or function
as a negative regulator of apoptotic cell disassembly.
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