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ABSTRACT: Patients with pancreatic cancer (PC) are
usually diagnosed at late stages, when the disease is nearly
incurable. Sensitive and specific markers are critical for
supporting diagnostic and therapeutic strategies. The aim of
this study was to use a metabonomics approach to identify
potential plasma biomarkers that can be further developed for
early detection of PC. In this study, plasma metabolites of
newly diagnosed PC patients (n = 100) and age- and gender-
matched controls (n = 100) from Connecticut (CT), USA,
and the same number of cases and controls from Shanghai
(SH), China, were profiled using combined gas and liquid
chromatography mass spectrometry. The metabolites consistently expressed in both CT and SH samples were used to identify
potential markers, and the diagnostic performance of the candidate markers was tested in two sample sets. A diagnostic model
was constructed using a panel of five metabolites including glutamate, choline, 1,5-anhydro-D-glucitol, betaine, and
methylguanidine, which robustly distinguished PC patients in CT from controls with high sensitivity (97.7%) and specificity
(83.1%) (area under the receiver operating characteristic curve [AUC] = 0.943, 95% confidence interval [CI] = 0.908−0.977).
This panel of metabolites was then tested with the SH data set, yielding satisfactory accuracy (AUC = 0.835; 95% CI = 0.777−
0.893), with a sensitivity of 77.4% and specificity of 75.8%. This model achieved a sensitivity of 84.8% in the PC patients at stages
0, 1, and 2 in CT and 77.4% in the PC patients at stages 1 and 2 in SH. Plasma metabolic signatures show promise as biomarkers
for early detection of PC.
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■ INTRODUCTION

Pancreatic cancer (PC) is one of the most fatal cancers, with a 5
year survival of less than 5%.1 An estimated 46 420 new cases of
PC are expected in the U.S. in 2014 as well as 39 590 deaths
from this disease.2 A major hurdle toward improving clinical
outcome of PC is the lack of diagnostic biomarkers at early
stages of the disease.3 Given the high mortality associated with
PC, novel and cost-effective biomarkers to improve treatment
and survival outcomes of PC patients are urgently needed.
To date, the only treatment that provides significant survival

benefit is surgical resection, but only 20−25% of patients are
diagnosed at early disease stages when resection is appropriate.4

The clinical symptoms of PC are usually vague and nonspecific
until progression to advanced stages has occurred. Once
diagnosed, most patients are found already to have metastases.5

Attempts to reduce PC deaths have therefore relied greatly on

early cancer detection and treatment, generally through imaging
examination, such as magnetic resonance imaging (MRI),
computed tomography, endoscopic retrograde cholangiopan-
creatography (ERCP), or endoscopic ultrasound (EU).
However, the specificity and sensitivity of these modalities
are not adequate for tumors of less than 2 cm in diameter.6,7

The traditional tumor marker CA19-9, the sensitivity of which
can reach 80% for PC, is unsuitable for early detection of PC
due to low sensitivity for patients at resectable stages8 and
especially because of its weak specificity.9 Numerous efforts
have been made in the search for PC biomarkers during recent
decades, and, as a result, tumor-specific growth factor
(TSGF),10 CA242,11 MIC-1,12 platelet factor 4,13 peanut
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agglutinin (PNA)-binding glycoprotein,14 cell adhesion mole-
cule 17.1,15 and serum immune signatures found by affinity
proteomics16 have been identified as candidate biomarkers.
Unfortunately, these biomarkers display low sensitivity for
resectable disease, and their accuracy for detecting resectable
stage cancer has not been evaluated.
Metabonomics, a new member of omics technologies that

quantitatively measures altered metabolites resulting from
pathophysiological changes, is rapidly becoming a discovery
tool for new diagnostic and prognostic biomarkers of human
diseases.17−19 We have previously shown the use of
metabonomics for diagnosis and evaluation of pathologic
conditions of various cancers.20−23 Recently, metabonomics
studies of PC have identified biomarkers in plasma or
tissue24−30 that differentiate PC from controls. However,
these studies have had relatively small sample sizes and a
small number of early stage or resectable cancers.
In this study, we used a combination of liquid chromatog-

raphy−time-of-flight mass spectrometry (LC−TOFMS) and
gas chromatography−time-of-flight mass spectrometry (GC−
TOFMS) to profile plasma metabolites of PC patients and
controls from the U.S. and China. The aim of this study was to
identify plasma metabolites as potential markers for early
detection of PC and to test the diagnostic performance of these
markers.

■ MATERIALS AND METHODS

Study Populations

Blood samples used in this study were from 100 PC patients
and 100 age- and gender-matched population controls in
Connecticut (CT), USA, and from 100 PC patients and 100
similarly matched population controls from Shanghai (SH),
China (Table 1). The PC patients were newly diagnosed with
pancreatic ductal adenocarcinoma and were not recurrent or on
any medication prior to sample collection. Patient character-
istics, staging of the disease, and other parameters are shown in
Table 1. Control samples were collected using the same
protocols. These studies were approved by the State of
Connecticut Department of Public Health as well as by the
Institutional Review Boards of 30 Connecticut hospitals (CT),
the Institutional Human Subjects Review Board of the Shanghai
Cancer Institute (SH), and the Human Investigation
Committee of Yale University (CT) and Shanghai Cancer

Institute (SH). All participants signed informed consent before
participation.

Plasma Sample Collection

Blood specimens were collected from all participants and
returned on ice to our laboratories within 2 h of collection for
blood processing. The samples were stored at −80 °C until
analysis.

Metabolic Profiling

LC−TOFMS and GC−TOFMS were used for the metabo-
nomic profiling of all samples in the study. The profiling
procedure (sample preparation, metabolite separation and
detection, metabonomic data preprocessing, metabolite anno-
tation, and statistical analysis for biomarker identification) was
performed following our previously published protocols with
minor modifications.20,21,31 Quality control (QC) samples,
which were prepared by mixing equal amounts of plasma from
all subject samples, were used to control intra- and interbatch
variability. QC samples were injected every 10 samples for each
day. Details of plasma sample preparation and LC/GC−MS
analysis are provided in the Supporting Information.

Data Analysis and Statistics

The metabonomic data obtained were normalized using
internal standard p-chlorophenylalanine and calibrated using
QC samples. All annotated metabolites from GC−TOFMS and
LC−TOFMS data sets were combined and exported to
SIMCA-P+ 12.0 software (Umetrics, Umea,̊ Sweden) for
multivariate statistical analysis.21 Orthogonal partial least
squares-discriminant analysis (OPLS-DA) were performed to
discriminate between PC patients and controls. On the basis of
a threshold of variable importance in the projection (VIP, value
>1) from the 7-fold cross-validated OPLS-DA model, a panel of
metabolites responsible for the difference in the metabolic
profiles of patients and controls was obtained. In addition to
the multivariate statistical method, Student’s t-test was also
applied to measure the significance of each metabolite. The
resultant p values for all metabolites were subsequently adjusted
to account for multiple testing by a false discovery rate (FDR)
method.32 Metabolites with both multivariate and univariate
statistical significance (VIP > 1 and p < 0.05) were considered
to be potential markers capable of differentiating PC from
controls. The corresponding fold change was calculated to
show how these selected differential metabolites varied in the

Table 1. Demographic and Clinical Characteristics of PC Patients and Controls

subjects from Connecticut (CT set) subjects from Shanghai (SH set)

cases controls p cases controls p

number 100 100 100 100
age (mean, range) 67.9 (44.2, 85.7) 67.8 (44.1, 84.3) 0.96 64.3 (40.5, 79.1) 64.4 (41.2, 79.2) 0.99
male/female ratio 49/51 49/51 50/50 50/50
BMI (kg/m2) 25.78 26.20 0.49 23.06 22.80 0.56
TNM stage
stage 0 4
stage 1 11 79
stage 2 51 21
stage 3 34
diabetes mellitus (%) 0 0 0 0
history of smoking (years) 21.27 15.52 <0.001 12.20 12.83 0.89
alcohol (g/day) 28.25 21.28 0.22 6.60 7.33 0.75
history of pancreatitis 8 3 2 1
family PC history 4 5 6 1
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cancer samples relative to the controls. Altered metabolic
pathways in PC were analyzed by means of the quantitative
enrichment analysis (QEA) algorithm represented in the
metabolite set enrichment analysis (MSEA) method.33 Visual-
ization of metabolic pathways was achieved by using Metscape
2 running on cytoscape.34,35

Receiver Operating Characteristic Curve Analysis and
Prediction Models

Receiver operating characteristic (ROC) curve analysis and
binary logistic regression were conducted using SPSS software
(IBM SPSS Statistics 19, USA) following our previously
published data analysis protocols.22 Briefly, a logistic regression
model constructed using the binary outcome of PC and control
as dependent variables was used to determine the best
combination of plasma markers for PC prediction. The forward
stepwise regression, the procedure to select the strongest
variables (metabolites) until there are no more significant
predictors in the data set, was used for potential biomarker
selection. The Wald test was used to assess significance in
logistic regression, and this test assigns a p value to each

metabolite to assess significance. ROC curves for the logistic
regression model were plotted with the fitted probabilities from
the established model as possible cut-points for the
computation of sensitivity and specificity.

■ RESULTS

Plasma Metabolite Profiling of PC Patients

Demographic, lifestyle, and clinical information of the study
subjects is listed in Table 1. Patients and controls were well-
matched for age and gender within each study site. SH subjects
were slightly younger than CT subjects. In total, 202
metabolites were identified (Supporting Information Table
S1) from the detected spectral features of samples; of these,
109 metabolites (53.7%, 70 metabolites from GC−MS and 39
from LC−MS) were validated with reference standards,
whereas the others were annotated by comparing with available
databases including the NIST library and the Human
Metabolome Database (HMDB). A one-predictive component
and two-orthogonal component OPLS-DA model (R2X =
0.170, R2Y(cum) = 0.757, Q2(cum) = 0.565) was constructed

Figure 1. Metabolic profiles depicted by OPLS-DA scores plots of LC−TOFMS and GC−TOFMS spectral data (202 metabolites) from (A) CT
plasma samples, (B) SH plasma samples, and (C) 3D OPLS-DA scores plot of plasma metabolic profiles of PC patients and controls from CT and
SH.
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with satisfactory discriminating ability using the metabonomics
data of the 202 identified plasma metabolites in CT samples
(Figure 1A). Similarly, a one-predictive component and four-
orthogonal component OPLS-DA model (R2X = 0.258,
R2Y(cum) = 0.880, Q2(cum) = 0.679) was constructed with
satisfactory discriminating ability using the metabonomics data
of the 202 identified plasma metabolites in SH samples (Figure
1B). PC patients from both CT and SH sample sets could be
separated from their control counterparts.
Using the VIP values (VIP > 1) derived from the OPLS-DA

model and the p values (p < 0.05), 65 differentially expressed
metabolites in the CT set and 62 in the SH set were obtained,
among which 31 metabolites were the same and were
significantly altered in the same direction (Table 2). PC

patients can be discriminated from control subjects with the 31
differential metabolites identified both in CT and SH samples,
as evidenced by a 3D OPLS-DA scores plot of plasma
metabolic profiles of PC patients and controls from CT and SH
shown in Figure 1C.
The 31 significantly altered plasma metabolites in both CT

and SH patients (adjusted p < 0.05, Supporting Information
Figure S1A) include amino acids, carbohydrates, lipids,
nucleosides, organic acids, aromatic heteropolycyclic com-
pounds, aliphatic acyclic compounds, and aliphatic hetero-
monocyclic compounds (Table 2 and Supporting Information
Figure S1A). Thirty six metabolic pathways were found to be
dysregulated in PC based on the analysis of the QEA algorithm

Table 2. Plasma Differential Metabolites in PC Patients Compared to Controls in the CT and SH Groups

CT set SH set

compound class VIPa FCb pc adjusted pd VIPa FCb pc adjusted pd

urea aliphatic acyclic compounds 1.8 0.73 6.31 × 10−8 6.68 × 10−7 2.03 0.75 4.51 × 10−9 5.96 × 10−8

choline aliphatic acyclic compounds 1.5 0.87 1.20 × 10−5 5.88 × 10−5 1.79 0.82 5.41 × 10−8 5.11 × 10−7

methylguanidine aliphatic acyclic compounds 1.66 1.35 1.67 × 10−5 6.91 × 10−5 1.35 1.36 1.08 × 10−4 3.97 × 10−4

creatinine aliphatic heteromonocyclic
compounds

2.07 0.73 5.36 × 10−9 1.36 × 10−7 1.37 0.8 1.23 × 10−4 4.31 × 10−4

3-amino-2-piperidone aliphatic heteromonocyclic
compounds

1.9 0.77 1.35 × 10−7 1.14 × 10−6 1.49 0.75 1.19 × 10−5 6.05 × 10−5

2-aminobutyric acid amino acids 2.13 0.72 7.98 × 10−9 1.69 × 10−7 1.04 1.21 6.52 × 10−3 1.35 × 10−2

betaine amino acids 2.36 0.79 6.90 × 10−13 2.19 × 10−11 1.54 0.88 5.66 × 10−6 3.25 × 10−5

valine amino acids 2 0.79 2.02 × 10−8 3.67 × 10−7 1.08 0.86 1.07 × 10−3 2.73 × 10−3

2,4-diaminobutyric acid amino acids 2.42 0.8 1.28 × 10−13 5.42 × 10−12 1.74 0.87 3.09 × 10−7 2.27 × 10−6

glutamine amino acids 1.31 0.84 3.21 × 10−3 6.79 × 10−3 1.57 0.73 1.16 × 10−5 6.05 × 10−5

tryptophan amino acids 1.62 0.85 1.67 × 10−5 6.91 × 10−5 1.61 0.85 5.24 × 10−6 3.15 × 10−5

proline amino acids 1 0.87 2.13 × 10−2 3.26 × 10−2 1.94 0.72 5.31 × 10−9 6.39 × 10−8

glutamate amino acids 1.52 1.66 4.91 × 10−6 2.81 × 10−5 1.9 1.63 1.65 × 10−7 1.46 × 10−6

N-acetylglutamine amino acids 1.84 2.33 7.16 × 10−7 5.35 × 10−6 1.23 1.29 9.23 × 10−4 2.40 × 10−3

indoleacetic acid aromatic heteropolycyclic
compounds

1.71 0.76 1.16 × 10−6 7.39 × 10−6 1.42 0.8 1.41 × 10−4 4.55 × 10−4

1,3,7-trimethyluric acid aromatic heteropolycyclic
compounds

1.5 0.79 2.94 × 10−5 1.13 × 10−4 1.59 0.55 7.70 × 10−6 4.25 × 10−5

uric acid aromatic heteropolycyclic
compounds

1.34 0.81 2.03 × 10−5 8.07 × 10−5 2.21 0.73 3.57 × 10−10 6.75 × 10−9

indoleacrylic acid aromatic heteropolycyclic
compounds

1.48 0.85 4.65 × 10−5 1.60 × 10−4 1.47 0.86 3.87 × 10−5 1.65 × 10−4

adenine aromatic heteropolycyclic
compounds

1.18 0.85 1.30 × 10−4 3.74 × 10−4 1.15 0.85 5.27 × 10−4 1.42 × 10−3

monoisobutyl phthalic
acid

aromatic homomonocyclic
compounds

1.62 0.39 5.08 × 10−6 2.81 × 10−5 1.49 0.64 4.08 × 10−5 1.69 × 10−4

2,5-dihydroxybenzoic
acid

aromatic homomonocyclic
compounds

1.49 0.61 1.43 × 10−4 3.94 × 10−4 2.41 0.38 5.70 × 10−12 1.89 × 10−10

2-hydroxycinnamic acid aromatic homomonocyclic
compounds

1.23 0.85 4.92 × 10−5 1.64 × 10−4 1.17 0.88 4.42 × 10−4 1.24 × 10−3

1,5-anhydro-D-glucitol carbohydrates 2.74 0.5 1.75 × 10−16 2.22 × 10−14 1.69 0.64 1.97 × 10−6 1.30 × 10−5

talopyranose carbohydrates 1.21 1.57 1.71 × 10−3 4.10 × 10−3 2.21 1.89 1.12 × 10−10 2.46 × 10−9

propionylcarnitine lipids 2.56 0.64 6.56 × 10−14 4.17 × 10−12 2.42 0.68 4.96 × 10−13 2.19 × 10−11

LysoPC(14:0) lipids 1.58 0.74 7.19 × 10−6 3.81 × 10−5 2.3 0.57 2.00 × 10−11 5.30 × 10−10

galactitol lipids 1.26 0.85 4.26 × 10−5 1.56 × 10−4 1.19 0.86 2.21 × 10−4 6.64 × 10−4

glycocholic acid lipids 1.16 3.65 2.14 × 10−3 4.87 × 10−3 1.12 7.35 1.70 × 10−3 4.09 × 10−3

nicotinic acid
mononucleotide

nucleosides 1.85 0.76 4.35 × 10−8 5.52 × 10−7 1.88 0.62 2.11 × 10−7 1.64 × 10−6

2-oxoglutaric acid organic acids 1.58 1.89 1.57 × 10−5 6.91 × 10−5 1.42 2.05 8.94 × 10−5 3.38 × 10−4

2-methyl-3-oxopropanoic
acid

organic acids 1.85 1.84 1.35 × 10−7 1.14 × 10−6 1.59 1.77 1.44 × 10−5 6.81 × 10−5

aVariable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0. bFold change (FC) was obtained by comparing
those metabolites in the PC group to the control group; FC with a value >1 indicates a relatively higher concentration present in the PC group,
whereas a value <1 indicates a relatively lower concentration compared to the control group. cp values from Student’s t-test. dAdjusted for multiple
comparison based on FDR.32
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of the MSEA method (Bonferroni-corrected p < 0.05,
Supporting Information Figure S1B).33

Logistic Regression and Receiver Operating Characteristic
Curve Analysis

To evaluate the potential utility of plasma metabolites for the
discrimination between PC patients and control subjects, we
developed a logistic regression model based on the 31 validated
biomarkers from the CT set. Through a forward stepwise
analysis, we identified glutamate, choline, 1,5-anhydro-D-
glucitol, betaine, and methylguanidine as being the best
predictors of disease status in the regression model (Table

3). Using these metabolites, we established a regression model
as follows:

= − −

+ + ‐ ‐ ‐

+ −

+ − − +

+ ‐ ‐ ‐ +

−

probability exp{ 9.168 2.365(glutamate)

4.687(choline) 4.348(1,5 anhydro D glucitol)

4.387(betaine) 0.414(methylguanidine)}/1

exp{ 9.168 2.365(glutamate) 4.687(choline)

4.348(1,5 anhydro D glucitol) 4.387(betanine)

0.414(methylguanidine)}

Next, we generated ROC curves to assess the potential
usefulness of plasma metabolite signatures as noninvasive
biomarkers for the diagnosis of PC. Our ROC analyses revealed
that plasma metabolite biomarkers were robust in discriminat-
ing patients with PC from controls in CT, with an area under
the curve (AUC) value of 0.943 (95% CI = 0.908−0.977)
(Figure 2A). Using a cutoff value of 0.3598, the sensitivity,
specificity, and positive and negative predictive values are given
in Table 4.
Third, the parameters obtained from the CT set were used to

predict the probability of PC diagnosis in the SH set. Similarly,
the ROC curve was constructed with the predicted probability
for the SH set and is shown in Figure 2B. The AUC of the

Table 3. Logistic Regression Analysis of PC-Associated
Plasma Metabolite Signatures in CT

coefficient SE p valuea

glutamate −2.365 0.790 2.75 × 10−3

choline 4.687 1.314 3.60 × 10−4

1,5-anhydro-D-glucitol 4.348 0.834 1.84 × 10−7

betaine 4.837 1.568 2.03 × 10−3

methylguanidine −0.414 0.121 6.10 × 10−4

constant −9.168 2.113 1.43 × 10−5

ap values were calculated using the Wald test.

Figure 2. (A) ROC curve analysis for the predictive power of combined plasma biomarkers for distinguishing PC from controls in the CT set. The
final logistic model included five plasma biomarkers: glutamate, choline, 1,5-anhydro-D-glucitol, betaine, and methylguanidine. (B) ROC curve
analysis for the predictive power of combined plasma biomarkers for distinguishing PC from control in the SH set. At the cutoff value determined in
the CT set, plasma metabolite biomarkers yielded an AUC value of 0.835 (95% CI, 0.777−0.893) with 77.4% sensitivity and 75.8% in discriminating
PC from controls. (C) Plots of the diagnostic values of the constructed diagnostic model and tumor marker levels in 100 PC patients and 100
controls in the CT set and 100 PC patients and 100 controls in the SH set, according to disease stage.
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model was 0.835. At the same cutoff value of 0.3598, its
sensitivity and specificity values were still substantial (Table 4).
The predictive values obtained from this classification method
in the CT and SH samples are also shown in scatter plots in
Figure 2C.
To investigate whether the PC-associated plasma metabolite

signatures can differentiate between patients and controls
independently of possible confounding risk factors, logistic
regression analysis was performed in combined CT and SH
data sets. The PC-associated plasma metabolite signatures
remained significant (p < 0.001) after adjustment for BMI and
use of tobacco and alcohol (Supporting Information Table S2).

■ DISCUSSION
Altered metabolism is considered to be one of the hallmarks of
cancer.36 Genetic alterations enable cancer cells to reprogram
metabolism to meet increased energy demands for cell
proliferation and to survive in hypoxic and nutrient-deprived
tumor microenvironments.37 In this regard, a better under-
standing of metabolic dysregulation in PC is important and
necessary. The new understanding may also lead to the
discovery of novel biomarkers. Metabonomics allows for global
assessment of the cellular metabolic state within the context of
the immediate environment, taking into account genetic
regulation, altered kinetic activity of enzymes, and changes in
inflammatory and stress levels.38 In this study, we used
combined LC−TOFMS and GC−TOFMS to profile plasma
metabolites.20,21 The combination of different analytical
platforms takes advantage of complementary analytical out-
comes and, therefore, provides an unrivaled number of
identified metabolites for explaining biological variations
associated with pathophysiological conditions39 and obtains
cross-validated results as well. We also included two groups of
subjects with different ethnic backgrounds, from USA and
China, to identify and validate the metabolite biomarkers.
Although there are ethnic differences in metabonomic profiles
between CT and SH subjects (Figure 1C), PC patients can still
be readily discriminated from the controls.
The OPLS-DA models derived from the current metabo-

nomic analysis were able to differentiate between PC and
controls in both the CT and SH cohorts, highlighting the
diagnostic potential of this noninvasive analytical approach.
Our results also demonstrated the potential role of metabolite
biomarkers in the early detection of PC, which is supported by
the markedly high AUC values of 0.943 and 0.835 from
comparisons between PC patients and controls (sensitivity =
97.7 and 77.4%; specificity = 83.1 and 75.8%) in the CT and

SH cohorts, respectively. Even more important for potential
early diagnosis of PC, our metabonomics-based diagnostic
model was sensitive at detecting early stage PC in the models
that were adjusted for BMI and history of smoking and
drinking.40

The pathogenesis of pancreatic disease can cause significant
decreases in plasma levels of amino acids, fatty acids, aliphatic
acyclic compounds, and aromatic heteropolycyclic compounds
(valine, glutamine, proline, tryptophan, monoisobutyl phthalic
acid, propionylcarnitine, urea, and uric acid) and increases in
glutamic acid and glycocholic acid, which have been
demonstrated by other research groups that have found
alterations in plasma/serum metabolites similar to ours.24,30,41

It is well-known that uptake and catabolism of amino acids and
fatty acids are enhanced to support rapid cell proliferation in
cancer tissues42 and that these changes may be explained as a
result of the enhanced usage in tumors (Supporting
Information Figures S2 and S3). Metabolic pathway analysis
also suggests that glycine/serine/threonine/methionine metab-
olism (Supporting Information Figure S2), glutamate pathway
(Supporting Information Figure S3), tyrosine metabolism
(Supporting Information Figure S4), TCA cycle (Supporting
Information Figure S5), choline metabolism (Supporting
Information Figures S2 and S6), and bile acid metabolism
(Supporting Information Figure S7) are markedly altered.
PC may result from a mutation in either the exocrine or

endocrine function of the pancreas.43 Therefore, there is a
possibility that the decreases in their plasma metabolite levels
also reflect malnutrition. Consistent with results found by
Kobayashi and colleagues,30 we observed that plasma levels of
1,5-anhydro-D-glucitol were significantly reduced in PC patients
compared to controls (Table 2). 1,5-Anhydro-D-glucitol is
reported to be a biomarker of short-term glycemic control,42

and decreased plasma levels of 1,5-anhydro-D-glucitol suggest
the presence of hyperglycemia and glycosuria. These results
indicate some impairment of glucose tolerance in these patients
because of pancreatic insufficiency. Glutamate is one of the
main components in tumor growth and progression. Glutamate
has been implicated in tumorigenesis through activation of
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors (AMPAR), and glutamate concentration
plays a key role in PC cell invasion and migration.44 Our
observation of a significantly elevated plasma level of glutamate
is in accordance with serum analyses of PC by Bathe et al.26

(Supporting Information Figure S3). Choline-containing
metabolites have already been chosen as biomarkers in various
carcinoma studies45 and have been reported to be decreased in
PC.25 Choline deficiency can also produce severe acute
pancreatitis in animal models.46 In our results, reduced betaine
enhanced the discrimination of PC from controls. Betaine
donates methyl groups for remethylation of homocysteine to
methionine and dimethylglycine, which support proper liver
and pancreatic function, cellular replication, and detoxification
reactions. Because choline is a precursor of betaine, the
depletion of both betaine and choline in PC may be interrelated
(Supporting Information Figures S2 and S6). It has been
reported that urinary levels of methylguanidine are significantly
increased in chronic pancreatitis patients,47 yet this metabolite
has not been studied in PC to date.
Glycocholic acid was not selected in the panel of markers

(glutamate, choline, 1,5-anhydro-D-glucitol, betaine, and
methylguanidine) for the prediction of PC using the forward
stepwise regression method. Because its level is remarkably

Table 4. Diagnostic Performance of the Constructed Model
and Tumor Markers

diagnostic model

CT set AUC (95% confidence interval) 0.943 (0.908−0.977)
cutoff value 0.3598
sensitivity 97.7%
specificity 83.1%
positive predictive value 84.3%
negative predictive value 87.2%
sensitivity in PC of stages 0−2 84.8%

SH set AUC (95% confidence interval) 0.835 (0.777−0.893)
sensitivity 77.4%
specificity 75.8%
sensitivity in PC of stages 1−2 77.4%
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increased in PC patients (3.65-fold increase in the CT set and
7.35-fold increase in the SH set), we added glycocholic acid
manually into the logistic regression model, and as a result,
there is no statistical significance for glycocholic acid in the
model (p = 0.229) (Supporting Information Table S3).
Although our current assay may stimulate the development

of tools for early diagnosis of PC, there are a number of
limitations to consider. First, the identified markers used to
build the logistic regression model were selected from both the
CT and SH data sets. Therefore, the marker panel needs to be
further validated with a new independent sample set. Second,
chronic pancreatitis is one major risk factor for PC. We did not
have access to subjects with chronic pancreatitis and thus our
marker panel needs to be examined in such patients to see how
much they differ from PC patients. Third, recent metabolomics
studies of PC have provided metabolite biomarkers24−30 that
can differentiate PC patients from controls. However, whether
the identified metabolite biomarkers are specific to PC, rather
than involving other malignancies or inflammatory disease in
general, is not clear. Future metabonomics studies need to
evaluate the specificity of metabolite biomarkers for PC versus
other malignancies. Fourth, we observed the impact of only two
ethnic backgrounds on the performance of diagnostic markers.
A new sample set with more diverse ethnic backgrounds would
be useful to increase generalizability. In addition, the sensitivity
and specificity of this metabolite panel needs to be compared
with the performance of existing markers, such as CA19-9, in
future studies.

■ CONCLUSIONS
In summary, we identified a panel of five plasma metabolite
markers of PC and developed a diagnostic model using logistic
regression analysis of the biomarker panel. Our model achieved
reasonably high accuracy. Additional studies are still necessary
for further evaluation and validation of the biomarkers
identified in the current study. However, this novel approach
holds potential to improve patient prognosis by early detection
of PC, when it may still be at a resectable stage.
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