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Abstract

Background: High throughput molecular-interaction studies using immunoprecipitations (IP) or affinity purifications are
powerful and widely used in biology research. One of many important applications of this method is to identify the set of
RNAs that interact with a particular RNA-binding protein (RBP). Here, the unique statistical challenge presented is to
delineate a specific set of RNAs that are enriched in one sample relative to another, typically a specific IP compared to a non-
specific control to model background. The choice of normalization procedure critically impacts the number of RNAs that will
be identified as interacting with an RBP at a given significance threshold – yet existing normalization methods make
assumptions that are often fundamentally inaccurate when applied to IP enrichment data.

Methods: In this paper, we present a new normalization methodology that is specifically designed for identifying enriched
RNA or DNA sequences in an IP. The normalization (called adaptive or AD normalization) uses a basic model of the IP
experiment and is not a variant of mean, quantile, or other methodology previously proposed. The approach is evaluated
statistically and tested with simulated and empirical data.

Results and Conclusions: The adaptive (AD) normalization method results in a greatly increased range in the number of
enriched RNAs identified, fewer false positives, and overall better concordance with independent biological evidence, for
the RBPs we analyzed, compared to median normalization. The approach is also applicable to the study of pairwise RNA,
DNA and protein interactions such as the analysis of transcription factors via chromatin immunoprecipitation (ChIP) or any
other experiments where samples from two conditions, one of which contains an enriched subset of the other, are studied.
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Introduction

Identifying the sequences specifically bound by RNA and DNA

binding proteins is an area of intense investigation. The

importance of transcription factors and other DNA binding

proteins in regulating RNA expression has been appreciated for

decades. After transcription, mRNAs interact with RNA-binding

proteins (RBPs) that control their processing, localization, trans-

lation, and eventual decay. There is growing evidence for the

existence of an extensive post-transcriptional regulatory network,

mediated in part by RBPs [1,2,3,4,5]. It is likely to be the

combinatorial, coordinated, and programmed interactions with

specific sets of RBPs that are responsible for the gene-specific life

history of each RNA after it has been transcribed [5].

Statistically sound methods for identifying specific RNA targets

of RBPs are thus important to understanding biological regulation.

There is a close analogy between this statistical problem and

problems arising in studies of differential gene expression, with one

major and fundamental difference being the treatment of

normalization. Despite a large literature on the normalization of

microarray data [6,7,8,9], including situations where a majority of

genes are expected to be differentially expressed [10,11], little

attention has been paid to normalization for experiments where a

priori anywhere from a handful to the majority of genes could be

differentially enriched in the IP compared to the experimental

control (which we will call the ‘‘Mock’’).

By imposing a scientifically appropriate assumption of ‘‘enrich-

ment’’ of one sample distribution over another, we are able to

make progress in modeling that leads to a novel normalization

procedure. The method we propose is an intuitive method of

normalization for microarray or high throughput sequencing

experiments, which can be applied to situations where a minority

or a majority of genes are differentially enriched.
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Recent biological insights have been gained by characterizing

the species of RNA bound by particular RNA binding proteins

(RBPs) via microarray studies. Briefly, an RBP of interest is

purified by immunoprecipitation (IP) with a specific antibody

directed against the RBP or by affinity purification via a fusion of

the RBP and an affinity tag. The RNA that co-purifies with the

RBP is compared by microarray hybridization or high-throughput

sequencing to the non-specifically bound RNA measured from the

same IP procedure done without the specific antibody or using

lysates from an untagged strain (called the Mock). The use of

microarrays for identifying the targets of an RBP (see

[1,2,3,4,12,13]) generally proceeds as follows: hybridization to

the microarray is performed to compare the RNA resulting from

the IP of the RBP of interest (or a Mock IP) labeled (for example)

with Cy5 (red), against a measurement of the expression of each

mRNA in a total RNA sample from the cell lysate labeled (for

example) with Cy3 (green). The ratio of Cy5 to Cy3 fluorescence

(in this example) represents a measure of the enrichment of each

RNA in association with a given RBP, and the corresponding ratio

in the Mock IP experiment represents a measure of the RNA non-

specifically enriched by the same procedure in the absence of a

specific antibody or a tagged protein. These experiments are often

performed in replicate. Since RNA may bind non-specifically

during the IP procedure, the statistical challenge is to use the

measure of the background (the Mock) along with the IP to

identify RNAs that interact specifically with the RBP. Numerous

studies [1,4] have relied on this experimental design, using a

standard statistical methodology for identifying targets, which is

outlined below.

The normalization used when comparing two samples is

especially important for IP enrichment experiments because a

critical question is which distinct set of RNAs interacts specifically

with a given RBP, and are thus differentially enriched between the

IP and the Mock. One simple way to identify genes with

differential enrichment factors between the Mock and IP is the

t-test. The t-test is inherently sensitive to the normalization of

results for the two samples being compared. The choice of

normalization procedure therefore critically impacts the number

of RNAs that will be identified as interacting with an RBP at a

given significance threshold. The main contribution of this paper is

to present a novel normalization procedure, which we argue is less

biased and makes fewer and more justified assumptions than

previous methods.

In the past [1,4], the statistical approach used to identify the

enrichment of sequences in the IP compared to the Mock was

identical to the approach used if the two groups of data were

derived from a study of differential gene expression: by making the

assumption that the mean or median (or some other quantile) of

the fluorescence ratios measured by microarray hybridization was

equal between the Mock and IP experiments (a convenient

assumption but a debatable one, even for global gene expression

data). There is scientific reason to believe that this assumption is

fundamentally inaccurate: the fluorescence ratios measured for

RNA isolated by an RBP affinity selection should be a

superposition of those signals in the Mock (i.e. due to spurious

factors in the procedure) with some signal (if any) due to an

interaction between the RBP under study and a subset of RNAs.

Other normalization procedures (e.g. [6,9,14,15]) are also

inappropriate for the model that an IP is a superposition of a

Mock and true signal.

We present a novel normalization methodology that takes into

account an explicit and, we believe, generally scientifically

justified, model of the IP – Mock experimental design. We find

that this method gives a biologically coherent characterization of

targets of several RBPs, which is sometimes quite different from

that obtained using median normalization procedures. For

example, [4] reported the targets of 42 RNA binding proteins in

yeast, including poly(A) binding protein (PAB1). PAB1 is a highly

abundant RBP that recognizes a poly(A) sequence found on nearly

all mRNAs, it is essential for the translation of mRNAs, and

Table 1. Number of targets called by SAM After AD or
Median normalization.

RBP
Median
Normalization

AD
Normalization

% of Detectable
mRNAs

PUF1 33 27 0.45%

PUF2 377 301 5.0%

PUF3 303 338 5.6%

PUF4 319 306 5.1%

PUF5 413 305 5.1%

PAB1 1371 3511 81%

The AD normalization method enables the identification of more targets for
RBPs with many targets, and a comparable number of targets for RBPs with few
targets. The number of targets identified by SAM after the data were
normalized by either median normalization or AD normalization is shown for
the RBPs PUF1, PUF2, PUF3, PUF4, PUF5, PUB1, and PAB1. Also shown is the
percent of the total number of detectable mRNAs that were called as targets
after AD normalization.
doi:10.1371/journal.pone.0053930.t001

Figure 1. An example of the plot used to find k. An example (for
PUF3) of the plot used by the AD Normalization method to find the
number of genes to use for normalization (k). Each spot is an individual
RNA. The y-axis shows the Mock-IP enrichment values and the x-axis
shows the rank of those same values. All mRNAs are plotted with black
circles. The heat colors show the density of mRNAs that contain a PUF3
motif site in their 39-UTR (no motif: black, with motif: from orange to
yellow). The vertical section on the left (indicated with a blue dashed
circle) corresponds to RNAs that are most enriched in the Mock relative
to the IP. The vertical section on the right (indicated with a blue dashed
circle) corresponds to RNAs that are most enriched in the IP relative to
the Mock. The vertical dashed line indicates the k value chosen by the
algorithm. All the RNAs to the left of this line were used to normalize
this array. 91% (311/343) of the PUF3 39-UTR motif site containing
mRNAs fall to the right of this line, suggesting that our algorithm was
successful in identifying the primarily non-target (i.e. background) RNAs
to use for normalization in this case.
doi:10.1371/journal.pone.0053930.g001

Adaptive Normalization Method for Interaction Data

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e53930



Figure 2. Simulated data illustrates a fundamental advantage of AD normalization. (A) Histograms of simulated IP data for RBPs with an
increasing number of targets (pink, red, and dark red lines) and the Mock IP data (gray line), normalized by AD normalization. (B) Same as A, except
data was normalized by median normalization. Note how AD normalization properly aligned the portion of each distribution that contained the
simulated background data, while median normalization did not, resulting in lower normalized IP enrichment values for the simulated RBP IP targets.
The vertical dashed lines have been added to highlight the position of the (Mock) background distribution.
doi:10.1371/journal.pone.0053930.g002

Figure 3. The AD normalization method properly aligns Mock and IP distributions for PAB1 and PUF3. The application of the AD
normalization method to IP data from the RBP PAB1 results in greater enrichment relative to the Mock. (A) PAB1 IP data (red line) compared to Mock
IP data (black line), both normalized by median normalization. Median normalization results in the dubious situation where there are genes with
more negative enrichment values in the PAB1 IP than the Mock IP, as evidenced by the shift of the left-hand side of the PAB1 IP distribution relative
to the left-hand side of the Mock IP distribution (highlighted in blue). (B) Same as in part A, except with PUF3 IP data. (C) Same as in part A, except
with AD normalized data. Application of AD normalization yields a much more logical outcome where there are no longer more genes with negative
enrichment values in the PAB1 IP than the Mock IP. (D) Same as in part C, except with PUF3 IP data, showing that AD normalization does not simply
shift every distribution more than median normalization – it properly aligns Mock and IP distributions for RBPs with many targets and with few
targets.
doi:10.1371/journal.pone.0053930.g003

Adaptive Normalization Method for Interaction Data
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consequently it has been suggested, with good evidence, that PAB1

may bind to nearly all polyadenylated mRNAs in the cytoplasm

[4,16].

Among the more than 4,000 transcribed yeast mRNAs detected

in the experiment considered in [4], only ,1,300 were identified

(using a false-discovery-rate (FDR) threshold of 1%) as being

targets of PAB1 using median centered normalization followed by

Significance Analysis of Microarrays (SAM) [17], although the

same authors provide independent, strong evidence that PAB1

may bind to nearly all mRNAs. In contrast, the AD normalization

method (as outlined in the Methods section) followed by SAM

finds more than 3,500 targets of PAB1–much more consistent with

the independent, strong evidence that PAB1 may bind to nearly all

polyadenylated mRNA in the cytoplasm. (see Table 1).

Not all RBPs have a higher number of targets when AD

normalization is used, as compared to median normalization. For

example, some RBPs with small, distinct target sets, like PUF3,

have a similar number of targets identified as significantly

enriched, regardless of whether AD or median normalization is

used (Table 1).

Methods

Methodology Overview
The normalization methodology presented here is a statistical

method ideally suited for experiments where samples from two

conditions, one of which contains an enriched subset of the other,

are studied with the aim of identifying the enriched subset. For our

purposes, an RNA species is considered ‘‘enriched’’ if its

abundance is increased relative to a total RNA sample following

an IP of an RBP of interest, suggesting it is specifically bound by

the RNA binding protein being purified.

The AD normalization procedure is described here in plain

language, with a formal mathematical description following. 1) For

each entity being evaluated (e.g. an RNA or a DNA fragment), we

calculate the average median centered enrichment value in the

Mock experiment. 2) We identify the set of genes with the greatest

difference in the average Mock relative to a given IP replicate (i.e. the

greatest Mock – IP values). The size of this set of genes is chosen in

a disciplined way described below. This is the set of genes that are

the least enriched in the IP relative to the Mock, suggesting that

they are non-targets whose enrichment is due primarily to non-

specific binding. 3) We then normalize the given IP replicate so

that the median of this set of non-target genes is the same as it is in

the average Mock – based on the assumption that the non-specific

enrichment of these non-target genes remains constant between

Mock and IP experiments. 4) The same procedure is applied to the

Mocks as a control, by removing one Mock replicate from the full

set of Mocks and normalizing it relative to the other remaining

Mocks as if it were an IP replicate (i.e. the well-known statistical

‘‘leave one out average’’). We use this control for the Mock to

estimate the statistical bias of our method when applied to the IP

data.

The methodology is designed for experiments using an explicit

model of background binding which includes an empirical

measurement of that background. The model is based on the

intuitive observation that an RNA’s enrichment as measured by

microarray hybridization or deep-sequencing of an IP-selected

RNA sample, can be represented in terms of the enrichment due

to background binding as estimated by the Mock (or averages of

such arrays) superimposed with a signal that represents enrichment

due to the IP and modeled using the simple statistical framework:

IP~MockzTzZ ð1Þ

where IP is the enrichment of the RNA by the specific IP, Mock is

the apparent (spurious) enrichment by the Mock procedure, T is

non-negative true signal (the variable of interest), and Z is a

random mean zero error representing stochastic noise in the

experimentally observed signals. In practice, these quantities are

estimated with one or more experimental replicates.

Estimating T is non-trivial because the Mock and IP are only

known up to scalar shifts (addition) of normalizing constants that

themselves cannot be observed. Modeling these normalizing

constants (cIP and cMock for the IP and Mock respectively) produces

the following restatement of Equation (EQ1) in terms of

observable signals and unobserved normalizing constants:

IPzcIP~MockzcMockzTzZ ð2Þ

The statistical problem is to estimate cIP and cMock. Equation

(EQ2) demonstrates that accurate estimation of the difference

between cIP and cMock are essential and sufficient for making

subsequent analyses that identify IP over Mock targets relatively

straightforward. For example, after estimating cIP and cMock, the

corrected values could be subjected to a modified t-test procedure

such as SAM with two groups: IPi + cIP 2 (Mock + cMock ) for each

IP experiment and Mockj + cMock for each Mock experiment [17].

This formulation shows that for the purpose of the t-test (and its

modifications by SAM), it is sufficient to estimate cIP 2 cMock and to

assume that the median of Mock is zero.

Adaptive Approach
The main contribution of our method is the procedure to

produce an alternative to a mean or quantile based estimation of

cIP 2 cMock. A reason to avoid mean or median normalization is

that doing so implicitly assumes that some values of the

expectation of T are negative: after median centering, some of

the Mock will necessarily be enriched with respect to the IP,

countering the assumptions of the IP enrichment experiment. The

basic idea of AD normalization is as follows:

Table 2. The number of false targets identified from Mock-
Mock comparisons after AD or Median normalization.

SAM Reported FDR: 0% 1% 5% 10% 20%

Median Normalization

Mean 14.8 14.8 18.6 22.7 68.4

Max 51 51 54 61 342

Min 0 0 0 0 0

AD Normalization

Mean 0 0 0 0 0

Max 0 0 0 0 0

Min 0 0 0 0 0

The use of median normalization results in the identification of false targets
when used in conjunction with SAM, while the AD normalization method does
not. The number of false targets resulting from Mock-Mock comparisons using
data normalized by either median normalization or the AD method is shown, at
various SAM- reported FDRs. No false targets were detected for data normalized
by the AD method, at all FDR levels examined. In contrast, as many as 51 false
targets were detected at a SAM reported FDR of 1% when median
normalization was used. The Mock IP data was previously published in [19].
doi:10.1371/journal.pone.0053930.t002
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Observe that after normalization, the only enrichment in the

Mock compared to the IP should be due to noise, i.e. if the c’s are

correctly estimated,

IPzcIP{ MockzcMockð Þ~TzZ

and T is a non-negative.

Furthermore, the mean of Z is assumed to be zero. On this

basis, RNA species that are the most relatively enriched in the

Mock compared to the IP are most likely to be true background,

i.e. have true signal equal to zero. These RNAs are identified by

ranking the component-wise differences of the vectors (Mock – IP)

and selecting the k RNAs with highest rank (Figure 1). The

parameter k is the number of RNA species, DNA fragments, etc.

that are assumed to be non-targets and therefore used for

normalization (the process of choosing k is discussed later in

detail). In practice, we have identified these RNAs by ranking the

differences �MMock{IPi where �MMock is the average enrichment

among the Mock experiments and IPi is an individual IP replicate.

Call the set of RNAs identified in this way Sk. Once these RNAs

are identified, the Mock and IP can be normalized to the mean or

median of Sk in each condition, i.e.

c
(k)
IP ~

1

DSk D

X
i[Sk

IPi c
(k)
Mock~

1

DSk D

X
i[Sk

Mocki

Figure 4. The AD no rmalization method is robust to different types of input data. The method of identifying the normalization constant is
robust to different types of input data. (A) A plot of the Log base 2 enrichment values for the RBP IP (y-axis) and the Mock IP (x-axis) for the RBP PAB1.
Each point represents a specific gene. (B) Same as A, except for the RBP SCD6. (C) Same as A, except for the RBP PUF3. (D) A plot of each Mock – IP
value (y-axis) vs. its rank (x-axis) for the RBP PAB1. Each point represents the Mock value minus the IP value for a specific gene. This plot is used by the
AD normalization method to select the number of genes to use for normalization (called k). (E) Same as D, except for the RBP SCD6. (F) Same as D,
except for the RBP PUF3. (G) A plot of the normalization constant vs. the number of genes in the gene set used for normalization for the RBP PAB1 is
shown in blue. The vertical blue dotted line indicates the number of genes to be used for the normalization, chosen by the AD normalization method
from the above plot. The horizontal blue dotted line indicates the corresponding normalization constant. This plot is used to find the normalization
constant for a given value of k. (H) Same as G, except for the RBP SCD6. (I) Same as G, except for the RBP PUF3. The examples shown here are from
RBPs with a variety of targets (300–3,000), purified using different reagents, some amplified, some un-amplified, by different experimenters over a
span of over 6 years, and using different microarray platforms. Despite these differences, for each sample there was a sufficiently large range of k for
which c

(k)
IP {c

(k)
M could be modeled linearly.

doi:10.1371/journal.pone.0053930.g004
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The above procedure introduces two obvious biases that we

address in the implementation of the AD method:

1. Because the choice of k affects the value of each normalizing

constants c
(k)
IP and c

(k)
Mock, a disciplined method for identifying k

is presented.

2. If two technical replicates were subject to the normalization

procedure, one being normalized with respect to the other, (for

example if an IP experiment were replaced by a Mock), by the

nature of the naı̈ve estimation procedure above, we would

expect the computed cIP{cMockw0.

We address 1) and 2) by modifying the naı̈ve estimation of:

cIP{cMock

in such a way that the estimate is asymptotically unbiased, and for

finite samples results in a conservative identification of IP

enrichment relative to the Mock.

Normalization Procedure
The formal description of the normalization procedure that was

described above is as follows:

1. Compute the average of the median centered mock arrays
�MMock, and the leave-one-out average mock, for each Mock,

j~1,:::,m, �MMockj :

2. For the jth IP experiment define X(i)~(IPj{ �MMock)(i), for

i~1, . . . n, i.e. the order statistics of IPj{ �MMock. Compute the

normalization constant for the jth IP:

2.

cIP jð Þ~ 1

k

Xk

i~1

X(i)

3. Define the jth normalized IP experiment IP j{cIP(j).

4. For each Mock experiment, Mock(j),j~1,:::,m, define X(i)~

(Mockj{ �MMockj)(i), i.e. the order statistics of Mock(j){
�MMockj .Compute:

4.

cMock jð Þ~ 1

k

Xk

i~1

X(i)

5. Define the jth normalized Mock experiment as Mock j
{cMock(j).

After the last step, the data can be input into any statistical

procedure for identifying enriched genes in the IP compared to the

Mock. For example, we ran two class SAM on these normalized

data and compared the results to those of SAM run on median

centered data in the next section.

The following 3 important statistical properties of the normal-

ization method are stated and proved below. In summary,

Property 1 shows that our normalization method is not affected

if all data points from any replicate are arbitrarily shifted by a

constant, as may occur in microarray data from technical scanning

effects: our procedure will always give the same result if array

values are multiplied by an arbitrary constant and then log

transformed. Property 2 shows that as data quantity increases, our

estimator becomes more and more accurate.

Property 3 shows that the method does not overestimate the

difference in normalizing constants between the IP and mock –

doing so would cause more targets to be called significant than

actually are significant.

1. The normalization constant is invariant to addition of a

constant to each RNA’s measurement value and invariant to

addition of a common constant to each Mock array. For the

first part, it is clear that if a constant c is added to each RNA’s

value, then the calculated normalization constant in the AD

method will be increased by c, and the resulting normalized IP

values will not be changed. Since the Mock arrays are median

centered, addition of a common constant to the Mock will not

affect the average Mock value.

2. If all RNA sequences measured in the IP are actually

background, the estimate of the difference between the

normalization constant for the IP and any Mock normalization

constant is asymptotically unbiased. To see this, denote the

differences between RNA values in the IP and Mock as

random variables Zif gn
i~1 and the differences between the

Mock and the leave-one-out Mock are Z’if gn
i~1. Then the AD

estimate of the normalization constant from one IP replicate

with k RNAs is equal to

cIPz
1

k

Xk

i~1

Z(i) ð3Þ

where Z’(i) is the estimate of the ith order statistic of the

difference between the IP and the average Mock. Similarly, the

AD estimate of the normalization constant from one Mock

replicate with k RNAs is equal to

cMockz
1

k

Xk

i~1

Z’(i) ð4Þ

where Z’(i) is the estimate of the ith order statistic of the

difference between the jth Mock and the average Mock leaving j

out. Since under the null hypothesis that no RNA is enriched

by the IP, Z’(i) converges a.s. (almost sure, a measure of

convergence in probability) to Z(i) as the sample size goes to

infinity, the continuous mapping theorem shows that

1

k

Xk

i~1

Z’(i) converges to
1

k

Xk

i~1

Z(i) a.s. and hence the difference

between Equations (EQ3) and (EQ4) converge to cIP – cMock

[18].

3. If not all RNA values in the IP are actually background, the

estimate of the normalization constant is asymptotically biased

in such a way that a t-test using normalized data is

conservative. If not all RNA values in the IP are background,

then it is easy to see that a.s.,

1

k

Xk

i~1

Z(i){
1

k

Xk

i~1

Z’(i)?a

where a is a constant less than zero. Intuitively, a ,0 if not all

RNA values are background, because the distribution of differ-

Adaptive Normalization Method for Interaction Data
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ences between the Mock and IP will be more negative than when

the IP is actually all background. This implies that the order

statistics of the Mock-IP will also be more negative than when the

IP is actually background. So, their expectation of the order

statistics satisfies the following inequality:

E
1

k

Xk

i~1

ẐZ ið Þ

 !
vE

1

k

Xk

i~1

ẐZ’ ið Þ

 !

Underestimating cIP 2 cMock in a t test will result in a

conservative estimate of significance.

Choice of the number of genes to use for normalization
(k)

The statistical procedure and analysis outlined here for

estimating the normalizing constant is valid for any choice of k.

For consistency of our analysis between different IPs, we followed

a disciplined and unsupervised procedure for choosing k based on

an empirical linear regression model as described below.

For the diverse data analyzed in this paper, the distribution of

order statistics of the differences of Mock-IP RNA values followed

a distribution which can be approximated as a piecewise linear

function with each piece having a goodness of fit of R2
w:99 and

knots separated by at least 500 x-axis values. In particular, this

function was approximately linear between the qth
L and the qth

U

quantile for small values of the qth
L quantile of the distribution and

large values of the qth
U quantile (Figure 1). This method was

empirically successful for all of our data and all of the publically

available data we analyzed.

Under the assumption that the lower (left hand) tail behavior of

the Mock-IP distribution is governed by the tail behavior of the

order statistics of true background genes, it will not be piecewise

linear in the x-axis until the qth
L quantile of the background genes

has been reached as we have empirically observed that the Mock-

IP distribution is not linear in that region.

By finding the point on the x-axis in the plot of the IP-Mock

order statistics where the plot becomes piecewise linear, we can

find an empirical estimate for the qth
L quantile of the subset of the

background genes in the IP. This value is chosen depending on the

IP because the fraction of background genes (and hence the

position of the qth
L quantile of the subset of background genes in

the IP) will depend on the number of background genes (Figure 1).

Normalizing an IP experiment based on an empirical estimate

of the qth
L quantile of the background genes to govern the choice of

k provides a disciplined method of estimating the normalization

constant. It suggests that the fraction of true background genes in

the subset of size k used for normalization will be comparable

between IPs hence providing a basis for consistency of the bias of

the underestimate of cdiff across IPs and a baseline for comparison

of target numbers between IPs. While we find this an appealing

property for choosing k, we do not claim it has a statistical basis,

but this is not critical: the statistical properties of the normalization

procedure for any single IP analysis does not depend on the choice

of k.

Results and Discussion

AD Normalization Overcomes a Fundamental Limitation
of Other Normalization Methods

For RBPs with large numbers of targets, the model in Equation

(EQ2) predicts that median normalization will lead to an

underestimate of the number of targets compared to AD

normalization. Under median normalization, the null hypothesis

for the ith gene states it has enrichment mi,1, in condition 1 and

enrichment mi,2, in condition 2, the null hypothesis is that

H0,i : mi{medianX ~mi{medianY

where medianX is the median of the enrichment of genes in

condition 1. If condition 1 is an IP, medianX will increase with the

number of targets and thus make H0,i actually valid or at least

harder to reject. This places a fundamental limitation on the

number of targets an RBP can have when median normalization is

used. This limitation is a problem to some degree for all

normalization methods that make implicit assumptions about the

number of targets an RBP can have.

To further explore this theoretical limitation of median

normalization relative to AD normalization, we used a simple

and idealized model of an IP experiment to simulate data and

compared the behavior of AD and median normalization. Even in

this idealized scenario, the theoretical limitations of median

normalization described above were observed. The simulated data

consists of 6,000 total simulated genes. For genes which had no

specific IP enrichment (background), we sampled from a normal

distribution of mean 0 and for the bona fide IP targets, we sampled

from a normal distribution of mean 3; both distributions had

standard deviation of 1. When AD normalization was applied to

the simulated data, it identified and properly aligned the portion of

each IP distribution that contained the simulated background data

with the Mock (Figure 2). In contrast, median normalization failed

to properly align the background distributions with each other or

the Mock, resulting in lower normalized IP enrichment values for

the simulated RBP IP targets (Figure 2).

Median normalization underestimates the IP enrichment values,

especially for simulated RBP IP data containing more simulated

targets. Beyond this point, median normalization is unable to

distinguish between simulated RBP IP targets and background,

resulting in normalized IP enrichment values that clearly fall short

of their true enrichment. This places a fundamental limitation on

the number of targets an RBP can have when median

normalization is used. Since normalization methods like median

normalization implicitly make assumptions about the number of

targets an RBP has, they will always be subject to this limitation.

AD normalization, however, overcomes this fundamental limita-

tion of other normalization methods because it does not assume a

preset number of RBP targets.

The AD Normalization Method Yields Putative Target Sets
With a Greater Range of Sizes and Better Concordance
with Independent Biological Evidence

In order to compare the AD normalization method with median

normalization, both methods were applied to IP data for each of

34 RBPs from a previously published RBP IP data set [4]

[GEO:GSE13135, GEO:GSE4393]. After normalization by either

the AD method or median centering, the data were analyzed using

SAM to identify the putative mRNA targets of the RBPs. The

number of targets reported for each RBP by the two methods was

correlated (Spearman correlation coefficient 0.83), but the range of
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sizes of the putative target sets identified by the AD normalization

method was substantially greater (Figure S1). This effect was far

more pronounced for RBPs with many RNA targets.

The results for the RBP PAB1 highlight this difference. PAB1 is

a highly abundant, essential protein that binds to the poly(A) tails

of mRNAs; this binding is required for the cap-mediated initiation

of translation [16]. Based on the essential role of PAB1 in

translation, its high protein abundance, and its broad binding

specificity, it has been suggested that PAB1 may bind to nearly all

polyadenylated mRNA in the cytoplasm–but previous attempts to

identify the mRNA targets of PAB1 using median normalization

and SAM were only able to identify ,1,300 mRNA targets [4]

(although the authors provided and made note of strong evidence

that PAB1 binds to nearly all mRNAs). Comparison of the PAB1

and mock IP results using median normalization produces an

improbable, paradoxical result: more genes are assigned negative

enrichment values in the PAB1 IP than the Mock IP (Figure 3).

Application of the AD normalization method to the PAB1 IP data,

however, results in a more plausible alignment of the Mock and

PAB1 IP distributions and greater apparent enrichment in the

PAB1 IPs relative to the normalized Mock (Figure 3). Use of the

AD normalization method thus enabled the identification of

,3,500 mRNA targets of PAB1 even at a stringent FDR threshold

of 1%, based on SAM (Table 1). This putative target set represents

more than 80% of the detectable mRNA transcriptome, which is

much more consistent with independent evidence that PAB1 may

bind to nearly all polyadenylated mRNA in the cytoplasm [4,16].

The effect was similar for the RBP PUB1. PUB1 is a highly

abundant protein that binds to poly AU regions found in the 39

untranslated regions of most mRNAs in yeast. Previous work has

shown that PUB1 binds to ,1,000 mRNA targets, and that it is

required for the stability of ,500 mRNAs [4,12]. Application of

the AD normalization method to the same previously published

PUB1 IP data resulted in the identification of ,1,700 targets at an

FDR threshold of 1% and ,3,000 targets at an FDR of 4%, based

on SAM. The abundance of PUB1 and the fact that it recognizes a

simple sequence motif present in most mRNAs support the results

obtained using the AD normalization method and suggest that

normalization methods previously used to analyze the PUB1 IP

data may have resulted in an underestimate of the number of

targets [4].

Despite the fact that AD normalization can result in a significant

increase in the number of targets called when applied to RBPs

known from other data to have many targets, it does not simply

result in more targets called for all RBPs. Specifically, AD and

median normalization methods identify similar numbers of targets

for RBPs with small, well-defined sets of specific targets, like PUF3

(Table 1). PUF3 is a well-studied RBP that recognizes a specific

sequence motif that is highly enriched among its ,300 targets.

The canonical PUF3 recognition sequence motif is present in

,90% of the known PUF3 targets, and its targets, identified using

either the median or AD normalization method, are strikingly

enriched for mRNAs that encode proteins localized to the

mitochondria. In fact, most of the additional PUF3 targets

identified using AD normalization contained the known sequence

motif recognized by PUF3, supporting the conclusion that these

are bona fide PUF3 targets that were missed by the statistical

analysis when median normalization was used.

To further assess the differences between AD and median

normalization based on independent evidence supporting the

targets they each identify, we compared motif enrichment for PUF

protein target sets called by SAM (at the same FDR) after either

median or AD normalization. We used the Wilcoxon test to

calculate p-values for enrichment of mRNAs containing a match

to the known sequence motif for each of the PUF proteins (Table

S1). For every one of the PUF proteins whose recognition element

sequence is known (PUF1-5), the target sets identified using AD

normalization followed by SAM were more highly enriched for the

known RBP recognition motifs than were the target sets identified

from the same data using median normalization. Thus, for RBPs

with either narrow or broad target specificity, the AD normali-

zation method yields putative target sets more concordant with

independent evidence.

The AD Normalization Method Is Less Susceptible to
False Identification of Targets

In some cases, normalization of RBP IP data with the AD

method resulted in fewer RNAs being identified as targets than

when median normalization was used (Figure S1). This led us to

investigate the number of empirically false targets identified by

both methods. To test for false targets, we randomly assigned the

data from 6 biological replicate Mock IP arrays into one of two

groups (A and B) (the Mock data was previously published here

[19] [GEO:GSE22876]). Mock IPs assigned to group A were

treated as Mock IP data in this analysis, but Mock IPs assigned to

group B were treated as RBP IP data for the purpose of this

analysis. The data were normalized using either the median or the

AD method, followed by target identification using SAM. Since

both group A and group B only contain Mock IP data, any targets

identified by either analysis are empirically false targets. When the

AD normalization method was used, no false targets were

identified, even at a false discovery rate of 20 % (based on

SAM) (Table 2). In contrast, when median normalization was

used, as many as 51 false targets were identified at a nominal false

discovery rate of 0% as scored by the SAM algorithm, and 342

false targets were identified at a 20% FDR (Table 2). These results

suggest that the AD normalization method is significantly less

susceptible to false positives than median normalization.

The AD Normalization Method is Robust to a Variety of
Input Data

We evaluated the robustness of our heuristic assumption that

there is some sufficiently large range of k for which c
(k)
IP {c

(k)
Mock can

be modeled linearly. The AD method uses this approximation as

part of the algorithm for finding a normalization constant between

IP and Mock experiments. We tested this idea by applying the AD

normalization method to RBP data from IPs of 3 RBPs, PAB1,

SCD6, and PUF3, collected using three different experimental

protocols (Figure 4). Each of the three IP data sets was generated

by different experimental procedures: the proteins were purified

on separate occasions, by different experimenters (more than 6

years apart), using different purification reagents, different types of

antibody-coupled beads, different microarray platforms, and

different strategies for amplifying and labeling the samples

[1,4,19] [GEO:GSE13135, GEO:GSE4393, GEO:GSE22876].

After RNA has been purified by an IP, it can either be amplified

using T7 RNA polymerase or processed without amplification.

Amplification introduces biases but is sometimes necessary. In the

tested dataset, the SCD6 IP sample was amplified, while the PAB1

and PUF3 samples were not. In addition, the RBPs PAB1 and

PUF3 have been studied in the literature and have widely different

numbers of targets: strong experimental evidence indicates that

PAB1 has more than 1,000 mRNA targets, while PUF3 has been

reported to have ,300 [1,4]. The large differences in the input

data are evident in Figure 4. Despite these and other differences in

the samples and procedures used to generate the data for these

analyses, for each sample there was a sufficiently large range of k
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for which c
(k)
IP {c

(k)
Mock could be modeled linearly. This suggests

that the approximations used by the method are robust to

considerable variation in the characteristics and sources of error in

the data.

Conclusions

Normalization methods for microarray data have been devel-

oped with a focus on the problem of detecting differential gene

expression [6,9,14,15]. In such studies, it may be reasonable to use

median or quantile normalization in the following cases: when the

goal is to identify the genes with the most significant change in

relative expression levels, when there is good reason to believe that

expression levels of only a small minority of genes are changing, or

when the expression levels of a known set of genes (such as

ribosomal proteins, ad hoc ‘‘housekeeping genes’’ or other highly

expressed genes) is constant across experiments. These and similar

assumptions do not apply to microarray data from IP enrichment

experiments, where enrichment of each sequence in a specific IP is

compared to the enrichment of that sequence in a Mock IP control

(modeling the artifacts of the experimental design); doing so

necessarily assumes either that the IP has a restricted number of

targets or that a particular set of genes are not targets in the IP. In

this work, we have provided evidence that median normalization is

not, in general, justified for analyzing IP data, necessarily restricts

the dynamic range for the number of identifiable targets in the

experiment, and is fundamentally limited in its capacity to identify

targets.

To our knowledge, no alternative methodology exists for

comparative IP enrichment experiments. The essential new

feature in our statistical method for determining a normalizing

constant is modeling the IP as a linear combination of the

background due to the Mock and a non-negative true signal. In

this report, we have presented one method for estimating the true

signal, but other statistical methods could be used. For example, it

would be interesting to investigate the applicability of non-negative

factorizations of the data matrix.

The AD normalization methodology yields a substantially larger

estimate than median normalization for the number of RNA

targets of RNA binding proteins that are independently known to

have many targets, such as the poly-A binding protein (PAB1),

whose biological characteristics suggest it binds to nearly all

polyadenylated mRNA in the cytoplasm. For RBPs that bind to a

small number of RNAs, such as PUFs 1–5, using the AD

normalization method identifies target sets that are comparable in

number to those identified by median normalization, but with

better enrichment of the known recognition sequence motifs in the

target sets, suggesting more accurate performance. In addition,

based on a control analysis of Mock data, AD normalization

results in far fewer false positives than were obtained with median

normalization. Overall, the adaptive (AD) normalization method

is less biased and results in better concordance with biological

evidence.

The AD normalization methodology we describe here, although

illustrated using RNA-IP data, may have much broader applica-

tions – its general utility is to data analysis challenges where the

goal is to detect and identify a specific subset of a large set of

discrete species, enriched or depleted, compared to a correspond-

ing negative control procedure, when the sample is subjected to a

selective treatment or fractionation procedure. Although the

method is not specific to immunoprecipitation as a fractionation

procedure or nucleic acids as the species fractionated, application

to IP experiments using next generation sequencing in place of

microarrays to identify differentially enriched sequences is one

obvious extension. Adapting our normalization method so that it

can be applied to sequencing data (such as from a CLIP-Seq

experiment) is straightforward. First, divide the genome or

transcriptome into bins (using the same bins for the Mock and

the IP data). Next, count the number of reads falling into each bin,

and retain those bins with counts in both the IP and Mock. If

desired, sequencing bias can be accounted for by subjecting a total

RNA reference sample to the same binning procedure, and the IP

and Mock data can be divided by the reference counts. Finally, log

transform these data and input them into the method described in

our paper. The resulting normalization constant can then be used

to normalize all of the read counts in the IP data. It is not

necessary to have a sample of total RNA as a reference, so the

adaptation to single color microarray data (such as the Affymetrix

platform) is also possible after it is log transformed. Regardless of

the platform, an accurate measure of the background (i.e. a Mock

experiment) is required.

Our normalization method can be applied to any log

transformed data analogous to an IP and a Mock. In addition,

the modeling in this paper is performed for data assumed to be

normalized by an additive constant. The conceptual framework

can be applied more generally, such as to developing models for

data where multiplicative normalization is required. Further, while

our specific focus in this work was motivated by our interest in

characterizing RNA-protein interactions, its potential applications

are wider; indeed, we believe that its potential applications are not

restricted to genomic or even biological data.

Supporting Information

Figure S1 Number of targets called by SAM after
median or AD normalization for 34 different RBPs. The

AD normalization method yields IP enrichment values and

putative target sets with greater range than median normalization.

This file contains a plot of the number of targets that are called by

SAM after median normalization on the y-axis vs. the number of

targets that are called by SAM after AD normalization on the x-

axis for each of 34 RBPs from a previously published RBP IP

dataset [4]. Each point represents an RBP. The dashed blue line is

the trend line for the data, which has a Spearman correlation

coefficient of 0.83. The dashed red line is the line y = x. When the

data is normalized by the AD normalization method, there is a

much greater range in the number of targets called by SAM (at a

SAM reported FDR of 1%). This effect is especially pronounced

for RBPs with many targets.

(PDF)

Table S1 Enrichment of known Puf sequence motifs for
target sets resulting from AD or median normalization. This

file contains a table of PUF Motif Enrichment For PUF Target Sets

Resulting From AD or Median Normalization. Shown in the table are

the Wilcoxon p-values for enrichment of mRNAs that contain the

recognition motif for the given RBP in target sets defined by SAM (at

the same FDR) after either median or AD normalization. The use of

AD normalization followed by SAM results in RBP target sets with

greater enrichment of known RBP recognition motifs for the PUFs

(PUF1-5), compared to median normalization.

(PDF)

File S1 An R script for performing AD normalization.
This file contains an R script encoding a function for performing

AD normalization. This file can be opened with a simple text

editor and it can be run in R, the language and environment for

statistical computing and graphics.

(R)
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