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Abstract: In this study, three recycling methods, namely, mechanical grinding, steam pyrolysis,
and the supercritical solvent process, which are used to acquire recycled carbon fibers (RCFs),
were compared for their application in synthesizing polymer-matrix composites. RCF-reinforced
polyethylene (PE) composites were prepared to compare the mechanical properties of the composites
generated using the three recycling methods. The PE/RCF composites exhibited 1.5 times higher
mechanical strength than the RCF-reinforced PE composites, probably because of the surface oxidation
effects during the recycling processes that consequently enhanced interfacial forces between the RCF
and the matrix. Further, the steam pyrolysis process showed the highest energy efficiency and can
thus be applied on a large production scale in domestic recycled CF markets.
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1. Introduction

Carbon-fiber-reinforced plastic (CFRP) is an advanced composite material having
high strength, high elasticity, and extremely low weight. These properties have promoted
its widespread application in various fields, such as automobiles, sports, aerospace, and
the military [1–6]. However, the large-scale use of CFRPs generates vast quantities of
waste. Generally, thermoplastic and thermosetting resins are the most commonly used
matrixes in CFRPs. CFRPs with thermoplastic resins can be easily recycled because they are
reversible. However, the separation of carbon fibers (CFs) from the matrix of thermosetting-
based CFRPs is difficult, resulting in their disposal in landfills after incineration. This
disposal type makes it difficult to recycle CFs; additionally, this process is costly and causes
environmental pollution. Thus, the demand for waste recycling has been increasing [7–9].

Various recycling methods for waste CFRPs have been studied to reuse expensive
CFs [10]. The main recycling methods are mechanical recycling [11,12], chemical pro-
cesses [13,14], and thermal processing [15–17]. Among these, mechanical recycling is the
simplest and the most cost-effective process; moreover, although CFs can be recovered from
waste CFRP through grinding, crushing, and cutting, only pure CFs cannot be obtained [18].
The chemical process recycles CFs through decomposition using a solvent [19,20], a super-
critical method [21,22], etc.; moreover, recycling through this process can be conducted
while retaining the mechanical properties of CFs as much as possible. However, the con-
tinuous application of the chemical process for recycling CFs releases extensive amounts
of harmful gases and generates toxic reagents, which is a major disadvantage [23]. Lastly,
thermal processing, which is the most widely used recycling process for CFRPs, can recover
relatively clean CFs by thermally decomposing organic molecules into smaller molecules.
In addition, the mechanical properties of the CFs can be retained through this method (a ten-
sile strength of 70–80% compared to virgin CF), thereby making it a suitable alternative for
large-scale commercialization [23–25].

Recently, in European Union countries, upcycling, which is one step beyond the simple
recycling process, has been used extensively in industrial applications. It is also attracting
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attention in several countries, such as the United States and Canada, as an eco-friendly
production and ethical consumption method [26,27]. Because of its environmental and
economic advantages, studies on the upcycling and recycling of CFRPs are increasing.

This study aimed to investigate mechanical recycling, supercritical recycling, and
superheated steam recycling processes to compare the application characteristics of CF
composites recycled by these methods. CFs recycled through each process were mixed with
low-density polyethylene (LDPE) to form a composite to assess the mechanical, electrical,
and thermal properties of the composites. Further, the application of surface treatment
to CFs can result in the recovery of clean CFs and maintain their physical properties
during recycling; additionally, the interfacial properties with the matrix can be improved.
Therefore, upcycling waste CFRPs can further increase the resource value of the generated
CFRP wastes.

2. Results and Discussion
2.1. Characteristics of the CFRPs Acquired through the Studied Recycling Techniques

Figure 1 shows the SEM images of CFRP scrap waste, virgin CFs, supercritical recycled
CFs, and superheated steam recycled CFs.
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Figure 1. SEM images of waste and recycled carbon fiber (CF) acquired through different recycling
methods. (a) CFRP scrap wastes, (b) recycled CFs from supercritical method, (c) recycled CFs from
superheated steam pyrolysis, and (d) virgin CFs.

In the CFRP scrap waste, a large amount of resin was wrapped around the CF, and
epoxy resin fragments broken during the cutting process were observed. Although some
resin decomposition products remained on the recycled CF surface during the supercritical
and superheated steam recycling methods, virgin CFs were recovered relatively effectively,
as shown in the SEM image (Figure 1). Further, recycled CFs recovered from superheated
steam showed relatively cleaner surfaces than those recovered by mechanical and super-
critical recycling methods.

2.2. Physical Characteristics of the Various RCF-Reinforced Composites

The results of the Charpy pendulum impact test for the LDPE matrix CFRPs with
different mixed fillers are presented in Figure 2.
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Figure 2. Charpy test results of the impact strength of RCF-reinforced low-density polyethylene (LDPE).

The specific Charpy energy of the PE/SHS-RCF CFRPs was evidently higher than
that of the PE/CF CFRPs. This could be attributed to the increase in the interfacial shear
strength (IFSS), which improved the high-impact resistivity between the LDPE and CFs.
Table 1 shows the results of previous studies [23] conducted on recycled CFs and untreated
CFs under the same conditions as used in this study.

Table 1. Summary of the results of previous studies according to carbon fiber type (B. J. Kim et al.) [23].

Property Units
Sample Name

SC-RCF * SHS-RCF * CF(T700)

Tensile strength GPa 3.42 3.88 4.28
Interfacial shear strength MPa 33.62 47.06 39.19

Oxygen content % 13.37 14.29 8.79
Polarity value mN/m - 12.52 5.66

Surface free energy mN/m - 35.35 27.77
* B. J. Kim et al., Journal of Environmental Management, 203, 872–879 2017 [23].

The average IFSS value for the CFs was 39.19 MPa. Further, the IFSS values of the RCFs
were enhanced (47.06 MPa) after the surface pyrolysis of the CFRPs using SHS. Pyrolysis
(SHS) oxidation introduces –OH, –CH–, H-bond, –C=O, and C–O functional groups success-
fully onto the fiber surface. The –OH or –COOH groups can form covalent interfacial bonds
in the cross-linked polymer adhesive which couple to the fiber, effectively transferring
stresses between the matrix and the fiber and improving interfacial adhesion. Furthermore,
fracture toughness is improved by hydrogen and covalent bonding interactions. Surface
functionalization increases polar components and the total surface free energy of the fibers.
Moreover, the RCF surface treated with SHS contains hydrophilic functional groups, such
as oxygen carboxyl, carbonyl, and hydroxyl. The high polar term in the total surface free
energy can be expected to contribute to the good wettability and adhesion between the
fiber and matrix. In the case of SC-RCF, reliable surface free energy values could not be
obtained due to many impurities on the surface.

In this study, the specific Charpy energy reached 36.64 kJ/m2 for the PE/SHS-RCF,
which meets the standard demands of engineered materials. This improved impact strength
is believed to be due to the increased oxygen content after the surface pyrolysis of CFRPs
with SHS.
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As shown in Figure 3, the morphologies of the fractured surfaces of the four samples
differ. Closer examination reveals that the fractured surface morphologies of (a) to (d) differ
in roughness as well. The fractured surface of (c) differs from that of (a) and (b) because of
the stronger adhesion between the CFs and the matrix in (d). As shown in (a), a smooth
surface with marginally adhered resin can be seen on the CF surface in the debonded area;
additionally, the matrix can be observed to have been detached from the fiber surface. This
indicates cohesive failure at the interface between the matrix and CFs. Further, the absence
of residual LDPE on the CF surface is direct evidence of a weak interface [28,29]. Figure 3d
shows that the interface is closely connected to the resin due to having a higher bonding
force than the samples (a) and (b). However, in the vicinity of the fiber, the resin shape was
stretched by the impact. Consequently, sample (c), with no shape change at the interface
between the fiber and the resin, showed the highest interfacial bonding force.
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2.3. Thermal and Electrical Properties of RCF-Reinforced Composites

Table 2 enlists the horizontal thermal and electrical conductivity values of the CFRPs,
which showed high impact strength.

Table 2. Thermal and electrical conductivity of polymer composites with different carbon fiber types.

Property Units
Sample Name

PE/SHS-RCF PE/CF

Heat conductivity W/mK 1.87 1.76
Resistivity Ω·cm 3.2 × 10−3 1.5 × 10−2

The low thermal conductivity of LDPE (approximately 0.1 to 0.3 W/mK) can be
enhanced by the filler effect (1 to 2 W/mK in the horizontal direction). The thermal
conductivity of the PE/SHS-RCF sample in the horizontal direction was observed to be
slightly higher than that of PE/CF, but it was judged to be an approximate value. This is
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because the CFs are well-dispersed during the molding and production of the composite
material; additionally, the plurality of the fillers is oriented in the horizontal direction by
the flow of the molten resin during hot compression. Because the effect of CFs on long
fibers with high thermal conductivity is dominant, the degree of dispersion in CFs due
to interfacial bonding force may result in the loss of internal heat transfer path, thereby
subsequently affecting thermal conductivity (Figure 4).
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Further, the results indicate that the high resistivity of LDPE (approximately
1015–1018 Ω·cm) can be lowered by the filling material (approximately 10−2 to 10−3 Ω·cm).
In addition, the electrical conductivity slightly increased when CFs recycled from SHS
were applied to CFRPs. These results indicate that SHS recycling enhances interfacial
adhesion. Further, because the interfacial bonding strength of SHS-RCF was higher than
that of virgin CFs, the electrical resistance of CFRPs applied with SHS-RCF decreased; that
is, the interfacial bonding force at this stage can reduce the number of point defects and
improve the electrical conductivity of CFRPs. Figure 4 is a schematic diagram showing the
changes in interfacial adhesion that can occur as recycling methods of the CFs. As a result,
it was confirmed that the interfacial adhesion strength was statistically increased due to
the cleanliness (degree of recovery) and oxidation of the carbon fiber surface, and the most
important factor was the recycling technology that can recover cleanly.

3. Materials and Methods
3.1. Materials

In this study, the CFs with 4.9 GPa and 230 GPa of tensile strength and modulus,
respectively, were supplied by Toray (12 K, T700). The average diameter and density
of the CFs were 7 µm and 1.8 g/cm3, respectively. The epoxy resin, diglycidyl ether of
bisphenol-A (DGEBA, YD-128, Kukdo Chem., Seoul, Korea), with an equivalent weight
of 185–190 g/eq and a viscosity value of 11500–13500 cps at 25 ◦C, was used as a matrix.
Diaminodiphenylmethane (DDM, Tokyo Chem., Tokyo, Japan) was selected as a hardener,
and methylethylketone (MEK, Daejung Chem., Shiheung, Korea) was used to reduce the
high viscosity of DGEBA.

LDPE (XJ800), with 0.914 cm3/g density and 103 ◦C melting temperature, was pur-
chased from Lotte Chemical Corporation (Seoul, Korea).
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3.2. Sample Preparation

CFs were impregnated with thermosetting resin by the drum winding method and
converted into prepregs after removing the solvent for 48 h. CFRPs prepared using the hot
press method at 175 ◦C had 36% resin content.

Supercritical recycling involved heating a mixture of CFRPs and ethanol (1:5 weight
ratio) in a sealed reactor vessel above 250 ◦C for 30 min. Supercritical recycling samples
were fabricated at a pressure of 80 bar. The resultant samples were then rapidly washed,
and the remaining product was washed with deionized water at least thrice. Subsequently,
the recycled CFs were vacuum-filtered and dried in a heating oven at 100 ◦C for 3 h.

A fixed SiC furnace was used to pyrolyze the CFRP composites. An alumina tube
with 1000 mm length and 80 mm inner diameter was horizontally mounted in an electrical
resistance furnace (15 kW) and heated to a final temperature of 550 ◦C. A detachable
porcelain crucible containing the sample was placed at the center of the quartz tube. The
CFRPs were heated to 550 ◦C at 10 ◦C/min in the SiC furnace under H2O (liquid flow
2 mL/min) and maintained at the target temperature for 30 min to obtain carbonized CFRPs.
Subsequently, the gas flow was switched to air (O2-21% under N2) at a rate of 200 mL/min,
while the temperature was increased to and maintained at 550 ◦C for 60 min. Subsequently,
recycled carbon fibers (RCFs) were obtained after cooling to room temperature.

To produce a composite with a thermoplastic resin, the fillers were cut into a unit size
of 1 inch. Composites were prepared by mixing LDPE and CF at a tailored mixing ratio;
subsequently, the mixture was melt-blended in a mixing chamber at 130 ◦C with a screw
speed of 70 rpm for 30 min in an internal mixer. The total weight ratio of the matrix to the
filler was fixed at 5:1. After melt-blending, each sample was molded by hot pressing using
a vacuum bag molding method. The processing temperature, time, and pressure were
maintained at 130 ◦C, 15 min, and 10 MPa, respectively. Table 3 enlists the formulation of
various mixing fillers of the CFRPs in the composites.

Table 3. CFRP formulation for composite preparation.

Sample Name Filler Type LDPE (g) Filler (g) Temperature (◦C) Mix (rpm) Time (min)

PE/SW CFRP scrap wastes

150 30 130 70 30
PE/SC-RCF Recycled CFs(supercritical)

PE/SHS-RCF Recycled CFs (superheated steam)
PE/CF T-700 CFs

3.3. Characterization of Samples

The morphologies of PE/RCF and PE/CF were investigated using a scanning electron
microscope (SEM, AIS2000C, Seron Tech. Inc., Uiwang-si, Korea). To reduce charging
during SEM imaging, samples were initially placed on a sample holder and coated with
platinum. The base pressure of the analyzer chamber was approximately 5 × 10−5 Pa and
the acceleration voltage was set to 15 kV.

The thermal conductivity of the composite sample was measured by the transient plane
source (TPS) method using a hot disk instrument (TPS2500S, Hot Disk Inc., Gothenburg,
Sweden), and the conductivity was measured in the horizontal direction.

A nickel coil wrapped in a polyimide film (Kapton) with a diameter of 6.4 mm (#5501)
was used as a probe for measuring the thermal conductivity and thermal diffusivity of the
composite sample and to reduce the error caused by the anisotropic fillers. The estimated
data reproducibility and accuracy of the equipment provided by the manufacturer were
more than 1% and 5%, respectively. In all experiments, the measuring instrument was pre-
heated for 30 min or more to ensure analysis reliability, and the measurement environment
was maintained at 25 ◦C and 30% relative humidity.

All specimens were pressed flat using an automatic polishing device at intervals
of 5 min using sandpapers of 1000, 2000, and 4000 grades. The samples were placed
approximately 6 cm from the center of the automatic polishing machine, and a force of 50 N
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and a speed of 150 rpm were applied uniformly across the samples. Finally, the finished
samples were uniformly cut into dimensions of 30 × 30 × 3 mm.

The electrical resistivity of the samples was measured using a Loresta GP resistivity
meter (MCP-T610, Mitusbishi Chemical Co., Tokyo, Japan) connected to a 4-point-probe
(MCP-TP03P, Mitsubishi Chemical Co., Tokyo, Japan), which was used to eliminate the
effect of contact resistance. Further, at least 10 samples were tested for the reliability of
each formulation.

3.4. Measurement of Physical Properties

An impact strength test was conducted to observe the changes in the mechanical
strength of the composites having the fillers. A Charpy (CEAST® Resil Impactor, CEAST,
MA, FL, USA) pendulum impact test was employed according to ASTM D6110 [30] to
examine the total required energy until the final fracture of the composite material.

4. Conclusions

This study compared the characteristics of CFs/polymer composites acquired through
different recycling methods. The results indicated that pyrolysis and supercritical recycling
methods were efficient. The recycled fiber “PE/SHS-RCF” exhibited an impact strength of
106.88% compared with the commonly used fiber (T700). Further, the thermal conductivity
of the CFs was as high as 106%. Moreover, the formation of oxygen functional groups
on the CF surface during pyrolysis increased the IFSS between the resins. Lastly, the
supercritical H2O/CO2 process showed the highest energy efficiency and, thus, the further
modernization and development of this process on a large production scale can facilitate
its application in domestic recycled CF markets.
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