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Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic 
properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric 
magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal 
of the electric field. The introducing of the shape memory alloys may prevent such problem by taking 
the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the 
magnetoelectric coupling before heat release, which introduces more functionality to the system. In 
this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in 
different states with electric field and temperature manipulation. Such phenomenon is promising for 
tunable multiferroic devices with multi-functionalities.

Recently, multiferroic composites with combined ferroelectric (FE) and ferromagnetic (FM) phase have attracted 
a lot of interests due to strong magnetoelectric (ME) coupling at room temperature1–7. The magnetic properties of 
the ferromagnetic material can be varied in a large scale by using a non-power-consuming electric field (E-field) 
through ME effect. Such phenomena is of importance to traditional magnetic tunable devices, as the new concept 
may somehow lead to the disposal of bulky electromagnets or a magnetic coil pair in those devices, and thus 
result in a smaller form-factor and power efficient device profile. The ME effect has been widely employed to 
device applications, and many device prototypes are reported, such as RF/microwave components8–15, sensors16,17, 
magnetoelectric random access memories (MERAMs)18–23, etc. For tunable RF/microwave applications, large fre-
quency domain tunability is preferred. Therefore, researches are mainly focused on developing heterostructures 
with large ME coupling coefficients. Although ferrite/ferroelectric bilayer composites exhibits very low loss, the 
ME coupling coefficients are mostly limited to several Oe∙cm∙kV−1 due to the small magnetostriction value of the 
oxides24. For instance, the tunability of the corresponded devices are up to 200 MHz (10%) for filters25, and 180° 
for phase shifters26. To overcome such issue, metal/ferroelectric heterostructures are developed and reported 
with large ME coupling coefficients27–46, which has potential for RF/microwave applications. Among those het-
erostructures, low-loss Iron Gallium Boron (FeGaB)/lead zinc niobate–lead titanate (PZN-PT) bilayer composite 
has a maximum ME coupling coefficient up to 94 Oe∙cm∙kV−127. The ferromagnetic resonant (FMR) spectra of 
the bilayer may shift from 1.75 GHz to 7.57 GHz under an E-field from 0 to 6 kV/cm. Device prototypes based on 
FeGaB are reported in our previous work, however, there is no ferroelectric phase involved in the experiment47. 
Another problem in such heterostructure based devices is that when the E-field disappears with the removal of 
the applied voltage, the ME induced anisotropy does not sustain, and the device’s output, for instance the fre-
quency or the phase shift, goes back to the initial state. Therefore, a certain voltage must be maintained in order to 
keep the device operating in the expected state, resulting unwanted energy consumption.
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Shape memory alloys (SMAs) such as Nickel Titanium (NiTi) may provide a solution in maintaining the 
device’s functionality after the removal of the voltage48–57. NiTi shape memory materials exhibit various appli-
cations, such as manipulation micro-robotics58,59. These alloys have displacive crystalline phase transformation 
dominated by shear between a low symmetry product phase and a high symmetry parent phase. Large strains 
mechanically created in the low temperature can be recovered by one way memory effect through reorienta-
tion. This can be finished by heat treatment60,61. Like most SMAs, different mechanical behavior depending on 
whether they were tested in austenitic or the martensitic phases is shown in NiTi alloys. NiTi has three different 
stress/stain curves. An initial low plateau results from the stress induced growth of one martensite orientation. 
With temperature goes higher, NiTi alloys become the second state, the stress in this region is linear. By chang-
ing the temperature (such as applying laser impulses), the strain state of NiTi can be switched back and forth 
with non-volatility. This unique mechanism raise up a question: can different strain state affect the strain/stress 
induced ME coupling? Moreover, can ME coupling effect be stored at certain condition and released at another 
appropriate condition with manipulating strain of SMAs through temperature? The answer is, excitedly, yes.

In this work, we report a FeGaB/NiTi/PMN-PT multiferroic heterostructure with a memorable E-field tuning 
of magnetic anisotropy. The X-band FMR field up-shifted from 1158 Oe to 1392 Oe with the E-field changing 
from 0 to 8 kV/cm, and down shifted to 1318 Oe after the E-field is set to zero. This phenomenon implies the ME 
coupling strength is “locked” by NiTi alloy. Without NiTi, the ME coupling induced FMR field shift is shifted 
within a magnitude range of ~230 Oe, upto FMR field of 980 Oe; in contrast, with NiTi shape memory alloy, the 
ME coupling induced FMR shift has a magnitude of ~160 Oe. We define this phenomenon as “memory effect” 
of NiTi that memorize the ME coupling tunability of multiferroic heterostructure. As the multiferroic structure 
is heated to 200 °C, the NiTi strain/stress is released and FMR field goes back to ~1160 Oe. By introducing shape 
memory alloy NiTi, a novel functionality is discovered in multiferroic heterostructure and devices. For instance, 
the tunability of ME devices that can be switched back and forth at different temperature state corresponding 
to different NiTi strain state. In FeGaB/NiTi/PMN-PT multiferroic heterostructure, the strain of NiTi can be 
released at high temperature environment or by applying a temperature (laser impulse), therefore, the “locked” 
small ME tunability was unlocked to large ME tunability state. Intelligential ME devices like ME-memories and 
tunable RF/microwave components can be designed, for example, the ME tunable communication devices in 
satellites/spaceships can be switched with “on” and “off ” state at different locations like perihelion or aphelion in 
the orbit. The ME devices can be deactivated at low temperature (room temperature) and activated through laser 
impulses or at high temperature environment. Our work reveals a phenomenon of memory effect of SMAs based 
multiferroic heterostructure that may open a bright future for advanced ME devices with creative functionality.

Results
The polarization-electric (P-E) and strain vs. E-field curve of the PMNPT ferroelectric substrate is measured, as 
shown in Fig. 1. A varied voltage from − 400 V to 400 V is applied along the thickness direction of the PMN-PT 
single crystal slab, which corresponds to an E-field from − 8 to 8 kV/cm. The P-E loop shows a remnant polariza-
tion of ~40 μ C/cm2 and a coercive E-field (Ec) of 2.5 kV/cm. The butterfly-like in-plane stain curve is also meas-
ured showing a complete ferroelectric domain switching process.

The E-field dependent FMR spectra of the FeGaB/NiTi/PMN-PT heterostructure along easy axis under varied 
E-field are carried out with our ESR system, as shown in Fig. 2(a). The resonance occurs at 1158 Oe when there is 
no E-field applied across the sample. The FMR linewidth is approximately 30 Oe, which is wider than previously 
reported 16 Oe62. This may due to the increasing surface roughness, compared to Si surface, induced by the thick 
NiTi layer that is sandwiched between the PMN-PT single crystal and the FeGaB layer. When an E-field of 8 kV/
cm is applied, strong ME interaction is observed in the FeGaB/NiTi/PMN-PT heterostructure, and the FMR 
up-shifted by 234 Oe to 1392 Oe. According to the Kittel’s equation63, the in-plane FMR can be expressed as:

γ π= ( + )( + + ) ( )f H H H H M4 1eff eff s

Figure 1.  P-E loop and strain loop of PMNPT in this experiment. 
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where γ is the gyromagnetic ratio (~2.8 MHz/Oe), H is the external magnetic field, and πM4 s is the magnetiza-
tion of FeGaB being 1.2 Tesla in this experiment. The E-field-induced uniaxial magnetic anisotropic field Heff  is

λσ= / ( )H M3 2eff E s

where 𝜆  and MS is the saturation magnetostriction and magnetization of FeGaB, and σE is E-field-induced biaxial 
stress. Moreover, the FMR sets at 1318 Oe after the electric bias is removed instead of at the original state 1158 Oe. 
This implies a partial non-volatile E-field control of FMR was obtained by introducing NiTi SMAs into multifer-
roic system. The reason could be that the memory effect of NiTi alloy in multiferroic heterostructure. NiTi strain 
driven by E-field did not release totally after removing E-field and it can sustain the FeGaB anisotropy without any 
external bias sources. Nevertheless, the FMR is not sustained at 1392 Oe, because the strain must be uniform at 
the NiTi and PMN-PT interface and the strain of the PMN-PT is decreased after the removal of the E-field. The 
NiTi strain is released to its original state after treated under a temperature of 200 °C. The NiTi phase transits from 
R-phase to a mixture R-phase and martensitic phase, resulting in a strain release between the two states. At this 
moment, the FMR field returns to ~1150 Oe, as shown in Fig. 2(b), the FMR field dependence of E-field. There is 
a significant difference between FeGaB/PMNPT multiferroic heterostructure with and without NiTi alloy. The 
ME coupling strength of FeGaB/NiTi/PMNPT (red) is much smaller than that of FeGaB/PMNPT (black) before 
heat treatment, see Fig. 2(b). It implies that the ME coupling is stored in the NiTi SMA and it can be released after 
heat treatment (blue arrow). This unique phenomenon will introduce novel functionality to voltage controllable 
ME devices, in which the voltage tunability can be controlled by heat or varied environments.

In order to further study the magnetic anisotropy of the FeGaB/NiTi/PMN-PT sample, In-plane FMR angular 
dependence of E-field (0 and 8 kV/cm) is measured before and after thermal treatment, respectively. The sample 
is attached to a rotatable holder, and the measurement starts from the easy axis (E. A.) direction (defined as 0° 
and 360°) with a step size of 15°. The FMR field is 1160 Oe along the E. A (0°, 180°) and 1110 Oe along the hard 
axis (H. A.) direction (90° and 270°), see Fig. 3(a,b). The FMR field difference is due to the anisotropy induced 
by the in situ magnetic bias during deposition. The ME effect are observed in both E. A. and H. A. direction with 
opposite directions, which implies a uniaxial FMR field change, as shown in Fig. 3(a,b). After setting the E-field 

Figure 2.  (a) Voltage control of FMR dependence in FeGaB/NiTi/PMNPT; (b) FMR field dependence of E-field 
before and after heat treatment.

Figure 3.  In-plane FMR angular dependence of E-field tuned FeGaB/NiTi/PMNPT (a) Cartesian coordinate 
(b) Polar coordinate.
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back to 0 kV/cm, the magnetic anisotropy reflected by the FMR field measurement is reduced, however, not fully 
recovered. By studying the magnetic anisotropy change, the memory effect of voltage tuning FMR field and par-
tially non-volatile control of FMR field was obtained and confirmed in angular dependence study of FMR field 
shifts. It is worth to mention that out-of-plane FMR spectra is also very important that providing magnetic aniso-
tropy change information. Nevertheless, we are focusing on studying memory effect in multiferroic FeGaB/NiTi/
PZNPT in this paper. The In-plane FMR measurements provide sufficient information of strain/stress induce 
magnetic anisotropy change and the influence of NiTi layer.

Figure 4(a) illustrates the FMR field manipulated by E-field and heat impulse, forming a full cycles of magnetic 
anisotropy tuning in FeGaB/NiTi/PMNPT. At the beginning, the FMR field is switched from 1158 Oe to 1392 Oe 
by applying an 8 kV/cm E-field. Then, the FMR field is tuned back from 1392 Oe to 1318 Oe. Continually, the 
heat is released and the FMR of FeGaB/NiTi/PMNPT shifts back to the original state, forming an enclosed loop. 
A robust and repeatable non-volatile switching of effective magnetic field is achieved by dual E-field and heat 
impulse controlling. In Fig. 4(a), we define Hme as memory field represents the FMR field difference between FMR 
field at 8 kV/cm and FMR field at 0 kV/cm before heat release. A significant Hme dependence of NiTi thickness was 
obtained. At small NiTi thickness of 100 nm and 500 nm, the memory effects are small with Hme< 50 Oe; while 
the Hme is increasing up to 160 Oe at NiTi thickness of 1 μ m. As NiTi thickness increases further, the Hme slightly 
decreases to ~130 Oe at NiTi thickness of 2 μ m. A possible reason could be the memory effect is saturated at 1 μ m, 
and further increasing of thickness could lead to high roughness that will degenerate the quality of films and also 
ME-memory effect. In general, it shows that with a NiTi SMA layer, extra FMR field state can be introduced into 
the multiferroic system, which opens a door for creating extra degree of freedom in multiferroic systems.

Conclusions
In summary, we fabricated and studied the ME coupling behavior of a complex multiferroic heterostructure 
with FeGaB/NiTi/PMN-PT trilayer. The heterostructure produces a strong ME coupling anisotropy change of 
over 230 Oe under an external E-field of 8 kV/cm. Most importantly, by taking the advantage of the SMA NiTi, 
the heterostructure may store the ME coupling strength at room temperature and release it at a temperature of 
200 °C. The voltage tunability of FeGaB magnetic anisotropy may be varied in different NiTi phase states through 
dual E-field and heat manipulation. As a result, a memorable ME coupling effect in created SMAs based multi-
ferroic heterostructure is developed. The NiTi SMA based multiferroic heterostructure enables the smart multi-
ferroic heterostructures works in varied environment, and it shows great potential in compact, fast tuning, and 
energy-efficient voltage tunable devices with multi-functionality.

Methods
Multiferroic multilayers FeGaB/NiTi/PMN-PT were prepared by co-sputtering of Fe80Ga20 and B targets onto 
(011)-poled PMN-PT substrates (dimension 0.5 cm ×  0.5 cm ×  0.5 mm) coated with a layer of NiTi. All deposi-
tions were processed under a base pressure below 1 ×  10−7 Torr at room temperature in magnetron sputtering 
system. The thickness of FeGaB and NiTi film are determined to be 50 nm and 1 um by fitting the X-ray reflectiv-
ity (XRR). Ferroelectric property of PMN-PT was measured by the radiant ferroelectric characterization system. 
The strain vs E-field curve was measured using a photonic sensor by sweeping the sinusoidal E-field. Moreover, 
the FMR spectra were measured using an X-band electron spin resonance (ESR) spectrometer in the field sweep-
ing mode with a microwave frequency of 9.5 GHz and a power of 20 dBm. Sample heat treatment was done in an 
OVEN at 200 °C.
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