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Abstract

Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an
alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300
based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects
of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been
addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column
(RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli.
Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced
when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant
reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new
approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI
setup.
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Introduction

Brain-computer interface (BCI) systems provide a direct

electronic interface to translate messages and commands from

the brain of the user to external devices without muscular control.

To date, a major part of BCI research is focused on the restoration

of communication [1–3]. Therefore, BCI’s have been particularly

utilized for patients whose motor and communicative abilities have

been impaired by severe neuromuscular diseases such as

amyotrophic lateral sclerosis (ALS). Those affected suffer from a

gradual loss of voluntary muscular control due to motor neuron

degeneration [4–6].

The P300 is the ERP component with the strongest deflection

and has been widely investigated over the past few years. P300-

based BCIs constitute arguably the largest category of BCI

research. The first P300-based matrix speller (aka P300 Speller)

was introduced by Farwell and Donchin [7]. Since its introduction

it has been studied extensively by many research groups. In this

conventional paradigm, a letter-matrix consisting of the alphabet

and digits, arranged in a 6|6 grid, is displayed on a computer

screen and presented to the subject. While the subject attends to

the specific letter they wish to spell, the rows and columns are

flashed consecutively in a random order (the so-called classical

Row-Column (RC) paradigm). When a row or column is flashed,

that contains the attended letter, an elevated P300 can be detected

in the subjects’ EEG.

Since the publication of this paper in 1988 many extensions to

the original RC paradigm have been proposed in order to improve

its performance in terms of speed and accuracy (see [8] for a recent

review). Some of the various configurations include: (1) electrode

montages [9], (2) stimulus (or matrix) property alteration (i.e. color,

size, rate and motion) [10–16], (3) variations of inter-stimulus

intervals (ISIs) (or stimulus onset asynchrony (SOA)) and target-to-

target intervals (TTIs) [10,17–19], (4) various pattern recognition/

machine learning algorithms for feature extraction [20–22], and

classification [9,23–25].

Furthermore, other groups have made a constant effort on the

redesign of novel visual stimulus representation patterns for

improving the P300 speller. Guger et al. [26] propose a single

character (SC) speller, where characters are flashed individually in

a randomized order. They compare the SC speller with the

classical RC speller for 38 subjects and demonstrate that although

the SC paradigm produces larger P300 responses than the RC

paradigm, the RC paradigm still retains a higher performance

than their novel SC paradigm. They attribute their findings to the

increased fatigue as a result of the longer sequence of character

selection. Two other research groups (Fazel-Rezai and Abhari [27]

and Treder et al. [28]) propose a P300 speller, where the desired

letter is chosen, based on a two-step process. Letters are grouped

and randomly flashed, as opposed to the row and column

intensification. The subject needs to identify and select the group

containing the desired letter in the first step. During the second

step the desired character is selected within that group. Treder et
al. [29] further extends this two-step process by 3 alternatives (they

are termed, "Hex-o-spell", "Cake-", and "Center- speller") using

covert spatial attention and non-spatial feature attention modal-

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e111157

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0111157&domain=pdf


ities. Recently a series of papers has also considered online

adaptation and unsupervised learning for BCI ERP spellers (see

[30–32]).

Townsend et al. [33], (see also [34]) investigated a checkerboard

paradigm (CBP) to overcome the following two issues: 1)

adjacency-distraction errors which can occur when neighboring

items flash with respect to target items and 2) double-flash errors,

which occur when the same character flashes sequentially. The

original CBP presents stimuli in an 8|9 matrix and then separates

the letters into 2 groups (a white and a black group each in a 6|6

matrix). By disassociating the rows and columns, the CBP can

overcome ’repetition blindness’ [35] by introducing the constraint

that a minimum of six intervening flashes (of non-targets) should

be between targets and the ’flanker effect’ [36] by only

simultaneously flashing letters which are not in the same row or

column.

Finally, Jin et al. [37,38] designed a novel stimulus presentation

pattern that requires fewer flashes than RC and SC paradigms.

They test a number of different flash patterns as well as adaptively

detecting the necessary number of flashes to average. Their

Figure 1. The selected electrode locations of the International 10–20 system (29 EEG recording electrodes (black circles), one
ground and one reference electrode (red circles) used in this paper).
doi:10.1371/journal.pone.0111157.g001

Figure 2. Examples of the face stimuli obtained by the 3dMD face capture system with the same illumination conditions. One self-
face image and a number of non-self-face images are depicted here.
doi:10.1371/journal.pone.0111157.g002
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findings indicate that they are able to reduce the numbers of

flashes, as well as minimizing the interference from items adjacent

to targets.

In recent years, a number of groups have focused on changing

the stimuli from intensified characters to alternative stimuli such as

faces. In particular, face stimuli based approaches elicit not only

P300 responses, but also face-specific ERP components, namely

N170 and N400f. N170, a negative deflection at around 140-200

ms after the onset of the stimulus presentation, is known to show a

stronger deflection when faces are presented as compared to other

stimuli [39]. When compared with unfamiliar faces, familiar faces

elicit an enhanced negativity between 300 and 500 ms (’N400f’).

Based on the above-mentioned face-specific temporal features,

Kaufmann et al. [40] adopted famous face images and superim-

posed them with the letters of a P300 matrix speller. In their study,

the face-sensitive ERPs show an enhanced accuracy due to the

contribution of the N170 and N400f features, which are

accompanied by the recognition of familiar faces. In addition,

they could show in [41] that face stimuli can be helpful to avoid

BCI inefficiency [42] for patients with neurodegenerative diseases.

Zhang et al. [43] also utilized stimuli based on configural

processing of human faces in an oddball paradigm. Also here,

face configuration related ERP components such as N170 and

vertex positive potentials (VPP) result in higher accuracies, as

compared to the conventional P300-based BCI with stimuli of

intensification patterns. A number of previous studies have

investigated, whether face emotion has an effect on BCI

performance, however to date no performance differences have

been found for these type of stimuli [41,44].

In this paper, an offline study is performed, where two

improvements to the above mentioned issues of P300 spelling

are examined: 1) to minimize adjacency-distraction errors we

adopted a random set-based stimulus representation pattern

(RASP), similar to a previous study [33]. However, in this

previous work, two factors were manipulated: Not only did they

alter the (random) groups of letters flashed simultaneously, but also

tried to minimize the double-flash related problems by ensuring a

minimum of six intervening flashes between targets. As a result, it

was not possible to determine, which of these factors were

responsible for the increased performance and to which extent. In

this study we did not define a static TTI and this enabled us to

examine the effect of various TTIs. By isolating the two factors (i.e.

the required minimum TTI as well as the random set-based

stimulus representation pattern) it is now possible to more

accurately quantify the benefit of the two individual approaches.

2) effects of face familiarity on P300-based BCIs: The present

offline study is dedicated to further investigate the effects of face

familiarity on the performance of BCIs using stimuli of facial

images. In a previous study, we found that brain activity responses

to one’s own face are markedly unique and show stronger

responses when compared to familiar or unfamiliar non-self faces

and this phenomenon was defined as ’face-specific visual self-

representation’ in [45] for the neurophysiological basis thereof we

refer to [46]. These results were obtained in a previous person

authentication study [47]. Earlier studies have also shown that task

complexity shows a strong positive correlation with the amplitude

of the ERP responses [48], however habituation effects, which

may be caused by repeated presentation of the same stimulus,

could counteract this effect [10]. To this end we designed the

Figure 3. The different conditions of the paradigm. (a) The classical row-column (RC) paradigm, (b) The proposed random set presentation
(RASP) paradigm, (c) RASP paradigm with flashing self-face in one row of the virtual matrix, (d) RASP paradigm with flashing non-self-face in one
column of the virtual matrix. Both RASP and RASP-F stimuli were shown semi-transparently to the participants such that the characters were still
visible. However, this is not shown here for illustration purposes.
doi:10.1371/journal.pone.0111157.g003
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paradigm, such that self-faces as well as non-self faces are

presented in a randomized order.

Materials and Methods

Participants
Fifteen healthy university students who were between 26 and 32

years (mean 27.7+1.5, right-handed, all males) took part in our

experiments. All participants had normal or corrected-to-normal

vision. None of the participants had a previous history of

psychiatric, neurological, or other diseases that might otherwise

affect the experimental results. All experiments were conducted

according to the principles expressed in the Declaration of

Helsinki. This study was reviewed and approved by the

Institutional Review Board at Korea University and written

informed consent was obtained from all participants before the

experiments. Participants were seated comfortably in a chair with

armrests in a quiet room at a distance of 60+5 cm from a

standard 19 inch LCD monitor (60 Hz refresh rate, 1280|1024

screen resolution) which corresponds to an angle range from

210u*10u. During the experiment, they were asked to relax

while remaining attentive and avoiding unnecessary movement.

Equipment and data acquisition
EEG signals were recorded with a sampling rate of 500 Hz with

a BrainAmp multichannel EEG amplifier by Brain Products from

the following 29 Ag/AgCl electrodes on a cap (actiCAP, Brain

Products, Munich, Germany), according to the international 10–

20 system: F3, F4, Fz, FC1, FC2, FC5, FC6, C3, C4, Cz, T7, T8,

CP1, CP2, CP5, CP6, P3, P4, Pz, P7, P8, PO3, PO4, POz, PO7,

PO8, O1, Oz, O2 (see Figure 1). Channels were nasion-referenced

and grounded to electrode Fpz. EEG signals were then down-

sampled to 100 Hz with a 10th order digital Chebyshev filter. The

impedances of the EEG electrodes were below 10 kV. EEG data

was amplified and digitized using BrainAmp hardware (Brain

Products, Munich, Germany).

For acquiring face images a 3dMD face capture system was

used ensuring the same lighting conditions for all subjects (http://

3dmd.com) making a neutral facial expression, while facing the

camera. Face images were derived from front-view photographs

using Adobe PhotoShop software. All the face images were

processed to remove external features such as hair and then

cropped into a common oval frame which was placed on a black

uniform background. Face images were scaled to an image size of

400|500 pixels. These final face stimuli were presented as in

Figure 2 (for further details, please refer to [47]).

Experimental stimuli and paradigm
Three different spellers, all derived from the original P300

speller, were examined. Each speller allowed the user to choose

one out of 36 unique symbols, comprising the letters of the English

alphabet (A to Z), digits (1 to 9) and underbar (_). All three matrix

spellers were presented with a 6|6 matrix and highlighted

characters or faces were flashed consecutively in random order.

The three spellers were implemented with the Psychophysics

Toolbox (http://psychtoolbox.org). The Row-Column (RC) con-

dition corresponded to the traditional approach [7]. In the RC

condition each sequence necessary to select a target (i.e. letter to

spell) comprised 12 stimulus flashes of each row and each column.

In the first proposed variant, called random set-based stimulus

representation pattern (RASP), letters were randomly shuffled in a

virtual six-by-six matrix, prior to stimulus presentation and then

12 stimulus flashes were presented to the subject. As a result users

saw a unique combination of letters in each stimulus during a

Figure 4. Classification accuracy curves of each subject for three conditions (’RC’, ’RASP’, and ’RASP-F’) using one to ten sequences.
Also, on the bottom right the averaged classification accuracy and ITR on all subjects are plotted.
doi:10.1371/journal.pone.0111157.g004
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given sequence. The number of stimuli were equal for the RC and

RASP paradigms and the temporal distribution of TTIs was the

same on average. Similar to the RC condition, each letter was

flashed twice within a sequence. In other words, in a series of 12

flashes, the target letter (but also every other letter) was contained

in two of the twelve flashes.

As a second variant, also based on RASP, the characters were

overlaid with face stimuli. This variant was termed RASP-F. The

face images were semi-transparent to allow for uninterrupted

focusing on the target letter while the face stimuli were flashed.

The types of face stimuli, which were used in the experiments can

be divided into 2 categories. Self-face and non-self-face images

were used for stimulation. A self-face image consisted of the image

of the subject, while a non-self-face image consisted of a familiar

face such as his/her friends or of unfamiliar faces whom he/she

has never seen before. In the case of self-face presentation, the

same face image was presented as a stimulus but in the case of

non-self-faces different face images were presented each time in

order to counter the effect of habituation. When a row was

selected in the virtual 6 by 6 matrix, the letters contained in this

row were flashed with self-faces in the speller. Similarly, when a

column was selected, contained letters were flashed with non-self-

faces. Therefore, the ratio between self-face and non-self-face

presentation was 50:50. See Figure 3.

During the experiment, participants were instructed to sit still,

relax their muscles and try to minimize eye movements. Each

experiment consisted of 2 phases: a training phase and a test

phase. Training and test phases were recorded on two separate

days. Transfering classifiers from one session to another is known

as session-to-session transfer and known to lead to (slightly) reduced

classification rates. The presentation order of the spellers was

randomized across participants. In each session, participants were

provided with strings of letters they were supposed to spell. The

whole string was displayed at the top left of the monitor and the

next item-to-spell (the target letter) was displayed above the letter

matrix (see Figure 3). During the initial training phase, subjects

had to copy-spell one sentence ’BRAIN_COMPUTER_INTER-

FACE’. There was no feedback and EEG was recorded for offline

analysis. In the second phase subjects had to copy-spell another

sentence ’KOREA UNIVERSITY’ (without the space). The

participant’s task was to attend to (or count) the number of times

the target character flashed. Each run started with a 2 s

countdown. For all speller conditions, each set of characters

flashed for 135 ms, followed by an ISI of 50 ms. When subjects

were instructed to copy-spell, the spelling of each letter consisted of

10 sequences without a prolonged inter-sequence interval. One

sequence consists of 12 flashes. For the RC case every column and

every row was flashed once. For the RASP and RASP-F cases each

letter was flashed twice, however groups of letters were shuffled

after each flash. Note, that for all cases the target flashed twice.

Data analysis
We used the BBCI toolbox (http://bbci.de/toolbox) for our

analysis. EEG data was band-pass filtered between 0.1 and 30 Hz

with a 5th order Butterworth digital filter. In each experimental

session, the data was epoched from 2200 ms to 800 ms with

respect to stimulus onset. Epoched EEG signals were baseline-

corrected by subtracting the mean amplitudes in the 2200 to 0 ms

pre-stimulus interval from every epoch. Then, averaged features of

the ERPs were extracted from 8 selected discriminative intervals,

which were selected by a well established heuristic, which depends

on signed r-values [23]. These subject-dependent intervals were

located in the 100–600 ms poststimulus interval, thereby forming

an averaged spatiotemporal feature vector with a dimension of 232

(i.e. 29 channels |8 averaged temporal features). After that, these

features from the training phase were validated with the data from

the test phase with the help of a regularized linear discriminant

analysis (RLDA) classifier with analytic shrinkage of the covariance

matrix [23,49]. For the evaluation of the 3 matrix spellers

classification accuracies (a 0–1 loss function was used) as well as

Information Transfer Rates (ITRs) were computed. ITRs are

commonly used as an evaluation measurement for BCIs. The unit

of ITRs is given as bits per unit time [bits min21] and can be

calculated as

ITR~Mflog2 NzP log2 Pz(1{P) log2 (
1{P

N{1
)g ð1Þ

where M denotes the number of commands per minute and N
indicates the number of the possible choices in which each choice

is equally probable to be selected by the user. P is the accuracy of

the BCI (i.e. the probability that the BCI selects what the user

intends). In summary ITR corresponds to the amount of

information received by the system.

To further examine the effect of self-face stimuli on classification

performance, we separated all self-face stimuli from non-self

stimuli in the RASP-F condition, where self-faces occured in rows

and non-self faces in columns. For each session and subject we

performed 8-fold chronological cross-validation employing an

RLDA classifier. To evaluate whether classification accuracy of

self-face stimuli outperforms accuracy of non-self stimuli signifi-

cantly, we performed sign-tests. The sign-test is a non-parametric

test, which relies on only very few assumptions [50,51]. Three

statistical tests were performed on the cross-validated accuracies of

RC vs. SF, RASP vs. SF and NSF vs. SF to test the hypothesis,

whether the difference median is zero between the continuous

distributions of the two random variables. Results of this test were

then Bonferroni corrected [52].

Furthermore, a two way repeated measure ANOVA was

performed in order to study accuracy and ITR (dependent

variables) with respect to the within-subject factors type of speller
and number of sequences. Type of speller contained three levels:

Table 1. F-values and significance of the repeated measures 3|10 ANOVA.

accuracy ITR

speller F(2,28) 54.64*** 92.24***

sequences F(9,126) 270.65*** 109.02***

speller | sequences F(18,252) 14.1*** 8.04***

speller stands for type of speller (RC, RASP, RASP-F) and sequences for number of sequences (1 to 10). *** corresponds to pv0:001

doi:10.1371/journal.pone.0111157.t001
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RC, RASP and RASP-F. The number of sequences contained 10

levels (from 1 to 10).

To examine, whether ERP components were significantly

different for the three types of spellers, values were first averaged

across time in the following intervals with respect to stimulus onset:

130–200ms for N170 (channel ’PO7’), 280–370ms for P300

(channel ’Cz’) and 400–550ms for N400f (channel ‘Cz’). The

choice of intervals and electrode locations was based on previous

publications in order to increase comparability of the analysis

[29,33,43]. Then two-sample t-tests were performed with the null

hypothesis of equal means. Results were then Bonferroni corrected

(3 tests per ERP component were performed).

Results

Classification accuracy and ITR
Figure 4 depicts the classification accuracy for each subject as

well as averaged accuracies and ITRs for all subjects. The number

of sequences were varied from one to ten sequences (x-axis) for all

three different spellers. In the RASP-F condition, on average fewer

sequences (M = 1.1+0.3) were necessary for achieving an

accuracy level of §70% as compared to RC (M = 2.5+1.3)

and RASP conditions (M = 1.9+1.0). This threshold has

previously been argued to be the minimum accuracy level for

meaningful communication [53]. To ensure an accuracy level of

§90%, the number of sequences needed were M = 1.6+0.6, for

the RASP-F condition, M = 4.9+2.9 for the RC condition and

M = 3.0+1.5 for the RASP condition.

Offline selection accuracies for selecting one symbol out of 36 by

using single sequence data were 58.4%+1.6% for RC,

61.3%+1.6% for RASP and 84.0%+1.2% for RASP-F. In an

offline analysis, we investigated classification performance and

ITR as a function of the number of sequences (i.e. repetitions of

the intensification). As expected, performance increased sharply

with the number of repetitions.

Table 1 summarizes the results of the two-way repeated

measures ANOVA. The ANOVA revealed an increase of

accuracy with the number of sequences, and a difference in

accuracy for the three spellers. Interaction between type of speller

and number of sequences was significant. When we compared the

RC and RASP conditions with single sequences, a paired t-test

revealed that accuracies are not significantly different (RC v

RASP, t~1:95, p~0:07). However, when increasing the number

of sequences to 3, accuracies become significantly different (RC v

RASP, t~3:48, p~0:0037). The difference between face-related

stimuli and highlighted characters are significantly different for a

single sequence (RC v RASP-F: t~9:97, pv0:001; RASP v

RASP-F: t~8:06 mmapv0:001) as well as for 3 sequences

(RC v RASP-F: t~4:23, pv0:001; RASP v RASP-F:

t~2:72, p~0:017).

ITR among the three spellers was also significantly different.

The best performance with an ITR of 53.7+11.8 bits/min was

achieved by RASP-F as compared to the 30.3+13.3 bits/min for

RC and 32.8 + 13.8 bits/min for RASP. The difference between

face-related stimuli and highlighted characters was significantly

enhanced for single sequence data (RC v RASP-F:

t~10:60, pv0:001; RASP v RASP-F: t~8:64, pv0:001) as

well as for 3 repeated sequences (RC v RASP-F:

t~4:95, pv0:001; RASP v RASP-F: t~3:32, p~0:017).

Table 2 shows the single-trial classification accuracy [%] of the

8-fold cross-validation for each paradigm and subject. RC stands

for Row Column, RASP for random set presentation, RASP-F for

random set presentation with face stimuli, NSF stands for non-self
face stimuli, while SF stands for self-face stimuli. Average

performance of SF was significantly higher, when compared to

any of the other methods (pv0:001, Bonferroni corrected). The

stars in the table indicate the comparison of SF to NSF.

Table 2. Single-trial classification accuracy [%], based on 8-fold cross validation for each paradigm and subject.

Subject RC RASP RASP-F

NSF SF

1 93.7 88.8 86.8 90.6

2 96.1 96.6 98.0 98.6

3 90.8 89.6 91.8 94.8

4 79.1 76.5 81.6 85.2

5 89.8 89.3 88.8 91.9

6 89.2 82.8 91.7 94.3

7 88.3 86.1 81.9 89.9

8 87.4 87.3 90.1 90.4

9 90.1 82.2 91.7 97.7

10 80.1 89.0 92.8 95.2

11 89.8 93.4 96.4 97.4

12 76.0 87.1 85.8 92.6

13 85.4 87.6 95.2 95.8

14 90.8 89.9 96.9 97.9

15 79.2 79.6 91.9 93.4

Mean 87.1 87.1 90.7 93.7***

RC stands for Row Column, RASP for random set presentation, RASP-F for random set presentation with face stimuli, NSF stands for non-self face stimuli, while SF stands
for self-face stimuli. The three stars indicates the level of significant improvement (pv0:001) for NSF vs. SF., based on a sign test with the hypothesis of equal means.
doi:10.1371/journal.pone.0111157.t002
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ERP analysis
Figure 5 depicts the grand average ERP waveforms for the

target and non-target stimuli for each of the three spellers.

Figure 6 shows grand average ERPs and scalp topographies at

representative electrodes Cz and PO7.

Table 3 summarizes the differences of ERP components with

respect to stimulus patterns. The ANOVA revealed significant

N170 and N400f amplitude differences among spellers, especially

at central and parieto-occipital sites (see also center of Figure 6).

As can be seen in rows 3–4, face stimuli show significantly

enhanced N170 as well as N400f components when compares to

RC and RASP paradigms. Furthermore, and more interestingly

self-face stimuli showed stronger deflections than non-self face

stimuli for P300 and N400f components (row 5; please also

compare Figures 7 and 8).

Figure 8 shows statistical differences of brain responses due to

the various stimulus presentation patterns as well as stimuli. While

brain responses to target stimuli were similar for RC and RASP

conditions (A), face-stimuli elicited an additional N170 and a

N400f component, related to face-specific processing (B and C).

Self-face stimuli showed a greatly enhanced central and parietal

N400f component (D).

Error and variation on target-to-target interval analysis
Figure 9 illustrates the topographical distribution of errors in

relation to the target item for the RC, RASP, and RASP-F based

paradigms. All target items have been centered in this matrix for

Figure 5. Topographic plots of grand average ERP waveform derived from the target and non-target stimuli for all 15 participants
at 29 electrode channels ((a) RC, (b) RASP, (c) RASP-F). The scales of x- and y-axes for each channel are the same.
doi:10.1371/journal.pone.0111157.g005
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display purposes; the numbers in the black cells represent the

number of correct selections for each paradigm. The numbers in

other cells correspond to the locations of errors relative to the

target location. In the RC many errors occurred in the direct

neighborhood. These non-targets were flashed simultaneously with

the target item in the rows and columns. The upper matrices show

the results if only one sequence is considered, the lower matrices

consider three sequences. As can be seen, the RASP and RASP-F

based paradigms successfully reduced the number of errors,

because combinations of letters were shuffled within each

sequence.

Additionally, we assessed the performance according to the

variation of TTIs. Figure 10 depicts the performance with respect

to increasing the number of the preceding non-targets between

two targets. Value ’0’ on the x-axis indicates the ’double flashed

target’ which occured when the same character flashed sequen-

tially. We found that the accuracy for all considered spellers is

lower when target items were frequently flashed. This effect was

most prominent for less than 3 preceding non-targets. The

performance gradually increased when the temporal distance

between two target flashes was expanded. A minimum of four

TTIs is necessary to ensure optimal performance.

Figure 6. Grand average ERPs and scalp topographies for the three conditions RC, RASP, and RASP-F. Top row: ERPs for targets and
nontargets at two selected electrodes Cz and PO7. The two shaded areas in each ERP plot mark the intervals for which scalp maps are shown
underneath. Center: The first and second row of scalp plots indicate the ERP responses to the target and nontarget classes. Bottom row: Temporal
distribution based on sgn r2 at two selected electrodes Cz and PO7. The P300 component show a higher discriminability for RASP-F as compared to
the two other spellers at the central and parieto-occipital sites.
doi:10.1371/journal.pone.0111157.g006

Table 3. Examines differences of ERP components with respect to target stimuli.

N170 P300 N400f

RC - RASP - RASP-F F(2,28) 6.39** 0.32 11.04***

RC - RASP t 23.98** 0.92 1.75

RC - RASP-F t 27.31*** 0.92 25.74***

RASP - RASP-F t 24.82*** 0.46 26.29***

NSF - SF t 1.49 5.01*** 5.03***

First row: F-values and significance of the repeated measures one-way ANOVA. Next three rows: Show statistical significance (p-values) of ERP components having
different means for the three speller conditions (two-sample t-test with the hypothesis of equal means). Last row: Shows p-values of whether ERP components have
different means for the non-self face and self-face stimuli.
* - pv0:05 ** - pv0:01 *** - pv0:001

doi:10.1371/journal.pone.0111157.t003
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Concluding Discussion

Accurate target detection with shorter sequence data continues

to be a challenging problem, since the P300 is relatively weak and

usually occurs amid some ongoing background brain activities,

such as spontaneous EEG as well as other task unrelated noise

sources. For this reason the development of new paradigms with

more effective 1) visual stimulus types, and 2) stimulus presentation

patterns, which elicit stronger differential ERP responses, is

considerably important for improving the performance of such

BCI systems. In this study we firstly compared a recently proposed

presentation method termed ’RASP’ to the classic row-column

P300-based paradigm and secondly compared (non-) self-face

stimuli to the classical approach of simply flashing the characters.

As mentioned earlier, related work for random stimulus presen-

tation patterns have been proposed previously [33], however the

insight from this previous approach was limited by the fact that

two main factors were manipulated concurrently in order to avoid

adjacency-distraction errors as well as double flash errors. In this

study we are able to confirm previous findings, that a random set

presentation approach outperforms the classical row-column

paradigm [33]. By following this type of approach the adjacen-
cy-distraction problem can be diminished to some degree, since

now most of the times the neighbouring letters do not flash

simultaneously with the target letter. However, this does not

eliminate the double flash problem. This enables us to study the

effects of these two issues independently (see Figure 10). While

long TTIs will increase the time for each decision and thus limit

ITRs, long TTIs will at the same time increase classification

accuracy. A TTI below 3 will reduce accuracy decisively, while a

TTI above 4 will not increase classification accuracies enough to

justify the time delay this would cause (compare Figure 10).

While the effects of face specific self-representation on brain

activity has been researched extensively in the field of cognitive

neuroscience [45,54,55], to our knowledge these findings have not

been applied to enhance P300-based BCIs. In this study, we

Figure 7. Grand average ERPs and scalp topographies for the self-face and non-self-face stimuli of the RASP-F condition. Top row:
ERPs for targets and nontargets at two selected electrodes Cz and PO7. The three shaded areas extract 3 discriminative intervals. Scalp maps are
shown underneath using these intervals. Center: The first and second row of scalp plots indicate the ERP responses to the target and nontarget
classes. Bottom row: Temporal distribution based on sgn r2 at two selected electrodes Cz and PO7. ERPs resulting from the self-face stimulus show
stronger responses as those of the non-self face stimulus.
doi:10.1371/journal.pone.0111157.g007

ERP-Based BCI Using Random Set Presentation and Face Familiarity

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e111157



compared ERP resposes to self-face and non-self-face stimuli.

Presentation of self-face stimuli produced ERPs with larger

amplitudes (see Figures 5 and 8 as well as Table 3) which resulted

in higher discriminability and thus lead to significantly higher

classification accuracy between target and non-target characters as

compared to non-self face stimuli (see Table 2). Similar findings

have previously been obtained for a related setting where familiar

and famous faces are compared to unfamiliar faces [40,41].

To further increase the speed of character selection one has to

focus on reducing the number of stimulus sequences used for

averaging. However, usually several P300 responses must be

averaged for the response to be recognized due to the low signal-

to-noise ratio [56,57]. By reshuffling and thus creating unique

combinations of letters for each flash our findings indicate

increased performance for the same number of sequences (see

Figure 4). As can be seen from Figure 9 the performance of RASP

and RASP-F increases with the number of sequences and

significantly outperforms RC consistently. As can be seen from

Table 1 interaction of the type of speller with respect to accuracy

and ITR was significant, however only those subjects who

performed considerably well with the RC matrix also performed

well with the RASP. In those who did not, the RASP performance

seemed to be visibly below that of RASP-F. Still unclear remains

how the visual design of the BCI can be improved to meet

peculiarities of peripheral vision such as low spatial acuity and

crowding for the RASP paradigm.

Face stimuli including self- and non-self-faces yielded signifi-

cantly higher accuracies and ITRs than those of highlighted

characters for all participants. This implies that stimuli with higher

cognitive task requirements such as facial images, are more

effective than the intensified stimuli of dull characters for a P300-

based BCI system. As already discussed above, previous studies

have shown that faces boost BCI performance [40,41,43,44].

Furthermore, familiar and famous faces have been shown to

improve BCI performance even more, when compared to

unknown faces [40,41]. In this study we have analyzed these

finding further by specifically comparing self-face stimuli to non-

self-face stimuli; here non-self-face stimuli include unfamiliar as

well as familiar faces. Thus our study can ultimately not assess the

full combinatorial plentitude of stimulus types previously pro-

posed, namely, unfamiliar vs. familiar, famous vs. familiar, famous

vs. unfamiliar, self-faces vs. unfamiliar etc., rather we have chosen

a particular abstraction level, i.e. self-face vs. non-self-faces (cf. also

a previous study [54], which showed very prominent ERP

responses, specifically to self-face stimuli).

In this study, the noticeable offline performance with an

accuracy of 84.0%+1.2% and an ITR of 53.7+11.8 bits/min,

when considering single sequences, indicates that the proposed

Figure 8. All scalp maps show sign(r2) values, comparing target stimuli for the three considered paradigms (A,B,C) as well as
comparing the two types of target stimuli in RASP-F: non-self-face and self-face stimuli (D). Time courses of sign(r2) values are given
below for two EEG channels (namely ’Cz’ and ’PO7’).
doi:10.1371/journal.pone.0111157.g008
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paradigm is very promising (see Figure 4). For achieving a

performance level of §70% (described as the minimum level for

communication in the literature [53]) RASP-F can reduce the

overall time needed to spell a character by a factor of 2.3 on

average in comparison to RC and by a factor of 1.7 in comparison

to RASP.

It may be possible to further improve the performance of the

proposed BCI by adopting more advanced feature extraction

techniques, such as kernel PCA [58] and/or non-linear machine

learning techniques, such as logistic regression or support vector

machines [59–61].

Figure 9. Performance comparison across spellers as number of sequences is increased. Blue circles used one repetition and red stars
three repetitions. (a) Error distributions for the RC (left), RASP (center), and RASP-F (right). All target items have been centered in each matrix. The
number in a black centered cell corresponds the number of correct selections and numbers in other cells represents the number of error corrected
selections occurring in each cell relative to the target location for each speller. (b) Scatter plot comparing classification accuracies and significance
values of various combinations of the three conditions. Each circle represents the classification accuracy of one subject.
doi:10.1371/journal.pone.0111157.g009

ERP-Based BCI Using Random Set Presentation and Face Familiarity

PLOS ONE | www.plosone.org 11 November 2014 | Volume 9 | Issue 11 | e111157



While some individual variation is evident, the individual

participants’ averaged ERPs conform to the grand mean shown in

Figures 5 and 6, which shows that both the target and non-target

ERPs differ in several respects across spellers. N170 amplitudes

were significantly enlarged at parieto-occipital sites, when face

stimuli were compared to highlighted characters. P300 tends to be

more pronounced at the central sites for face stimuli, against those

evoked by the highlighted character (RC and RASP). Face stimuli

elicited significantly higher P300s than the highlighted character

(see Figure 5 and 6). This suggests higher level of cognitive

components in the central areas through the face perception task.

Such cognitive components associated with face perception result

in more discriminative features.

We also checked the neurophysiological phenomena associated

with face-specific visual self-representation in a human brain. Our

findings show class-discriminative ERP patterns between self-face

and non-self-face stimuli (see Figures 7 and 8). Although individual

differences of ERP patterns for the face processing exist, the

amplitudes of N400f for self-face stimuli were significantly larger

than those for non-self-face stimuli. Besides, the N170, which is

related to cognitive processing, can show large amplitudes for both

self- and non-self-face stimuli.

Summarizing, a novel BCI paradigm combining random set

presentation with self-face stimuli has been proposed and

developed. The proposed BCI can lead to higher classification

accuracy and ITRs than the conventional RC-based paradigm.

The performance of the RASP-F condition yielded a single-trial

classification accuracy of 84.0%+1.2% and an ITR of 53.7+11.8

bits/min.

We would like to finally remark that our approach as virtually

all other work on P300 spellers is gaze dependent. However, as

pointed out in their contribution [28,29,62], a clear path to gaze

independent BCI spellers can be pursued (see also a recent patient

study contributing to the debate [63]). Future work will therefore

extend the present paradigms towards gaze independency.
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