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ABSTRACT: Fat deposition in pigs is not only closely related to pig production efficiency and pork quality but also an ideal model
for human obesity. Transcriptome sequencing is widely used to study fat deposition. However, due to small sample sizes, high false
positive rates, and poor consistency of results from different studies, new strategies are urgently needed. Machine learning, a new
analysis method, can effectively fit complex data and accurately identify samples and genes. In this study, 36 samples of adipose
tissue, muscle tissue, and liver tissue were collected from Songliao black pigs and Landrace pigs, and the mRNA of all the samples
was sequenced. In addition, we collected transcriptome data for 64 samples in the GEO database from four different sources. After
standardization and imputation of missing values in the data set comprising 100 samples, traditional differential expression analysis
was carried out, and different numbers of expressed genes were selected as features for the training model of eight machine learning
methods. In the 1000 replications of fourfold cross validation with 100 samples, AdaBoost performed best, with an average
prediction accuracy greater than 93% and the highest mean area under the curve in predicting the high- and low-fat content groups
among the eight ML methods. According to their performance-based ranks inferred by AdaBoost, 12 genes related to fat deposition
were identified; among them, FASN and APOD were specifically expressed in adipose tissue, and APOA1 was specifically expressed
in the liver, which could be important candidate biomarkers affecting fat deposition.
KEYWORDS: fat deposition, pigs, data integration, machine learning, biomarkers

■ INTRODUCTION
With the improvement of living standards, people pay more
and more attention to the quality of meat. As the main source
of meat, pork is closely related to human health, and fat
deposition in pigs is closely related to pork quality and yield.1

Therefore, it has become an important topic among scientists
to improve the meat quality and yield of pigs by exploring the
mechanism of fat deposition. Moreover, due to their
physiological similarity with humans, pigs have gradually
become an ideal model animal for the study of human obesity
and metabolic syndrome.2 Fat deposition is a dynamic
equilibrium process involving the synthesis, breakdown, and
transport of fat that takes place mainly in adipose tissue, liver,
and muscle.3 In addition, fat deposition is temporally and
spatially regulated by multiple genes. Transcriptome sequenc-
ing data from different tissues at different times have been
widely used to explore the mechanisms of fat deposition.
However, most transcriptome studies used few replicates and
can only identify the genes with the largest changes in
expression, thus lacking the ability to detect differences at the
level of biological significance.4 Some studies have also shown
that different methods for detecting genes with differential
expression lack sufficient statistical power and have a certain
false positive rate and false negative rate.5 Therefore, increasing
the sample size and seeking new analysis strategies are crucial
for overcoming the limitations of traditional transcriptome
analysis.

Machine learning (ML), a new big data analysis method, can
effectively fit complex data and accurately identify samples and
genes. Due to the high flexibility of ML algorithms, it is
possible to use them in complex omics data analysis.6 At
present, many ML algorithms are being widely applied in this
field. ML algorithms are used in biological modeling, and their
performance is better than that of traditional mathematical
models.7 Moreover, ML has proven effective in cancer
prognosis analysis, therapeutic target prediction, and drug
target prediction, in which classification functions can be used
to discover new biomarkers and new drug targets.8 In addition,
Belgian researchers studied hundreds of children’s blood
samples and characteristics of the immune system and found
that the ML algorithm obtained an arthritis diagnosis accuracy
as high as 90%.9 In animal husbandry, ML has also begun to be
used for genomic selection, with significantly better accuracy
than traditional methods.10 ML has also been gradually applied
in the study of the economic traits of pigs. There are studies
that have used ML to predict daily gain11 and total number
born12 of pigs, which showed high accuracy. However, due to
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the relatively high cost and complex processing requirements
of RNA sequencing, ML also faces the problem of a small
sample size. The collection of multiple samples with similar
experiments can not only preserve biological information but
also improve the effectiveness and practicality of gene
expression analysis.5

Therefore, in this study, transcriptome sequencing data were
collected from the major organs of fat deposition in pigs from
multiple sources, and the strategy of imputing missing values
was applied to unify data from different sources. In addition,
eight ML methods were also compared to evaluate the
prediction accuracy of ML models, and genes affecting fat
deposition were predicted by the best ML method. Meanwhile,
the efficiency of traditional differential expression analysis was
also compared with that of ML methods.

■ MATERIALS AND METHODS
Pig Samples and RNA-Seq. RNA-seq data from five sources

were used in this study (Table 1). The experimental population used
in this study was from a pig breeding farm in Tianjin, China. A total of
500 Landrace (n = 341) and Songliao black (a Chinese breed, n =
159) sows were selected. The backfat thickness (5 cm between the
third and fourth ribs) of live pigs (∼100 kg body weight) was
measured by B-ultrasound in vivo as an index of fat deposition,
because the backfat thickness was highly positively correlated with the
fat deposition content.13 For each breed, six individuals with the
highest and lowest backfat thicknesses were sampled. Adipose tissue,
muscle tissue, and liver tissue samples were collected from these 24
individuals, and 36 samples were selected according to sample quality,
including 16 Songliao black pig samples and 20 Landrace pig samples
(Table S1). The numbers of samples in the high- and low-fat content
groups of each breed were equal.
All animal studies were evaluated and authorized by the

Institutional Animal Care and Use Committee (IACUC). The
whole procedure for samples collected was carried out in strict
accordance with the protocol approved by the IACUC at the China
Agricultural University. The IACUC of the China Agricultural
University specifically approved this study (permit number DK996).
We extracted RNA from 36 samples and sequenced mRNA using

the Illumina HiSeq 2000 sequencing platform after sample processing.
IlluQC.pl (NGS QC Toolkit)14 was used for quality control of the
sequenced reads, and HISAT215 was used for fast and accurate
sequence alignment. Finally, SAMtools16 and FeatureCounts17 were
used to transform the transcriptome gene expression count file in
order to obtain the gene expression profile in each tissue sample.
In addition, we also collected similar transcriptome data from 64

samples in the GEO database from four different sources (Table 1),
including adipose tissue samples of 24 Duroc × Gottingen minipigs18
and 16 Pulawska pigs19 and muscle tissue samples of 12 Italian Large
White pigs20 and 12 Iberian pigs.21 The samples were screened and
grouped according to their phenotypic information, including the
obesity index, intramuscular fat content, and backfat thickness.
Samples from each source were divided into two groups (high- and
low-fat contents or obesity indexes), and the numbers of samples in
the groups were equal.
Data Standardization and Imputation. Data standardization

was first carried out to make the five different sources comparable.
Each data set was transformed into fragments per kilobase per million

mapped fragments (FPKM) values in a unified manner. Then, the
data were combined, and the gene names were transformed according
to the pig reference genome (Sscrofa11.1). The genes with gene
symbols were retained, and the genes with missing rates greater than
20% were excluded. A variety of strategies were implemented to
impute the remaining missing values.
Ten imputation methods (MINIMUM,22 stochastic minimal value

(MINPROB),23 row median (ROWMEDIAN),24 singular value
decomposition (SVD),25 maximum likelihood estimation (MLE),26

sequential imputation (IMSEQ),27 robust sequential imputation
(IMPSEQROB),28 K-nearest neighbor (KNN),25 sequential KNN
(SEQ-KNN),29 and quantile regression (QR)23) were compared.
MINIMUM, MINPROB, and ROWMEDIAN are simple and fast
because they are the minimum, random, and median values,
respectively, to directly replace missing values. SVD, MLE, IMPSEQ,
and IMPSEQROB consider the global structure of the gene matrix,
decompose the data matrix or minimize the determinant of the
covariance and then iteratively impute the missing values. KNN, SEQ-
KNN, and QR consider only values near the missing value and impute
missing data on the basis of local similarity of the gene expression
profile. Four evaluation criteria, the average correlation coefficient
between the original value and imputed value (ACC_OI), NRMSE,
NRMSE-based SOR, and PSS, were used to evaluate the efficiency of
data imputation.30 After data imputation, the batch effect of five
different sources was corrected using the R package combat.31 PCA
and cluster analysis were carried out on the data before and after
removing the batch effect to show the batch effect.
Differentially Expressed Gene Analysis. Differential expression

analysis was performed on the data after adjusting for batch effects.
Limma,32 which can fit linear models of gene modes to gene
expression data in order to detect differential expression, was used to
identify the DEGs. In the merged data of five different sources, the
groups were the same as previously set. In addition, DEG analysis was
also conducted for individual sources. According to the results of
differential expression analysis, genes were ranked according to P
value, and genes with a P value less than 0.05 were regarded as
differentially expressed.
Machine Learning. To further screen for candidate genes

affecting fat deposition, we performed ML analysis based on the
results of differential expression analysis. The whole process of ML
analysis is illustrated in Figure 1. The 500, 1000, 2000, and 3000
genes with the most significant P values from differential expression
analysis were chosen as selection features to facilitate better ML
model training. Meanwhile, all the genes (6658) detected in the
differential expression analysis were also chosen as selection features.
In addition, organization type was also added to the data set in the
form of a numerical value as the feature vector of the samples. For
these five cases, we conducted ML model training and evaluation. To
achieve better and faster convergence of the models, normalization
and standardization of the constructed data sets were applied; that is,
the expression level of each gene was scaled to 0−1, and the variances
of all genes were equalized. For the 100 samples, 1000 replications of
fourfold cross validation (CV) were carried out to evaluate the ML
model. For each instance of CV, 75 and 25 samples were used to build
the classification model and to evaluate the accuracy of the model,
respectively. The prediction accuracy of the ML model was the rate of
correct sample classification in the validation population. We fine-
tuned the hyperparameters of the ML model manually to improve the
accuracy of the model prediction.

Table 1. Sample Information from Different Sources

source breed tissue fat content index high group low group

ours Landrace, Songliao black pig adipose, muscle, liver backfat thickness 18 18
GSE61271 Duroc × Göttingen Minipigs adipose obesity index 12 12
GSE144780 Italian Large White muscle intramscular fat content 6 6
GSE116951 Iberian pig muscle intramscular fat content 6 6
GSE122349 Pulawska breed adipose backfat thickness 8 8
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To find the ML model that best fits the data in this study, we tested
eight commonly used classification models (Linear Support Vector
Classification (LinearSVC),33 Radial Basis Function Kernel Support
Vector Machine (RBF SVM),34 RandomForest,35 Nearest Neigh-
bors,36 Gaussian Process,37 Decision Tree,38 Neural Network,39 and
AdaBoost40). These models are fully supervised ML classification
models, including linear, nonlinear, and integrated ensemble methods.
According to the accuracy of the ML model, the optimal training
features, the optimal training model, and the optimal parameter
combination of the model were determined. In addition, for the
feature numbers with the highest accuracy, ROC curves were drawn
for each of the eight models to further evaluate model quality.
The best model was selected, and all 100 samples were reanalyzed

using the model. Each gene was ranked by RFE41 to screen out the
most important genes for model classification. For this study, the
higher the rank of the genes based on RFE, the more likely they were
to determine whether a sample was classified into a high- or low-fat

content group, indicating that these genes play important roles in fat
deposition.
The ML model was developed and RFE was applied using the

package Scikit-learn V.1.0. All steps were performed using Python
V.3.9.6. NumPy V.1.22 and pandas V.1.3.4 were used for data
collation and basic statistical calculations, respectively.
Gene Function Analysis. Gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were
performed on the top 100 genes screened by the best ML methods,
KOBAS42 was used to conduct enrichment analysis of four features
(cellular components, molecular functions, biological processes, and
pathways) for the top 100 genes, and a false discovery rate (FDR)-
corrected P value less than 0.05 was considered significant. In
addition, ClueGO43 in Cytoscape software44 was further applied to
the top 100 genes to detect relationships between different
enrichment pathways. Candidate genes were further selected in
combination with the annotation of Sscrofa11.1. In addition,
enrichment analysis was also conducted for the top 100 genes
screened by P value ranking in DEG analysis and all the DEGs. We
also analyzed the expression of candidate genes in 72 different tissue
samples (7096 in total) from pigs45 to discover their unique
expression patterns.

■ RESULTS
Standardization of Gene Expression Data from

Different Sources. The numbers of expressed genes in the
samples from five sources were 14975, 15455, 9568, 14971,
and 14875, among which 8317 genes overlapped (Figure S1).
After merging data from the five sources and imputing missing
values, 6658 overlapping genes remained, only 5% of all gene
expression values were missing, and the distribution of missing
values was relatively concentrated (Figure S2). Efficient
imputation of missing values can improve the accuracy of
subsequent data analysis. Table 2 shows the imputation
performance of 10 data imputation methods. Among them,
IMSEQROB performed the best; it ranked 1st for all four
evaluation criteria, yielding the highest average correlation
coefficient (0.99) and the lowest normalized root mean
squared error (NRMSE), NRMSE-based sum of ranks
(SOR), and Procrustes sum of squared errors (PSS). A similar
approach to IMSEQROB, SEQKNN, ranked 2nd in the overall
evaluation except in terms of the average correlation
coefficient, for which it ranked third. This method yielded a
higher NRMSE than the IMPSEQ method, and IMPSEQ was
the third best among the 10 data imputation methods. Single-
value replacement methods are simple and quick but
performed poorly in this study, with MINIMUM and
ROWMEDIAN ranking at the bottom of the middle. In all
scenarios, MLE performed the worst; it ranked last for each
evaluation criterion, generating the lowest average correlation

Figure 1. Workflow of machine learning analysis.

Table 2. Comparison of Different Methods for Imputing Missing Values

methods Cor_mean NRMSE PSS SOR NRMSE_Rank SOR_Rank ACC_OI_Rank PSS_Rank Rank_Mean

IMPSEQROB 0.9936 0.3640 2.00 × 10−5 758 1 1 1 1 1
SEQKNN 0.9879 0.5124 4.00 × 10−5 1290 3 2 2 2 2.25
IMPSEQ 0.9874 0.4118 6.00 × 10−5 1330 2 3 3 4 3
KNNMETHOD 0.9871 0.5398 5.00 × 10−5 1490 4 4 4 3 3.75
ROWMEDIAN 0.9554 0.8981 0.00018 2279 5 5 5 5 5
MINIMUM 0.8663 1.0496 0.00154 3148 7 6 6 6 6.25
MINPROB 0.7920 1.0505 0.00215 3489 8 7 8 7 7.5
SVDMETHOD 0.6583 1.0002 0.0034 3608 6 8 9 9 8
QRILC 0.8125 2.9811 0.00283 3668 9 9 7 8 8.25
MLE 0.0124 2351.45 0.01001 4680 10 10 10 10 10
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coefficient (an extremely low value of 0.01) and highest
NRMSE, NRMSE-based SOR, and PSS. Therefore, we chose
the IMPSEQROB method for the imputation of missing data.
In the merged data after imputation, a large batch effect was

indicated among the five different data sources, as shown in
Figure 2, with different data sources clustered onto different
branches. Moreover, tissue and breed effects were also
detected in the data clustering analysis. Figure 2A further
illustrates that all samples were obviously divided into three
groups based on principal component analysis, and most of the
samples in each group came from the same source, indicating
heterogeneity in the data. After correcting for the batch effect
by combat, the batch effect, tissue effect, and breed effect were
all reduced, as illustrated in Figure 2B. The range of gene
expression values in the samples decreased from 10,000 to
8000, PC1 decreased from 57.87 to 45.13% (Figure 3), and the
samples were more uniform after standardization.
Analysis of Differentially Expressed Genes in the

Merged Data Set. After standardization and removal of the

batch effect, 235 differentially expressed genes (DEGs, P value
<0.05) were identified by limma. Figure 4 illustrates that the
DEGs were mostly downregulated in expression in the high-fat
content group and upregulated in expression in the low-fat
content group. The 10 genes with the smallest P values are
shown in Figure 4B, and the gene with the largest fold change
was FASN (logFC = 244.5, P value = 0.016). In addition, 280,
2048, 577, 931, and 2088 DEGs were also identified for
individual sources by limma, while no overlap was found
among these DEGs (Figure S3), implying that it is difficult to
find candidate genes by summarizing results from different
data sources. Most of the 235 DEGs in the merged data set
overlapped with those from different sources, and only 33 of
them could not be found through differential expression
analysis of a single source.
Comparison of Eight Machine Learning Models. For

different ML models, parameter tuning was carried out, and
the optimal parameter combination was selected according to
the results of CV (Table S2). Table 3 shows the prediction

Figure 2. Cluster diagrams of genes before (A) and after (B) removing the batch effect.
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accuracies of eight ML models under different characteristic
gene scenarios. The accuracies of the eight ML models showed
almost the same trend for all tested numbers of selection
feature genes. AdaBoost yielded the highest accuracy (more
than 90%) in predicting the high- and low-fat content groups,
and Nearest Neighbors yielded the lowest accuracy. Similar to
that of Nearest Neighbors, the prediction accuracies of Linear
SVM, RBF SVM, Gaussian Process, and Neural Net s were
lower than 80% in all scenarios, Random Forest yielded
accuracies greater than 80%, and Decision Tree performed
similarly to AdaBoost. On the other hand, when the top 2000
genes were selected, AdaBoost performed better than when
other feature numbers were selected, yielding an average
prediction accuracy of 93 and 93.4% in the high- and low-fat

content groups, respectively, and the narrowest 95%
confidence intervals of 84−100% for both the high- and low-
fat content groups. Moreover, the receiver operating character-
istic (ROC) curves of the 8 ML methods further illustrated
that AdaBoost performed best (Figure 5). The area under the
ROC curve (AUC) of AdaBoost was much higher than those
of the other models. The ROC curve of the AdaBoost model
also had minimal variance, indicating that the model was more
stable than the other models for different data sets under CV.
Therefore, we selected the AdaBoost model and the top 2000
genes to train all samples and to rank the genes in terms of
importance based on recursive feature elimination (RFE).
Identification of Genes with Unique Expression

Patterns. We ranked 2000 genes and tissue factors involved

Figure 3. Distribution and PCA before and after removing the batch effect (A,C) is the data distribution and PCA clustering diagram of the original
data. (B,D) is the data distribution and PCA cluster graph after removing the batch effect.
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in the analysis according to importance by applying RFE.
Among the top 100 genes with the highest importance, only 16
were differentially expressed (Figure 6), implying that ML is
quite different from traditional differential expression analysis,
and the top three genes were EFCAB7, ZDHHC18, and
LRPPRC (Table S3). In addition, the functional enrichment of
the top 100 genes screened by ML was quite different from
that of all DEGs or the top 100 DEGs. There were no common
enrichment items, and the DEGs and top 100 differentially
expressed enrichment items were not directly related to fat
development (Figures 7 and S4).
Through functional enrichment analysis of the top 100 genes

screened by ML, the two most significant items directly related
to the formation of fat were identified, namely, ether lipid
metabolism and lipid catabolic process, which were associated
with the genes PLA2G6, PLA2G7, PLD4, and PLD1 and
PLA2G6, PLCB1, PLD1, and PLA2G7, respectively (Figure 7).
Additionally, several gene groups were also involved in lipase
activity and energy metabolism. Finally, 12 genes (IFIT1,
ZDHHC18, FASN, PLA2G6, PLA2G7, PLCB1, PLD4, PLCG2,
PLD1, APOA1, APOD, and APOOL) were found to be
associated with fat growth and development and could be
candidate genes for the regulation of fat deposition (Table S3).
Among them, ZDHHC18, IFIT1, and FASN ranked 2nd, 4th,
and 10th, respectively, in the ML model (Table S3). Figure 8
further illustrates the expression of these 12 candidate genes in
12 main tissues from 72 samples of pigs. FASN and APOD
were specifically expressed in adipose tissue. APOA1 was
specifically expressed in the liver. In muscle tissue, the
expression levels of these candidate genes were very low.

■ DISCUSSION
Comprehensive analysis of data is considered a key method for
extracting the most effective information from different

genomic data sets, which is conducive to the discovery of
important biological phenomena.46 At present, there are two
different comprehensive analysis strategies: meta-analysis and
data combination. When there is large heterogeneity among
original studies and the number of studies is small, random
effects cannot be fully considered in the model, resulting in
invalid conclusions with type I error and leading to low
consistency among studies.47 This point was confirmed by our
findings, in which the DEGs from five different sources showed
poor consistency (Figure S3). Therefore, such meta-analysis is
not applicable to these data sets. The data combination
method involves combining samples from different sources to
enlarge the data set and then analyzing the newly combined
data set.48 The advantages of data combination over the meta-
analysis method mainly lie in the greater statistical significance
of the results obtained by analyzing the combined large sample
sets and the more rigorous inference results.49 Our results
confirmed that combining data from five different sources
yielded the most DEGs obtained through single-source
analysis, and no common DEGs were found among single-
source analyses even though many DEGs were identified. In
addition, in order to expand the sample size as much as
possible to meet the training requirements of machine learning,
we put three kinds of important tissue samples directly related
to fat deposition in the same data set for joint analysis.
When combining data, some key issues must be solved to

unify the data, for example, batch effects and missing values. In
this study, batch and tissue type effects were found to influence
the uniformity of the data. Many studies have shown that
ComBat adjustment of data results in improved statistical
power and control of false positives in differential expression
analysis compared to those of data adjustment by other
available methods.50 The empirical Bayes method in ComBat
was adopted to eliminate the effect of covariates for batch

Figure 4. Distribution (A) and Volcanogram (B) of differentially expressed genes (DEGs) (A) Expression distribution of differentially expressed
genes and the clustering of samples according to gene expression. (B) Situation of the differential genes. The x-axis represents the multiple of
difference, which is denoted by log2FoldChange. The larger the absolute value is, the larger the multiple of difference is. The y-axis represents the
significance of the difference, which is denoted by −log 10 (P-value). The larger the value is, the more significant the difference is. The panel shows
the names of the top 10 genes with the most significant differences.
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effect correction. Our results indicated that the batch effect was
significantly corrected (Figures 2 and 3). Although a good trial
design can reduce batch effects, it is difficult to eliminate
systematic bias completely;51 therefore, we incorporated the
tissue type of the sample as a feature into the ML training
model to reduce bias. Regarding missing values, we compared
the imputation effects of various methods and showed that
Global Structure Approach IMPSEQROB ranked first in all
evaluations because it fully considers the relationships between
genes, which is more in line with biological characteristics.
Studies have shown that when processing biological data such
as protein expression data, IMPSEQROB has a higher
completion effect on missing values, and the distribution of
filled data is more similar to that of real data.30

There is no perfect ML algorithm that can solve all
problems; instead, ML algorithms must be tailored to different
data.52 In this study, we evaluated almost all popular ML
algorithms through CV. Compared with SVM and neural
network algorithms widely used in the biomedical field, the
AdaBoost algorithm performed best in this study, which
further indicates that different algorithms should be used for

specific problems. The neural network approach has better
model complexity and can fit complex data more accurately
than other approaches. However, for this study, the sample
information complexity was high, but the number of training
samples was relatively small, and the samples were not as
heterogeneous as tumor samples, so overfitting was easily
caused by using an overly complex model. By training different
weak classifiers, the AdaBoost algorithm integrates these weak
classifiers to form a strong classifier, which can solve the
problem of complex structures with high classification
accuracy. The subclassifier is a CART decision tree. As a
binary classifier, it has a simple structure. It not only has a very
fast training speed but also can adapt well to the characteristics
of small training sets such as that used in this study. The most
important feature is that the whole model is not easy to overfit,
and its iteration process has the effect of increasing the
margin.53 The results also indicate that higher model
complexity in ML is not necessarily better. For data with a
small sample size and complex information, an integrated ML
method similar to AdaBoost can be adopted. In addition, we
found that the accuracy of the decision tree was also quite high

Table 3. Comparison of the Accuracy and Confidence Interval (CI) of Eight Machine Learning Models with Different Feature
Numbers on Fat Content Classification in Four-Fold Cross Validation of 1000 Replicatesa

feature
accuracy and
95% CI

accuracy and
95% CI

Top500
genes

linear SVM H: 75.3
(56.0−88.0)

Gaussian
Process

H: 70.3
(52.0−84.0)

L: 75.5
(60.0−88.1)

L: 69.9
(52.0−84.0)

RBF SVM H: 70.9
(44.0−76.0)

Decision
Tree

H: 90.8
(80.0−100.0)

L: 70.8
(44.0−76.0)

L: 90.8
(80.0−100.0)

random
forest

H: 87.4
(76.0−100.0)

Neural Net H: 78.1
(64.0−92.0)

L: 87.7
(76.0−100.0)

L: 77.0
(60.0−92.0)

nearest
neighbors

H: 62.6
(44.0−80.0)

AdaBoost H: 92.9
(80.0−100.0)

L: 62.7
(44.0−80.0)

L: 92.9
(84.0−100.0)

Top1000
genes

linear SVM H: 74.1
(56.0−92.0)

Gaussian
Process

H: 68.4
(52.0−84.0)

L: 74.4
(59.9−88.0)

L: 64.4
(48.0−80.0)

RBF SVM H: 66.7
(52.0−80.0)

Decision
Tree

H: 92.5
(80.0−100.0)

L: 66.6
(51.9−84.0)

L: 92.4
(80.0−100.0)

random
forest

H: 85.8
(72.0−96.0)

Neural Net H: 73.6
(56.0−88.0)

L: 85.8
(68.0−96.0)

L: 74.2
(56.0−84.0)

nearest
neighbors

H: 59.3
(40.0−76.0)

AdaBoost H: 92.9
(84.0−100.0)

L: 59.1
(40.0−76.0)

L: 93.1
(84.0−100.0)

Top2000
genes

linear SVM H: 70.8
(52.0−88.0)

Gaussian
Process

H: 64.0
(48.0−76.0)

L: 70.6
(52.0−88.0)

L: 58.7
(44.0−72.0)

RBF SVM H: 62.8
(48.0−80.0)

Decision
Tree

H: 92.0
(80.0−100.0)

L: 62.7
(44.0−80.0)

L: 91.8
(80.0−100.0)

random
forest

H: 86.0
(72.0−100.0)

Neural Net H: 69.3
(52.0−88.0)

feature
accuracy and
95% CI

accuracy and
95% CI

L: 86.4
(72.0−100.0)

L: 69.3
(52.0−84.0)

nearest
neighbors

H: 56.2
(40.0−72.0)

AdaBoost H: 93.0
(84.0−100.0)

L: 56.0
(40.0−72.0)

L: 93.4
(84.0−100.0)

Top3000
genes

linear SVM H: 66.8
(48.0−84.0)

Gaussian
Process

H: 64.8
(48.0−80.0)

L: 66.8
(48.0−84.0)

L: 64.5
(48.0−80.0)

RBF SVM H: 60.1
(44.0−76.0)

Decision
Tree

H: 92.0
(80.0−100.0)

L: 60.1
(44.0−76.0)

L: 92.1
(80.0−100.0)

random
forest

H: 84.7
(68.0−96.0)

Neural Net H: 64.6
(48.0−84.0)

L: 84.6
(68.0−96.0)

L: 64.2
(48.0−84.0)

nearest
neighbors

H: 53.7
(36.0−68.0)

AdaBoost H: 92.4
(80.0−100.0)

L: 53.4
(36.0−68.0)

L: 92.7
(84.0−100.0)

all 6658
genes

linear SVM H: 54.9
(36.0−76.0)

Gaussian
Process

H: 48.1
(40.0−56.0)

L: 54.8
(36.0−72.0)

L: 52.2
(44.0−60.0)

RBF SVM H: 52.7
(36.0−68.0)

Decision
Tree

H: 91.7
(80.0−100.0)

L: 52.8
(36.0−68.0)

L: 91.8
(80.0−100.0)

random
forest

H: 86.5
(72.0−100.0)

Neural Net H: 54.3
(36.0−72.0)

L: 86.6
(72.0−100.0)

L: 53.3
(36.0−72.0)

nearest
neighbors

H: 49.0
(32.0−64.0)

AdaBoost H: 92.1
(80.0−98.0)

L: 48.9
(32.0−64.0)

L: 92.0
(84.0−100.0)

aModels are sorted based on the average accuracy of all the groups.
H: high-fat group, L: low-fat group.
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(>90%), as its algorithm is similar to AdaBoost’s basic
classifier, but both the accuracy and precision of the decision
tree were lower than those of AdaBoost. Therefore, the

integration of multiple identical models can not only effectively
improve accuracy but also improve precision. In addition, the
parameters of the model can directly affect its prediction

Figure 5. Receiver operating characteristic (ROC) curves of eight machine learning models with 2000 selection feature genes. The figure shows the
ROC response of different data sets, created from four-fold cross validation. The blue curve shows the mean value under different conditions, which
can represent the average performance of the model.
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accuracy.54 In this study, only a few parameters were manually
adjusted for each model, and almost all models performed best
under their default parameters (Table S4). Other parameters
were not tested one by one in this study, and the selected
parameters may not be the best ones. However, in this study,
AdaBoost’s AUC was 0.96, almost as high as expected (Table 3
and Figure 5).
Sample feature selection is needed for training ML models,

but there is currently no unified screening standard for sample
features. In this study, the top 500, 1000, 2000, and 3000 genes
based on differential expression analysis were used; in addition,
all genes were also used for feature selection. Our results
showed that the highest accuracy was obtained for ML with the
top 2000 genes (Table 3). We noticed that if feature selection
is not carried out, almost all ML models have the lowest
prediction accuracy because the feature number is far larger
than the sample number, which indeed causes serious
overfitting. Therefore, implementing differential expression
analysis for feature selection is straightforward and useful. On
the other hand, the determination of candidate genes in ML is

different from that in traditional differential expression analysis.
The genes were ranked in terms of importance by using RFE
and repeated model building, and the most important genes
contributed more to ML model classification. Differential
expression analysis can identify candidate genes only by
significance or multiple differences, with a certain rate of false
positives. RFE is not only suitable for multiple models but also
can accurately rank each gene, providing a new method for
screening important genes, and it has been proven to be
effective in relevant studies.55

The enrichment items of the top 100 genes screened by the
AdaBoost algorithm showed high relevance to fat deposition,
indicating that this method is effective in screening candidate
genes. We further screened 12 candidate genes, all of which
have been shown to be involved in regulating fat deposition.
PLA2G6 and PLA2G7 catalyze the hydrolysis of phospholipids
(PLs) to generate fatty acids, and their abnormal expression

Figure 6. Venn map of differential expression analysis and machine
learning The figure shows the distribution of the top 100 genes by
machine learning and differentially expressed genes.

Figure 7. Gene enrichment analysis of top 100 genes in machine learning (A). The enrichment of top 100 genes in machine learning. The y-axis
represents the gene enriched entries according to the GO and KEGG analyses, and the x-axis represents −Lg(P value) of the enriched entries or
path. The color of the bar is the same as the color in the circular network. (B) Gene-enriched items and the relationships between the items
according to ClueGO. The lines between the dots indicate the presence of common genes between items.

Figure 8. Expression of candidate genes in different tissues of pigs.
The expression level of genes is the standardized TPM value, and the
expression level in different tissues is the mean value of different
samples, then scaled to 0−1.
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can cause dysregulated lipid metabolism.56 PLD1 regulates
cytosolic lipid droplet formation, and increased expression of
PLD1 increases lipid droplet formation.57 Phospholipase D4
(PLD4) affects phospholipase activity in mice, which in turn
affects fat deposition.58 Deficiency of PLCB1 leads to
myotonic dystrophy because pi-PLC β1 is involved in
adipogenesis through a double phase mechanism.59 Studies
have shown that PLD1, PLCB1, and ZDHHC18 are highly
relevant to lipid phenotypes.60 A decrease in lipid droplet
content was accompanied by a decrease in IFIT1 expression,
and IFIT1 affects the metabolism of fatty acids by regulating fat
oxidation.61 Fatty acid synthase (FASN) is a key enzyme in the
synthesis of fatty acids in mammals and predominantly
generates straight-chain fatty acids using acetyl-CoA as the
initiating substrate. It is directly involved in the regulation of
fat formation.62 Apolipoprotein A1 (ApoA1) has been verified
to play a vital role in modulating lipid metabolism and
homeostasis both in plasma and in cells, consequently affecting
fat deposition.63 Similar to APOA1, an important aspect of
APOD’s role in lipid metabolism appears to involve the
transport of arachidonic acid and the modulation of eicosanoid
production and delivery in metabolic tissues.64 Overexpression
of APOOL led to fragmentation of mitochondria, a reduced
basal oxygen consumption rate, and altered crista morphology.
Its expression is closely related to energy metabolism.65

The overlap between the top 100 genes in the ML analysis
and DEGs was less than 20% (Figure 6). The Spearman
correlation between gene ranks based on ML and DEG
analysis was only 0.046. Therefore, ML is different from
differential gene expression analysis. According to the results of
functional enrichment analysis of the top 100 genes and DEGs,
the two most significant items of the former were directly
related to fat deposition, while none of the items of the latter
were significantly related to fat development, indicating that
ML can yield more convincing findings (Figures 7 and S4). In
addition, ML can find useful information that differential
expression gene analysis cannot find. Of the 12 candidate genes
involved in fat deposition identified by ML, only three were
DEGs, implying a high false positive rate of DEG analysis, as
pointed out in many other studies. In contrast to the single-
gene scope of DEG analysis, ML can consider a large number
of genes simultaneously and analyze them as a whole. The nine
candidate genes (PLA2G6, PLA2G7, PLCB1, PLD4, PLCG2,
PLD1, APOA1, APOD, and APOOL) belong to the same
enrichment item or pathway, and most belong to the same
family of protein-coding genes. However, they were adjacent in
ML rankings (Table S4), suggesting that ML was able to
classify them as genes with similar effects. The use of AdaBoost
ML to group genes has shown extraordinary biometric
capabilities that traditional statistical analyses such as differ-
ential expression analysis do not. This is also a unique
advantage of ML, but the biological algorithm principle needs
to be further explored. Among the 12 candidate genes found
by ML, FASN, APOD, and APOA1 were highly expressed only
in adipose tissue and liver tissue (Figure 8), showing strong
tissue specificity, which further indicated that they were closely
related to the occurrence of fat deposition and played a more
important role than other genes; they could be verified in
future studies.
In conclusion, machine learning can efficiently analyze large

data sets, and can find useful information that differential
expression gene analysis cannot find. This research strategy can
provide ideas for the merged analysis of large data sets.

According to the results of machine learning analysis, 12 genes
including FASN, APOD, and APOA1 may be involved in the
regulation of fat deposition in pigs, which lays a foundation for
further research on the molecular regulation mechanism
behind fat deposition in pigs. The results can provide a
reference for the genetic improvement of pork quality traits.
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