
METHODOLOGY ARTICLE Open Access

Simultaneous prediction of transcription factor
binding sites in a group of prokaryotic genomes
Shaoqiang Zhang1,2, Shan Li1, Phuc T Pham1, Zhengchang Su1*

Abstract

Background: Our current understanding of transcription factor binding sites (TFBSs) in sequenced prokaryotic
genomes is very limited due to the lack of an accurate and efficient computational method for the prediction of
TFBSs at a genome scale. In an attempt to change this situation, we have recently developed a comparative
genomics based algorithm called GLECLUBS for de novo genome-wide prediction of TFBSs in a target genome.
Although GLECLUBS has achieved rather high prediction accuracy of TFBSs in a target genome, it is still not
efficient enough to be applied to all the sequenced prokaryotic genomes.

Results: Here, we designed a new algorithm based on GLECLUBS called extended GLECLUBS (eGLECLUBS) for
simultaneous prediction of TFBSs in a group of related prokaryotic genomes. When tested on a group of g-
proteobacterial genomes including E. coli K12, a group of firmicutes genomes including B. subtilis and a group of
cyanobacterial genomes using the same parameter settings, eGLECLUBS predicts more than 82% of known TFBSs
in extracted inter-operonic sequences in both E. coli K12 and B. subtilis. Because each genome in a group is equally
treated, it is highly likely that similar prediction accuracy has been achieved for each genome in the group.

Conclusions: We have developed a new algorithm for genome-wide de novo prediction of TFBSs in a group of
related prokaryotic genomes. The algorithm has achieved the same level of accuracy and robustness as its
predecessor GLECLUBS, but can work on dozens of genomes at the same time.

Background
With the continuous decline in the cost of genome
sequencing due to the development of new technologies
[1,2], numerous prokaryotic genomes are being
sequenced, and this number will soon approach a few
thousand. Since the biological functions of an organism
are encoded in its genome, knowing its genome sequence
can greatly facilitate the understanding of its biological
functions. However, due to the expensive nature of
experimental characterization of biological functions of
an organism, ideally, these functions should be largely
deduced computationally from its genome sequence.
Nevertheless, understanding the function of even a rela-
tively simple prokaryotic cell from its genome sequence
remains one of the most daunting challenges in the post-
genomic era. In particular, we know very little about the
cis-regulatory elements or transcription factor (TF)

binding sites (TFBSs) in the vast majority of sequenced
prokaryotic genomes because of the lack of an accurate
and efficient computational method for predicting TFBSs
in sequenced genomes.
The difficulty of computational prediction of TFBSs in a

prokaryotic genome is mainly due to the short length and
degenerate nature of TFBSs, which complicates their dis-
covery within the long upstream inter-operonic regions in
which they usually reside. Furthermore, although some
TFBSs in prokaryotes have a palindromic structure, any
segment of an inter-operonic sequence can in principle be
a TFBS as long as a TF can recognize it. Therefore, TFBSs
are usually predicted by comparative analysis of multiple
sequences that are known to contain or potentially contain
TFBSs. Based on the observation that the transcriptional
regulation machinery including TFBSs is relatively con-
served in closely related genomes, various forms of phylo-
genetic footprinting algorithms have been developed to
identify conserved DNA segments as possible TFBSs in
the promoters of orthologous genes in a group of related
prokaryotic [3-9] and fungal genomes [10]. For the
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convenience of discussion, in this paper, we refer a set of
similar TFBSs as a motif.
These algorithms typically start by predicting TFBSs in

the upstream intergenic sequences of a group of ortholo-
gous genes using a motif-finding tool, and then cluster
the resulting motifs into distinct sets according to the
similarity values among the motifs using different cluster-
ing strategies and similarity measures [3-10]. Although
meaningful results have been achieved by these algo-
rithms in their specific applications, their prediction cov-
erage of possible TFBSs in the applied genomes is
generally low [3-10]. For instance, using a Bayesian clus-
tering algorithm to group similar TFBSs predicted in
E. coli K12 by phylogenetic footprinting in an earlier
work [3], Qin et al. [4] could only predict 192 motifs cov-
ering only 438 operons, while the E. coli K12 genome is
predicted to encode 266-314 TFs, and more than 2000
operons [11-14]. In another study, van Nimwegen et al.
[5] used a Monte Carlo sampling strategy to partition
into clusters a set of TFBSs predicted by phylogenetic
footprinting [3]; this study yielded only 115 significant
clusters/motifs. More recently, Liu et al. [8] used the
PhyloNet algorithm [15] to cluster putative TFBSs pre-
dicted by the motif-finding program CONSENSUS-v6c
[16] through phylogenetic footprinting in the Shewanella
oneidensis genome, finding that PhyloNet is not able to
efficiently cluster the predicted TFBSs. Therefore, an
additional hierarchical clustering procedure was used to
achieve reasonable predictions [8].
In our opinion, there are two unnecessarily exclusive

problems in these existing algorithms, limiting their per-
formance and applications. First, these algorithms used
only a single motif-finding tool in the phylogenetic foot-
printing process for identifying putative TFBSs. How-
ever, it has been shown that these motif-finding tools
can only predict at most 30% of known TFBSs in the
input intergenic sequences, and may be biased to some
types of TFBSs, though different tools may complement
with each other for recovering different types of TFBSs
[17,18]. Second, most of these algorithms assume that
the putative TFBSs predicted by a phylogenetic foot-
printing procedure are all true TFBSs; therefore the sub-
sequent clustering procedure is designed to group
similar motifs into distinct ones without filtering out the
spurious predictions. However, a considerable portion of
the predicted motifs are clearly spurious predictions due
to the low prediction accuracy of current motif-finding
tools [17,18].
To overcome these problems, we have recently devel-

oped a new algorithm named GLECLUBS (GLobal Ensem-
ble and Clustering of Binding Sites) for genome-wide de
novo prediction of TFBSs in a prokaryotic genome [19].
Although GLECLUBS also employs a phylogenetic foot-
printing technique to first identify all possible TFBSs, and

then clusters similar motifs, it is distinct from the prior
methods in two ways. First, in order to harvest as many as
possible true TFBSs by phylogenetic footprinting, GLE-
CLUBS uses multiple well-evaluated complementary
motif-finding tools instead of using only a single tool, and
considers multiple outputs of each tool. Second, GLE-
CLUBS assumes that only a small portion of predicted
TFBSs by phylogenetic footprinting are true TFBSs, and
that the vast majority of them are spurious predictions.
Therefore, the goal of the clustering step of GLECLUBS is
to discriminate true TFBSs from spurious ones using an
iterative filtering procedure, instead of simply partitioning
putative TFBSs into distinct groups. We have shown that
GLECLUBS outperforms the existing algorithms in terms
of the prediction sensitivity and specificity in E. coli K12, B.
subtilis and S. oneidensis [19]. We found that the major
bottleneck for the prediction accuracy of GLECLUBS is
the accuracy of operon predictions that are used to guide
the extraction of inter-operonic sequences for phylogenetic
footprinting [19]. When inter-operonic sequences are cor-
rectly extracted, GLECLUBS can recover at least 80%
known TFBSs in both E. coli K12 and B. subtilis, according
to RegulonDB [20] and DBTBS [21], respectively.
Nevertheless, GLECLUBS and all of the other prior

algorithms that we are aware of, only aim at predicting
TFBSs in a single target genome even though multiple
reference genomes are used during the phylogenetic
footprinting and subsequent clustering steps; therefore
the information derived for the TFBSs in the reference
genomes are not fully utilized. For this reason, all these
algorithms including GLECLUBS are not efficient
enough to be applied to all the sequenced prokaryotic
genomes. In this study, we have developed a new ver-
sion of GLECLUBS called extended-GLECLUBS (eGLE-
CLUBS) for simultaneous de novo prediction of TFBSs
in a group of prokaryotic genomes that we call a group
of target genomes. We showed that eGLECLUBS can
achieve at least the same level of prediction accuracy for
a group of genomes as GLECLUBS does for a single
genome; however, it can simultaneously predict TFBSs
in dozens of closely related genomes. Therefore eGLE-
CLUBS is more efficient than GLECLUBS, and can be
used for predicting TFBSs in the increasing number of
sequenced prokaryotic genomes.

Results
TFBSs can be effectively identified by phylogenetic
footprinting based on predicted COORs using multiple
motif-finding tools
In a typical phylogenetic footprinting procedure with a
single target genome, upstream intergenic sequences are
extracted based on a group of orthologous genes of a gene
in the target genome [3-10]. We [19] have previously
shown that intergenic sequences extracted from a group
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of orthologous operons determined by an operon in the
target genome outperforms intergenic sequences extracted
based on a group of orthologous genes determined by a
gene in the target genome for motif-finding. In current
study, in order to predict TFBSs in a group of genomes,
we predict Clusters of Operons with Orthologous Relation-
ships (COORs, Figure 1 and see Methods) in the genomes.
We then extract upstream inter-operonic sequences based
on the predicted COORs. Clearly, by the design of the
algorithm for predicting COORs, the extracted sequences
are unlikely biased to any genome in the group. Applica-
tion of the algorithm (Figure 1) to a group of target gen-
omes comprised of 32 g-proteobacterial genomes
including E. coli K12 [Additional file 1: group D in Supple-
mental Figure S1] resulted in 4,103 COORs and inter-
operonic sequences sets which contain 1,447 known
E. coli K12 TFBSs as described above. To evaluate whether
or not we can effectively identify these known E. coli K12
TFBSs in the inter-operonic sequence sets based on the
COORs, we applied seven motif-finding tools that we have
evaluated previously [19] to these 4,103 inter-operonic
sequence sets. These seven tools were MEME [22], Bio-
Prospector [23], MotifSampler [24], CUBIC [25], MDScan

[26], Weeder [27] and CONSENSUS [28]. These tools
were chosen based on evaluations by others [17,18], the
balance of different algorithm designs and ease of use. As
shown in Figure 2A, these tools have different perfor-
mances in their ability to recover known E. coli K12
TFBSs in the inter-operonic sequence sets for their best,
top 5, 10, 15, 20 and 25 predictions, but they all identify
an increasing number of known E. coli K12 TFBSs when
more predictions are considered. We can define a lower
bound of specificity as the number of predicted known
TFBS divided by the number of predicted TFBSs, to evalu-
ate the prediction specificity of each tool, although since
TFBs in E. coli K12 have not been completely character-
ized, this estimate of specificity may be overly conserva-
tive. As shown in Figure 2B, the increasing number of
known E. coli K12 TFBSs recovered by each tool when
more top predictions are considered is at the cost of a
decreased lower bound of specificity. Furthermore, the
predictions of these tools are complementary to one
another as their combined predictions recover more
known TFBSs than does any single tool (Figure 2A). How-
ever, Weeder and CONSENSUS substantially underper-
form the other tools, and their predictions were all

Figure 1 Schematic show of the algorithm for the prediction of COORs. Orthologous genes are represented by arrowed boxes of the same
color. For each operon o in each genome, we construct a semi-COOR (SCOOR) by recruiting o and all other operons in other genomes if such
an operon contains orthologous genes of > 50% of genes in o. We connect any two SCOORs if the larger one contains > 70% of operons in the
smaller one. We predict each connected component in the resulting graph to be a COOR.
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covered by the other tools, therefore they were not further
considered. Using a low bound specificity cutoff of 5%
(Figure 2B), and based on the results shown in Figure 2A,
we consider for further analysis a total of 40 motifs in
each inter-operonic sequence set associated with a COOR,
including the top 15 predictions of MEME, the top
10 predictions of BioProspector, and the top 5 predictions
of CUBIC, MDscan and MotifSampler, respectively.

Therefore, there are a total of 4,103 × 40 = 164,120 pre-
dicted motifs (called input motifs, see Methods) for this
group of target genomes. These predicted motifs recover
1,347 (1347/1447 = 94%) known E. coli K12 TFBSs in
the extracted inter-operonic sequence sets. As shown in
Figures 2C and 2D, although there are large overlaps
among the predictions of these tools, each tool has its own
considerable unique predictions. Therefore, we have

Figure 2 Selection of parameters of the algorithm. (A). Performance of motif-finding tools returning different numbers of top predictions for
recovering known TFBSs in E. coli K12 in the inter-operonic sequence sets. (B). Low bound prediction specificity of the motif-finding tools
returning different numbers of top predictions for recovering known TFBSs in E. coli K12 in the inter-operonic sequence sets. (C). The number of
total sites that are uniquely predicted by a tool or jointly predicted by the tool and other four tools. (D). The number of known TFBSs in E. coli
K12 that are uniquely predicted by a tool or jointly predicted by the tool and other four tools. (E). Effect of the selection of different groups of
target genomes on the prediction of known TFBSs in E. coli K12. (F). The distribution of motif similarity scores among the input motifs in the
target genomes and that of motif similarity scores among the sub-motifs of the known motifs in E. coli K12 (RegulonDB) and B. subtilis (DBTBS).
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achieved at least the same level of sensitivity as our pre-
vious results obtained from the inter-operonic sequences
based on operons using E. coli K12 as the single target
genome [19]. These results suggest that TFBSs can be
effectively identified based on the predicted COORs, and
that our choice of these five tools and their top predictions
are sufficient enough to recover true TFBSs in the inter-
operonic sequence sets, though other choices of motif-
finding tools are possible, in particular, when better ones
are available in the future. Furthermore, although our pre-
dictions were only evaluated in E. coli K12 because very
little is known about TFBSs in other genomes in the
group, it is highly likely that similar results have been
achieved for the other genomes in the group since the
COORs are unlikely biased to any genome in the group
(see Methods).

Optimal selection of a group of target genomes is vital
for the prediction of TFBSs
Since each genome in a group of target genomes is both
a target genome for which we want to predict all possi-
ble TFBSs and a reference genome for all the others in
the group, the composition of genomes in a group can
largely affect the results of phylogenetic footprinting.
Furthermore, it has been shown that cis-regulatory sys-
tems in prokaryotes evolve very rapidly and are extre-
mely flexible [29], thus traditional phylogenetic analyses
may fail to detect conserved cis-regulatory systems. To
quantify the level of conservation of cis-regulatory sys-
tems in a group of related genomes, we constructed a
special phylogenetic tree that largely reflects the rela-
tionships of the cis-regulatory systems in the genomes,
using a method that we developed previously[19] (see
Methods). The tree for 139 g-proteobacterial genomes is
shown in [Additional file 1: Supplemental Figure S1]. To
determine the level of conservation of cis-regulatory sys-
tems, so that phylogenetic footprinting would perform
best in the corresponding genomes for recovering
known TFBSs, we selected five sub-trees including E.
coli K12 using different branching points with increasing
distances in the tree for the g-proteobacterial genomes
[Additional file 1: Figure S1], and obtained five groups
of genomes as follows: group A containing Escherichia
genomes, group B containing Escherichia and Shigella
genomes, group C containing Escherichia, Shigella, and
Salmonella genomes, group D containing Escherichia,
Shigella, Salmonella, and Yersinia genomes, and group
E containing Escherichia, Shigella, Salmonella, Yersinia,
Pseudomonas, Shewanella, and Vibrio genomes. As
shown in Figure 2E, groups A and B did not perform
very well because only genomes that are very closely
related to each other were used. Similarly, group E did
not perform well either, presumably because some gen-
omes in the groups have cis-regulatory systems that are

too divergent. In contrast, groups C and D that include
genomes encoding cis-regulatory systems that are inter-
mediately related to that of E. coli K12 are the best in
recovering the known E. coli K12 TFBSs in the extracted
intergenic sequences. Interestingly, removal of other
very closely related Escherichia genomes in groups C
and D decreased the performance of phylogenetic foot-
printing (data not shown). This result is consistent with
an earlier observation that inclusion of reference gen-
omes that are very closely related to the target genome
may improve the performance of phylogenetic footprint-
ing if other reference genomes that are intermediately
related to the target genome are also included [30]. As
shown in Figure 2E group D recovers the largest num-
ber of known E. coli K12 TFBSs and has the largest
number of overlapping predictions with those of its
neighboring groups C and E. Since group D does not
include any genomes that share less than 50% of TFs
with any other genomes, we used this as the criterion
for selecting a group of target genomes for the predic-
tion of their TFBSs. In other words, by default, we select
a sub-tree from the phylogenetic tree of cis-regulatory
systems of a group of sequenced genomes belonging to
the same phylum/subphylum or class to form a group of
target genomes, such that each genome in the sub-tree
shares at least 50% of its TFs with any other genomes in
the group (see Methods). Accordingly, we used group D
to evaluate the performance of our motif clustering
algorithm.

Selection of the motif similarity cut-offs a and b for the
construction of motif similarity graphs G1 and G2,
respectively
Next, we want to distinguish true TFBSs from spurious
ones in the set of input motifs predicted for a group of
target genomes by gradually filtering out the latter based
on the following two assumptions as we used in GLE-
CLUBS previously [19]: 1) a true motif is more likely
than a spurious one to be found by multiple tools from
the same inter-operonic sequence set based on a
COOR; and 2) a true motif is more likely than a spur-
ious one to have a similar motif found in a different
COOR. To this end, we use a graph-theoretic approach
similar to that used in GLECLUBS. However, instead of
first constructing a single motif similarity graph, we
begin with two motif similarity graphs G1 and G2 using
a low and a high motif similarity score cut-offs a and b
(a <b), respectively (Figure 3, and see Methods). As
shown in Figure 2F, the distribution of the similarity
scores among all predicted motifs in the group is largely
left-shifted relative to that among the sub-motifs of each
known motif in E. coli K12, suggesting that the majority
of predicted motifs are irrelevant to one another or are
spurious predictions. On the other hand, there is a
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Figure 3 Flowchart of the main steps of the eGLECLUBS algorithm. (A). We extract upstream inter-operonic sequences of operons in each
COOR to form a set of sequences. (B). For each sequence set, we predict a total of T motifs using multiple motif-finding tools. (C). We construct
two motif similarity graphs G1 and G2 using a low and a high motif similarity score cut-offs a and b, respectively, and cut G2 into dense
subgraphs using MCL. We construct G3 and cluster it into dense subgraphs using MCL. (D). We induce subgraphs s1, s2, ..., sn of G1 using the
clusters from G3, and identify quasi-cliques in each of these induced subgraphs.
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considerable overlap between the two distributions of
the similarity scores, suggesting that the true motifs can-
not be easily separated from the spurious ones by a sin-
gle similarity score cut-off. The same conclusion was
reached by us previously when E. coli K12 was chosen
as the single target genome [19]. Furthermore, in the
current application we have to deal with a much large
set of input motifs (1.6×105) identified from the 4,103
inter-operonic sequence sets based on the same number
of COORs in the group of genomes, which is almost
twice more than those when E. coli K12 was used as the
single target genome [19]. Ideally, a motif similarity
graph should be constructed, so that most relevant true
sub-motifs are connected by edges with higher weights,
while most irrelevant and spurious motifs are not.
According to the similarity score distributions shown in
Figure 2F, the optimal similarity score cut-off value
seems to be located around 0.05. However, we found
that with this similarity score cut-off or lower, the den-
sity of a resulting graph (defined as the number of its
edges divided by the number of its nodes) was too high
(more than 103). And a graph of this size (>105 nodes)
could not be efficiently clustered into dense subgraphs/
clusters by any clustering algorithms that we have
tested, including the Markov chain clustering (MCL)
algorithm [31] that is best known for its high efficiency
for clustering very large graphs. However, the density
of the motif similarity graphs decreases precipitously
when the motif similarity cut-off is greater than 0.2
(Figure 4A) while the resulting graphs still include the
vast majority (99.9%) of input motifs as long as the cut-
off is less than 0.3 (Figure 4B). Therefore, we selected
the cut-off a Î[0.2, 0.3] for the construction of motif
similarity graph G1 that includes the vast majority of
input motifs. Nevertheless, G1 usually still has a too
high density (>500 when a = 0.2, Figure 4A) to be effi-
ciently clustered, therefore, we construct a substitute
motif similarity graph G2 using a higher motif similarity
score cut-off b Î[0.35, 0.45]. Since G2 has a low enough
density (<100), thus can be efficiently clustered by the
MCL algorithm, while the graph still keeps more than
90% of the input motifs (Figure 4B). Therefore, our clus-
tering algorithm works by first clustering G2 into dense
subgraphs, and then recruits those in G1 but missed in
G2 (see Methods).

Prediction of TFBSs in a group of g-proteobacterial
genomes including E. coli K12 and a group of firmicutes
genomes including B. subtilis
The eGLECLUBS algorithm ranks the predicted motifs
in each genome in a group of target genomes according
their ClusterScores defined by formula (4). To evaluate
the prediction accuracy and robustness of our algorithm,
we first applied it to a group of 32 g-proteobacterial

genomes including E. coli K12 [Additional file 1: group
D in Supplemental Figure S1], and a group of 19 firmi-
cutes genomes including B. subtilis [Additional file 1:
Supplemental Figure S2] using the same parameter set-
tings. These two groups of genomes were chosen for the
evaluation as the relatively large numbers of known
TFBSs in E. coli K12 and B. subtilis can be used to sys-
tematically verify our predictions in the two genomes.
As shown in Table 1, of the 1,642 and 568 known

TFBSs belonging to 125 and 99 motifs in E. coli K12
[20] and B. subtilis [21], 1,447 and 451 belonging to123
and 93 motifs, respectively, are correctly extracted and
included in the upstream inter-operonic sequence sets
according to the predicted operons in the genomes
[32,33] and our criterion that each set has to contain at
least three sequences (see Methods). Consequently,
about 12 and 21% of TFBSs in E. coli K12 and B. subtilis
[32,33], respectively, were not included in the inter-
operonic sequence sets due to the incorrect operon pre-
dictions or the restriction of our criterion, and thus
could not be predicted by our clustering algorithm. The
reason that there are a larger portion (21%) of missed
TFBSs in the extracted sequence sets for B. subtilis than
that (12%) for E. coli K12 is that more inter-operonic
sequence sets containing a sequence from B. subtilis
were deleted as the corresponding COORs contain
fewer than three operons, and thus were not further
analyzed (see Methods). The five motif-finding tools
returning a total of 40 motifs in each inter-operonic
sequence set recover 1,347 and 397 known TFBSs
belonging to 122 and 92 motifs in E. coli K12 and
B. subtilis, respectively (Table 1). Thus, 93 and 88% of
known TFBSs included in the inter-operonic sequence
sets are recovered by the phylogenetic footprinting pro-
cedure in E. coli K12 and B. subtilis [32,33], respectively
(Table 1).
We then calculated the cumulative recovery rate by

the top-ranked motifs of the 1,347 and 397 known
TFBSs found by phylogenetic footprinting in E. coli K12
and B. subtilis, respectively. As shown in Figure 5A,
with the increase in the number of top-ranked clusters,
the cumulative recovery rate of known TFBSs by the
top-ranked clusters increases very rapidly for the top
300 and 230 clusters, which recover 1,102 (82%) and
324 (82%) of the 1347 and 397 known TFBSs in E. coli
K12 and B. subtilis, respectively, and then it enters a
saturation phase with a small linear increase. We also
calculated the recovery rate of the 122 and 92 motifs by
the top-ranked clusters in E. coli K12 and B. subtilis,
respectively. We consider that a known motif is recov-
ered by one cluster if at least 20% of its known TFBSs
are included in this cluster. As shown in Figure 5B, with
the increase in the rank of clusters, the cumulative
recovery rate of known motifs by the top-ranked
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clusters increases rapidly for the top 300 and 230 clus-
ters, recovering 113 (93%) and 88 (96%) of the 122 and
92 motifs in E. coli K12 and B. subtilis, respectively, and
then it also enters a saturation phase with little increase.
Therefore, our clustering algorithm has achieved rather
high sensitivity in recovering the known TFBSs as well
as the known motifs of both genomes. Interestingly, the
cumulative recovery rate of known motifs saturate at
around the top 300-th and 230-th predicted motifs,
which is close to the number of TFs that have been esti-
mated in the E. coli K12 [11-14] and B. subtilis genomes
[34], respectively. The rapid recovery of known TFBSs
(Figure 5A) and motifs (Figure 5B) by top-ranked clus-
ters also suggest that the higher the rank of a cluster,
the more likely it is a true motif.

To assess the specificity of the predictions in E. coli
K12 and B. subtilis, we calculated the number of cumu-
lative unique predicted TFBSs in the top-ranked clus-
ters. We consider a predicted TFBS to be unique if
there is no other site overlapping with it by more than
eight bases. As shown in Figure 5C, with the increase in
the rank of clusters, the number of cumulative unique
predicted TFBSs in both genomes increases in a way
very similar to the cumulative recovery rates of known
TFBSs shown in Figure 5A, and then it saturates around
the top 300-th and 230-th clusters, covering about 4,900
and 4,600 unique TFBSs in E. coli K12 and B. subtilis,
respectively.
There are 40,405 and 57,567 unique predicted TFBSs

in the whole set of 164,120 and 18,6960 input motifs
predicted by phylogenetic footprinting in E. coli K12
and B. subtilis, respectively. Therefore, the vast majority
of predicted TFBSs have been filtered out by our algo-
rithm in both genomes. The fact that these relatively
small numbers (4,900 and 4,600) of unique predicted
TFBSs recover 1,102 (82%) and 324 (82%) of 1,347 and
397 known TFBSs in the top 300 and 230 clusters of
E. coli K12 and B. subtilis, respectively, suggests that our
clustering algorithm has significantly enriched the true
TFBSs in the predictions (p < 10-10 according to a
hyper-geometric distribution for both genomes). It is
highly likely that our algorithm has achieved high pre-
diction specificity in both genomes, although we cannot
accurately compute the prediction specificity and false
positive rate, because not all TFBSs in both genomes are
currently known. However, we can estimate the low
bound of prediction specificity based on the partially
known TFBSs to be 22% (1102/4900) and 7% (324/4600)
by the top 300 and 230 clusters in which 113 (113/300
= 30%) and 88 (88/230 = 38%) motifs recovered in
E. coli K12 and B. subtilis, respectively. As shown in
[Additional File 1: Supplemental Tables S1 and S2], the
top 20 predicted motifs in both E. coli K12 and B. subti-
lis recover 10 known motifs, achieving a low bound spe-
cificity of 50% in both genomes. Therefore, we have
achieved at least the same level of prediction accuracy
in both genomes as we have previously obtained when
E. coli K12 and B. subtilis were used as the single target
genome [19].

Figure 4 Selection of motif similarity score cutoffs for the
construction of motif similarity graphs. (A). Graph density as a
function of motif similarity cut-off. (B). The number of nodes in a
motif similarity graph as a function of motif similarity cut-off.

Table 1 Recovery of known TFBSs and motifs in each step of the eGLECLUBS algorithm for E. coli K12 and B. subtilis

Genomes Motifs/TFBSs RegulonDB/DBTBS COORs Phylogenetic footprinting Clustering*

E. coli K12 TFBSs 1642 1447 (88%) 1347 (93%) 1102(82%)

Motifs 125 123 (98%) 122 (99%) 113 (93%)

B. subtilis TFBSs 568 451 (79%) 397 (88%) 324(82%)

Motifs 99 93 (94%) 92 (99%) 88 (96%)

The percentage in a brace is the recovery rate at that step based on the previous step. *The calculations are based on the top 300 and 230 motifs/clusters
predicted in E. coli K12 and B. subtilis, respectively.

Zhang et al. BMC Bioinformatics 2010, 11:397
http://www.biomedcentral.com/1471-2105/11/397

Page 8 of 15



In the current study since our selection of genomes in
the two groups of target genomes, and prediction of
COORs are not biased to any particular genome, e.g., E.
coli K12 or B. subtilis in the groups, it is highly likely that
we have also achieved the same level of prediction accu-
racy for all of the genomes in the groups, although we can-
not systematically verify our prediction in the genomes
other than E. coli K12 or B. subtilis, because none of these
genomes has enough number of known TFBSs for doing
so. However, if we inspect the predictions in any of these
less-studied genomes, biologically meaningful results can
be always identified http://gleclubs.uncc.edu/pbs. For
example, if we look at the top-ranked motifs in Yersinia
pestis biovar Mediaevails that is relatively far away from
E. coli K12 in the tree [Additional file 1: Supplemental
Figure S1] in the g-proteobacterial group, the 2nd top-
scoring motif is similar the CRP binding sites in E. coli
K12, and the genes that bear a binding site of this motif
are annotated to be involved in carbon and energy meta-
bolism, therefore it is highly likely that this is the CRP
binding motif in the genome. The 3rd top-scoring motif is

similar to the FUR motif in E. coli K12, and genes that
bear a binding site of this motif are annotated to be
involved in ion assimilation, therefore it is highly likely
that this motif is recognized by FUR in this genome. The
32-nd top-scoring motif is associated with genes involved
in arginine biosynthesis, thus is likely to be the binding
motif of the regulator ArgR in this genome. The binding
sites of the 43-rd top-scoring motifs are born by genes
involved in pentose metabolism, so this motif is likely to
be involved in the regulation of pentose metabolism, how-
ever, its cognate TF cannot be predicted based on the cur-
rent data. The 50-th top-scoring motifs is similar to the
LexA motif in E. coli K12, and many genes bearing a bind-
ing site of this motif are annotated to be involved in DNA
damage repairing, so it is likely that this motif is recog-
nized by LexA in this genome. Similar results are seen for
the other Yersinia genomes in the group http://gleclubs.
uncc.edu/pbs. Therefore, eGLECLUBS can not only pre-
dict known TFBSs in model organisms, but also can pre-
dict novel TFBSs in less-studied organisms. The predicted
TFBSs in the 32 g-proteobacterial and 19 firmicutes

Figure 5 Evaluation of the predictions in the groups of target genomes. (A). Cumulative recovery rate of known TFBSs in the input motifs
by the top-ranked clusters. (B). Cumulative recovery rate of known motifs in the input motifs by the top-ranked clusters. (C) Cumulative number
of unique predicted TFBSs in the top-ranked clusters. (D) The rank of the cluster at which the cumulative number of unique predicted TFBSs
becomes saturated in a genome is highly correlated to the number of predicted TFs in the genome according to the DBD database.
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genomes can be found at the website of eGLECLUBS
http://gleclubs.uncc.edu/pbs. More importantly, with only
one more graph clustering step than its predecessor GLE-
CLUBS (see Methods), eGLECLUBS can predict TFBSs in
a group of up to 32 genomes. Therefore, eGLECLUBS is
more efficient than GLECLUBS.
Furthermore, these results also show that we have

achieved the similar prediction accuracy in B. subtilis
based on the 19 firmicutes genomes as in E. coli K12
based on the 39 g-proteobacterial genomes using the
same parameter settings, suggesting that our algorithm
is very robust in predicting TFBSs in different groups of
genomes. In addition, it is noticeable that the cumula-
tive binding sites, motifs and unique putative binding
sites in B. subtilis all saturate faster than those of E. coli
K12 (Figure 5), respectively, although both genomes
encode similar number of genes (4,105 vs. 4,132) and
operons (about 2,300 vs. 2,400). This might indicate that
B. subtilis encodes fewer TFs than does E. coli K12. In
fact, according to the DBD database [35], the E. coli K12
genome was estimated to encode 266 TFs, while the
B. subtilis genome 238 TFs.

Prediction of TFBSs in a group of cyanobacterial genomes
To further evaluate the prediction accuracy and robust-
ness of eGLECLUBS, we applied it to a group of 14 tar-
get genomes chosen from 33 sequenced cyanobacteria
[Additional file 1: Supplemental Figure S3] using the
same parameter settings. Despite the important roles of
cyanobacteria in global primary production and the evo-
lution of green plants, our current understanding of cis-
regulatory systems in even the best-studied cyanobacter-
ial Synechocystis sp. PCC 6803 strain (PCC6803) is still
very limited. Since there are not many known TFBSs in
any cyanobacterial genome, we cannot systematically
verify our predictions in a way as we did in E. coli K12
and B. subtilis. However, as shown in Figure 2F, the
similarity scores of the input motifs for this cyanobac-
terial group have a very similar distribution to those of
the g-proteobacterial and firmicutes groups, suggesting
that eGLECLUBS should also perform well in this group
of genomes. Furthermore, if we use our predictions in
PCC6803 as an example, as shown in Figure 5C, the
number of cumulative unique putative TFBSs in the
top-ranked clusters in the genome rapidly saturates at
~3,354 around the 200-th cluster, indicating that we
have likely enriched the true TFBSs in PCC6803 as in
the cases of E. coli K12 and B. subtilis. Again, the much
faster saturation of the cumulative unique predicted
TFBSs in PCC6803 than in B. subtilis and E. coli K12
(Figure 5C) suggests that the number of TFs in
PCC6803 might be fewer than those in these two gen-
omes. Indeed, DBD predicts that there are 85 TFs in
PCC6803 [36], even though the actually number might

be greater than this number [36]. Moreover, a few
experimentally characterized or computationally pre-
dicted motifs by other ad hoc methods are among the
top 20 predicted motifs in PCC6803 [Additional file 1:
Supplemental Table S3], including the PhoB motif (9-th)
[37,38], NtcA motif (11-th) [39,40], and CRP motif
(14-th) [41]. It is worth noting that, although the CRP
regulons in cyanobacteria are rather diverse as we
recently showed [41], eGLECLUBS can still accurately
identify the CRP binding motif in PCC6803 with a high
rank. Therefore, these results again unequivocally
demonstrate that eGLECLUBS is robust enough to pre-
dict TFBSs in various groups of less-studied genomes
with high accuracy.

Correlation between the number of predicted motifs and
the number of TFs encoded in genomes
As shown in Figure 5D, the number of top-ranked clus-
ters at which the cumulative unique predicted TFBSs
saturate is highly correlated to the number of predicted
TFs in the DBD database for each genome in the three
groups of target genomes. Therefore, the saturation
point can be used to roughly estimate the number of
motifs encoded in each genome in a group of target
genomes. These results again suggest that our predic-
tions of TFBSs in each genome have achieved a high
level of accuracy, and that our algorithm is very robust
in terms of parameter settings for different groups of
target genomes. Interestingly, the two bacteria that have
the largest number of predicted motifs and TFs, namely,
Serratia proteamaculans 568 and Klebsiella pneumoniae
MGH 78578 (Figure 5D), are free-living pathogens of
human and animals [42]http://www.ncbi.nlm.nih.gov/
genomeprj/31. Their more complex gene regulatory sys-
tems might be due to their needs to cope with very dif-
ferent living environments. In contrast, the bacterium
that has the smallest number of predicted motifs and
TFs is the Cyanobacterium synechococcus PCC7002,
which thrives in seawater where nutrients are relatively
stable. Furthermore, cyanobacteria can acquire their car-
bon source through photosynthesis, and thus generally
have simpler gene regulatory systems.

Discussion
Phylogenetic footprinting followed by motif clustering
has been proven the most practical method for genome-
wide TFBS prediction in prokaryotic genomes. However,
the existing methods including the GLECLUBS algorithm
that we developed earlier [19] were designed to predict
TFBSs in a single target genome of interest, and the
TFBSs in multiple reference genomes were largely
ignored and not predicted. Therefore these algorithms
are not very efficient and cannot be applied to a large
number of sequenced genomes. The major reason for
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this practice is that these methods identify orthologous
gene groups for phylogenetic footprinting based on the
gene contents in the target genome, therefore, inter-
operonic sequences pooled based on these orthologous
gene groups are inevitably biased to the target genome,
and the coverage of predictions in reference genomes
may not be high enough to be used for the genome-wide
prediction of TFBSs in the genomes. In the current
study, we have developed the eGLECLUBS algorithm for
simultaneous genome-wide prediction of TFBSs in each
genome in a group of genomes without introducing a
bias to any genome via overcoming two technical obsta-
cles. First, we identify COORs in a group of target gen-
omes based on the gene contents and operon structures
in each genome, and treat each genome in the group
equally both as a target genome and as a reference gen-
ome for the others. Therefore, the pooled inter-operonic
sequences are unlikely to be biased to a particular gen-
ome. Second, because we consider every gene in each
genome in the group, we end up with about twice as
many inter-operonic sequence sets as we have when a
single target genome was considered [19]. To circumvent
the difficulty of clustering a much larger motif similarity
graph with relatively high density for predicting TFBSs,
we construct two similarity graphs G1 and G2 with a high
and a low motif similarity score cut-offs, respectively. We
first cut G2 into dense clusters, and then recruit in the
resulting clusters the input motifs in G1 but not in G2,
and reconnect those that are not connect in G2 but in
G1. True motifs are then gradually separated from spur-
ious ones through multiple rounds of subsequent graph
clustering. Application of the eGLECLUBS algorithm to a
group of 32 g-proteobacterial genomes including E. coli
K12, a group of 19 firmicutes genomes including B. subti-
lis, and a group of 14 cyanobacterial genomes, resulted in
similar prediction results in both the E. coli K12 and B.
subtilis genomes as we have achieved when each was
used as the single target genome by GLECLUBS [19].
Due to the limited knowledge of TFBSs in most
sequenced genomes, we can only systematically verify
our predictions in the two model bacteria E. coli K12 and
B. subtilis. We assert, however, that it is highly likely that
we have achieved the same level of prediction accuracy
for each genome in the three groups of genomes because
of the unbiasedness of our algorithm to any genome in
the groups. Therefore, we have improved our original
algorithm for simultaneously predicting TFBSs of dozens
of genomes without a cost to prediction accuracy. To
further speed up the algorithm, we are currently paralle-
lizing the eGLECLUBS algorithm through distributed
computing, so that it can be applied to all the sequenced
prokaryotic genomes in the public databases.
In addition, with a single set of parameter settings,

our algorithm performs equally well on the groups of

g-proteobacterial, firmicutes and likely cyanobacterial
genomes. Therefore, it is very robust for predicting
TFBSs in various groups of genomes. The robustness of
our algorithm can be explained by the similar distribu-
tions of the similarity scores among the input motifs
identified in the different groups of target genomes, and
the similar distributions of the sub-motifs of the known
motifs in different genomes (Figure 2F). Consequently,
the coverage of nodes and the graph density of motif
similarity graphs under different motif similarity score
cut-offs in the three groups are similar (Figure 4A and
4B). Therefore, the motif similarity score cut-offs used
to construct motif similarity graphs for the three groups
of genomes work equally well. Since these distributions
are determined by the first principles of biochemical
rules, thus they are unlikely to be genome-specific.
Therefore, we expect that our algorithm can be applied
to any group of target genomes using similar parameter
settings.

Conclusions
We have developed a new algorithm for genome-wide
de novo prediction of TFBSs in a group of related pro-
karyotic genomes. The algorithm has achieved rather
high prediction accuracy, and is very robust and compu-
tationally efficient. The resulting tool can be used for
annotating TFBSs in the increasing number of
sequenced prokaryotic genomes.

Methods
Materials
The genome sequences and their annotation files of
g-proteobacteria, firmicutes and cyanobacteria were
downloaded from the NCBI ftp sever ftp://ftp.ncbi.nih.
gov/genomes. The known TFBSs of E. coli K12 and
B. subtilis were downloaded from RegulonDB Version 6.0
[20] and DBTBS Release 5 [21], respectively. Known and
predicted TFs were downloaded from DBD Release 2.0
http://www.transcriptionfactor.org[35]. Predicted prokar-
yotic operons were downloaded from the DOOR data-
base [32,33], which has the highest prediction accuracy
among all surveyed operon prediction algorithms [43].

Selection of a group of target genomes
To select a group of target genomes for which we want to
predict TFBSs in each genome, we used a previously
developed method that considers not only the evolutionary
relationships, but also the number of shared TFs among
the genomes in the group [19]. Briefly, we selected all the
sequenced genomes from the same phylum or class of
interest, e.g. the 139 sequenced g-proteobacterial genomes,
124 sequenced firmicutes genomes, and 33 sequenced cya-
nobacterial genomes as it has been shown that genomes
from the same phylum or class usually share TFBSs that

Zhang et al. BMC Bioinformatics 2010, 11:397
http://www.biomedcentral.com/1471-2105/11/397

Page 11 of 15

ftp://ftp.ncbi.nih.gov/genomes
ftp://ftp.ncbi.nih.gov/genomes
http://www.transcriptionfactor.org


are conserved enough to be predicted by phylogenetic
footprinting [3-10]. We then computed a bits vector for
each genome, where “1” and “0” represents the presence
and absence of a known or predicted TFs in the genome
according to the DBD database [35]. We constructed a
neighbor-joining tree based on the Hamming distance
between the vectors of each pair of genomes. By selecting
difference branches, we could obtain different groups of
target genomes with different levels of conservation of
gene transcriptional regulatory systems.

Predictions of orthologs and COORs
Orthologous proteins and their genes between two gen-
omes were predicted by the bi-directional best hits
(BDBH) method [44] using the BLASTP algorithm with
an E-value cut-off 10-20 in both directions of search. For
each operon o of each genome Gi in a group of target
genomes, we construct a group of operons called a
Semi-Cluster of Operons with Orthologous Relationship
(SCOOR) as follows (Figure 1): The SCOOR initially
only contains the operon o; for each genome except Gi

in the group of target genomes, if there exists an operon
o′ containing orthologs of at least 50% of genes in o, we
recruit o′ into the SCOOR. Next, we construct a graph
using these resulting SCOORs as the set of vertices. We
connect two SCOORs by an edge if the larger one
includes 70% of the operons in the smaller one. Because
of the low connectivity, the graph is composed of many
connected components (a connected component is
defined as a subgraph in which any two vertices are
connected by at least a path.). We call the operons asso-
ciated with each connected component a Cluster of
Operons with Orthologous Relationships (COOR).
Clearly, in a COOR, the majority of genes in each
operon in a genome have orthologs in other operons
from other genomes. A COOR is conceptually similar to
a cluster of orthologous transcription units defined by
Wels et al. [9].

Prediction of input motifs
For each COOR Ci containing at least three operons, we
extracted up to 800 bases upstream inter-operonic
sequence for each operon in Ci to form a set Ii of
sequences. Therefore each Ii contains at least three
inter-operonic sequences, which is necessary for most
motif-finding tools to work well. We apply P motif-find-
ing tools to each Ii, and each tool j returns its top Tj

motifs (Figure 3A and 3B). The length of returned
motifs is set to be 16 bases for all tools as we found that
motif-finding tools perform best with this length in pro-
karyotes [19]. Therefore, there are T = T1 + T2 + � � � +
TP putative motifs for each Ii. If there are n COORs
containing at least three operons in the groups of target

genomes, we will have a total of nT motifs, which are
referred to as input motifs.

Calculation of motif-motif similarity
We used the same motif similarity metric that we
defined previously [19] to compute a similarity score for
each pair of input motifs. We have shown that this
metric outperforms the other existing ones for separat-
ing true motifs from spurious ones. Briefly, for a motif
Mx containing nx sequences with length Lx, let
F f b ix x Lx

= ( ) ×( , )
4 be its frequency matrix, and Px be

its profile matrix defined as
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where px (b, i) is the probability of base b Î{A, C, G,
T} appearing at position i of Mx, and q(b) is the prob-
ability of base b appearing in the background sequences.
For two motifs M1 = (P1, F1) and M2 = (P2, F2), the
similarity score between them is defined as
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Note that in the metric (3), A is the set of optim-
al ungapped alignments that have the maximum
number of aligned columns {i}, each satisfying

b y xf b s i P b i( , ( )) ( , )⋅ ≥∑ 0 , and column i of Px corre-
sponds to column s(i) of Fy in the alignment s Î A.

Prediction of TFBSs in a group of target genomes
through graph clustering
In our previous design of the GLECLUBS algorithm
[19], we constructed a motif similarity graph using the
predicted input motifs as the nodes and connecting two
nodes with an edge if their similarity scores is above a
preset cut-off; we then clustered the graph into dense
subgraphs using the MCL algorithm [31]. However, we
found that when the size of the graph increases to the
size of current application, the MCL algorithm becomes
too inefficient to cluster the graph. To circumvent this
obstacle, we first construct two motif similarity graphs
G1 = (V1, E1) and G2 = (V1, E1) with a high and a low
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graph densities, respectively (Figure 3). The density of a
graph is defined as the number of its edges divided by
the number of its nodes in this paper. We choose the
density of G1 to be high enough, so that most relevant
motifs are presumably connected, and the density of G2

to be low enough so that only highly similar motifs are
connected and the graph can be efficiently cut by the
MCL algorithm. We first cut G2 into dense subgraphs/
clusters, and then recruit in the resulting clusters the
motifs not in G2 but in G1(Figure 3). The details of the
clustering procedure follow.
(A) Construct motif similarity graphs G1 with a high

density and G2 with a low density, and cut G2 into dense
subgraphs using MCL. We construct two motif similarity
graphs G1 = (V1, E1) and G2 = (V2, E2) using predicted
motifs as the nodes, and connecting any two motifs by an
edge if their similarity score is greater than two preset
cut-offs a and b (b >a), respectively, with the similarity
score being the weight on the edge (Figure 3C). Because
of the larger value of b, G2 contains fewer nodes and
edges than does G1. We choose a value of a so that most
relevant motifs are connected in G1, and a value of b so
that the density of G2 is low enough to be efficiently clus-
tered into dense subgraphs using the MCL algorithm. We
typically choose a and b such that the density of G1 is
about 500, and that of G2 is about 15~20 (see Results).
We then apply MCL to G2 to cut it into dense subgraphs,
denoted by C = {c1, c2, ..., ct}(Figure 3C).
(B) Construct and cluster motif similarity graph G3.

Let V1 - V2 = {v1, v2, ..., vk} be the nodes in graph G1

but not in G2. We construct graph G3 = (V3, E3), where
the node set V3 = C ∪(V1 - V2) = {c1, ..., ct, v1, ..., vk},
and the edge set E3 is defined as follows. For each
pair of nodes u, v Î V3 we calculate

′ = ∈ ∈∑w w u vuv x u y v xy, min{| |,| |} , where wxy is the
weight of edge (x, y) Î E1, and |u| and |v| the number
of nodes of u and v, respectively. We connect u and v
by an edge (u, v) Î E3 with a weight ′wuv if and only if

′wuv is greater than the cut-off a used to construct G1.
We then apply MCL to G3 to obtain a set of clusters
(Figure 3C). The motifs in each of these resulting clus-
ters induce a subgraph of G1. Let these induced sub-
graphs be the set S = {s1,s2,...,sn} (Figure 3D).
(C) Construct and cluster the quasi-clique-based motif

similarity graph G4. For each subgraph si in S, we apply
the method described in our previous work [19] to find
a clique associated with each node in si, and then merge
all cliques into a so-called quasi-clique if any two cliques
share the majority of their nodes (Figure 3D). For each
quasi-clique, we pool all the corresponding putative
TFBSs, and merge any two sequences if they overlap
more than 8 bases to form a quasi-clique-specific
sequence set. We then identify the best motif for each
of the quasi-clique-specific sequence sets using the

motif-finding tool BioProspector [23]. We call this motif
a quasi-clique-specific motif. We then calculate the simi-
larity score between each pair of quasi-clique-specific
motifs, and construct a new motif similarity graph G4

using the quasi-clique-specific motifs as the nodes, and
connecting any two nodes if the similarity between the
two motifs is larger than a preset cut-off g (= b, nor-
mally). We cluster graph G4 into a set of dense sub-
graphs using MCL.
(D) Construct and cluster the extended sequence-based

motif similarity graph G5. For each cluster from G4, we
pool all the corresponding putative binding site
sequences, and merge any two sequences from the same
intergenic sequence if they overlap more than 8 bases to
form a new non-overlapping sequence set. To fix the
possible problem of only covering a part of a binding
site by motif-finding tools because of the use of a fixed
motif length for motif finding so far, we extend each
sequence on both ends by padding a fixed length (10
bases) of its flanking genome sequences. For each of
these extended sequence sets, we identify the best 22-
base long motif called an extended motif. Similar to the
construction of graph G1, we construct a new motif
similarity graph G5 using the same motif similarity score
cut-off g as used to construct G4. We then cluster G5

into a set of subgraphs using MCL.
(E) Construct and cluster genome-specific motif simi-

larity graphs. Note that each motif in the clusters from
G5 contains predicted TFBSs from different genomes in
the groups of target genomes. We pull the putative
binding sites in each cluster from G5 into a group if
they are from the same genome to form a genome-speci-
fic sequence set. So sequences in each cluster are parti-
tioned into multiple genome-specific sequence sets, and
there are multiple genome-specific sequence sets from
the same genome. For each genome, after merging the
overlapping sequences in each genome-specific sequence
set, we find the best motif in each of its genome-specific
sequence sets using the motif-finding tool MEME [22]
with the length being automatically detected in the
region of 8-22 bases. We then calculate motif-motif
similarity between each pair of the resulting motifs for
the genome, and construct a genome-specific motif
similarity graph using the similarity score cut-off g used
to construct G4. The graph is clustered into subgraphs
using MCL.
(F). Refine and rank the clusters of each genome. The

clusters obtained from the genome-specific motif simi-
larity graph contain sequences with different lengths, we
identify up to top 15 motifs of different lengths (= 22 -
8 + 1) from the sequences of each cluster using MEME
with the motif length being automatically detected in
the region of 8~22 bases. Since the resulting motifs may
cover different parts of the same motif, and contain the
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same TFBS because of the high similarity of sequences
in each cluster, we merge the overlapping and redun-
dant sequences covered by different motifs to form a set
of unique sequences, which is the final predicted motif
in each cluster. We use the following scoring function
defined previously [19] to evaluate the likelihood that a
cluster contains a true motif,

ClusterScore
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where n is the number of sequences in the best motif of
length L found by MEME, p(b, i) and P(b, i) are the prob-
ability and profile, respectively, of base b appearing at posi-
tion i of the motif as defined in formula (1), and N is the
number of sequences in the cluster. We rank all the clus-
ters in descending order according to their ClusterScores.

Availability
The eGLECLUBS algorithm is currently implemented in
Perl, consisting of a set of utility programs for generat-
ing input files and a suite of programs for TFBS predic-
tion in genomes. The source codes and detailed
instructions for running the programs are available at
http://gleclubs.uncc.edu/pbs.

Additional material

Additional file 1: Supplementary figures and tables. Additional file 1
consists of three supplementary figures and tables. Supplemental Figure
S1: The phylogenetic tree of cis-regulatory systems in sequenced g-
proteobacterial genomes for the selection of groups of target genomes
containing E. coli K12. Supplemental Figure S2: The phylogenetic tree of
cis-regulatory systems in sequenced firmicutes for the selection of a
group of target genomes containing B. subtilis. Supplemental Figure S3:
The phylogenetic tree of cis-regulatory systems in sequenced
cyanobacteria for the selection of a group of target genomes containing
Synechocystis sp. PCC 6803. Supplemental Table S1: The top 20 motifs/
clusters predicted in E. coli K12. Supplemental Table S2: The top 20
motifs/clusters predicted in B. Subtilis. Table S3: The top 20 motifs/
clusters predicted in Synechocystis sp. PCC 6803.
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