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The release of reactive oxygen species (ROS) and the generation of oxidative stress are considered critical factors for the pathogenesis
of diabetes mellitus (DM), a disorder that is growing in prevalence and results in significant economic loss. New therapeutic
directions that address the detrimental effects of oxidative stress may be especially warranted to develop effective care for the
millions of individuals that currently suffer fromDM.Themechanistic target of rapamycin (mTOR), silentmating type information
regulation 2 homolog 1 (S. cerevisiae) (SIRT1), and Wnt1 inducible signaling pathway protein 1 (WISP1) are especially justified to
be considered treatment targets for DM since these pathways can address the complex relationship between stem cells, trophic
factors, impaired glucose tolerance, programmed cell death pathways of apoptosis and autophagy, tissue remodeling, cellular energy
homeostasis, and vascular biology that greatly impact the biology and disease progression of DM.The translation and development
of these pathways into viable therapies will require detailed understanding of their proliferative nature to maximize clinical efficacy
and limit adverse effects that have the potential to lead to unintended consequences.

1. Oxidative Stress, Cellular Survival, and
Programmed Cell Death

Oxidative stress can significantly negatively impact cellular
survival and longevity and lead to programmed cell death
[1–4]. The generations of reactive oxygen species (ROS)
that result in oxidative stress include nitrogen based free
radical species such as nitric oxide and peroxynitrite as well
as superoxide free radicals, hydrogen peroxide, and singlet
oxygen [5]. ROS can result in DNA damage, mitochondrial
and other organelle injury, protein misfolding, and neuronal
synaptic dysfunction [6–10]. Protective pathways serve to
alleviate damage from ROS and involve vitamins B, C, D, and
K [11–15], coenzyme Q10 [16], glutathione peroxidase [15, 17],
and superoxide dismutase [8, 9, 18–26].

Oxidative stress can lead to the induction of programmed
cell death through apoptosis and autophagy [27–31]. Apop-
tosis has an early phase with the loss of plasma membrane
lipid phosphatidylserine (PS) asymmetry and a later phase
that leads to genomic DNA degradation [32–34]. Blockade
of the early phase with membrane PS externalization is vital
for cellular survival since membrane PS externalization can
direct inflammatory cells to engulf and remove injured cells

[35–37] that may be functional and available for repair [8].
The later phase of cell death with apoptosis leads to the
destruction of cellular DNA [1, 38–42].

Autophagy is another pathway of programmed cell death
that permits cells to recycle cytoplasmic components while
removing dysfunctional organelles for tissue remodeling [30,
34, 43–45]. Of the three categories for autophagy, microau-
tophagy employs the invagination of lysosomal membranes
for the sequestration and digestion of cytoplasmic com-
ponents [34]. In chaperone-mediated autophagy, cytosolic
chaperones transport cytoplasmic components across lysoso-
mal membranes. The most prevalent category of autophagy
is macroautophagy that consists of the sequestration of
cytoplasmic proteins and organelles into autophagosomes.
These autophagosomes then combine with lysosomes for
degradation and are subsequently recycled for future cellular
processes [27, 46–49].

2. Diabetes Mellitus and Clinical Implications

Diabetes Mellitus (DM) is affecting a greater proportion
of the world’s population each year such that the World
Health Organization predicts that DM will be the seventh
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leading cause of death by the year 2030 [50]. As of the
year 2013, almost 350 million individuals are estimated to
suffer from DM. In the United States, twenty-one million
individuals have DM [51] and an additional eight million
individuals are estimated to be presently undiagnosed with
DM [52, 53]. The costs of caring for individuals with DM are
significant.TheUnited States in the year 2012 spent $8,915 per
person for healthcare and approximately seventeen percent
of the country’s Gross Domestic Product per the Centers
for Medicare and Medicaid Services (CMS) [54]. In relation
to DM, $176 billion was spent for direct medical costs and
another $69 billion in lost finances resulted from reduced
productivity.

Early diagnosis and proper care of individuals with
DM also may be crucial for extending human longevity by
modulating epigenetic changes in age-related genes involved
with DM and other degenerative disorders [55–59]. The
presence of impaired glucose tolerance in the young raises
additional concerns for the future development of DM in
these individuals [60]. Obesity is another risk factor for
the development of DM [29, 60–63]. Obesity results in
cellular oxidative stress and insulin resistance [64, 65], altered
trophic factor release [66–69], lipid-induced impairment of
pancreatic 𝛽-cells [42], and dysfunctional protein tyrosine
phosphatase signaling [63, 70].

In insulin dependent (Type 2) DM, defective insulin
secretion can result from impaired 𝛽-cell function, oxidative
stress [29, 71], the absence of inhibitory feedback through
plasma glucagon levels, chronic exposure to free fatty acids
[72], lipotoxicity [42], and hyperglycemia [8]. Type 2 DM
is the most prevalent subtype for this disorder occurring in
ninety percent of individuals that are usually over the age of
40. A progressive deterioration of glucose tolerance occurs
with early 𝛽-cell compensation that is followed by a decrease
in pancreatic𝛽-cellmasswith insulin resistance and impaired
insulin secretion [29].

In contrast to Type 2 DM, Type 1 DM is an autoim-
mune disorder with the presence of alleles of the human
leukocyte antigen (HLA) class II genes within the major
histocompatibility complex (MHC). Type 1 DM occurs in
approximately 5–10% of patients with DM [29]. Activation of
T-cell clones that are capable of recognizing and destroying
pancreatic 𝛽-cells to result in insulin deficiency may not
always lead to programmed cell death but rather relies upon
the necrotic death of𝛽-cells [73]. Destruction of pancreatic𝛽-
cells with inflammatory infiltration of the islets of Langerhans
results in the loss of insulin production and regulation.
Almost all patients with Type 1 DM have increased titers of
autoantibodies (Type 1A DM). However, approximately 10%
of Type 1 DM individuals do not have serum autoantibodies
and are considered to have maturity-onset diabetes of the
young (MODY) that can be a result of 𝛽-cell dysfunction
with autosomal-dominant inheritance (Type 1B DM). Type 1
and Type 2 DMmay have common links since approximately
10% of individuals with Type 2 DM may have elevated
serum autoantibodies similar to Type 1 DM [74] and insulin
resistance also may be a component of Type 1 DM in some
patients [75–77].

DM essentially affects all systems of the body. In the
vascular system, high glucose leads to the loss of endothelial
cells [69, 71, 78–82], fosters endothelial cell senescence [83],
prevents angiogenesis [84], impairs mobilization of bone
marrow endothelial progenitor cells [85], injures the neu-
roglialvascular unit injury [86], and results in diffuse vascular
disease [27, 81, 83, 84, 87–89]. DM results in additional
vascular events that result in cardiac disease [46, 90–97],
atherosclerosis [2], and renal disorders [61, 98–101]. DM
leads to immune system dysfunction [12, 96, 102–105], liver
disorders [106–109], stroke [7, 14, 59, 87, 110, 111], Alzheimer’s
disease [68, 75, 112, 113], psychiatric disease [114, 115], visual
loss [86, 116–118], and peripheral nerve impairment [88].

3. Diabetes Mellitus, Oxidative Stress, and
Programmed Cell Death

Progressive disease in the body that occurs during DM is
mediated to a significant extent through the release of ROS
and oxidative stress [8, 14, 29, 119–123]. Patients with Type 2
DM have serum markers of oxidative stress with ischemia-
modified albumin [124]. Acute rises in serum glucose as well
as chronic elevations can result in the release of ROS during
DM [125]. In addition, some studies suggest that treatment
with antioxidants may limit the prevention of cardiovascular
disease during DM [14].

In cell culturemodels ofDM, elevated glucose levels result
in oxidative stress and cell injury in cardiomyocytes [93,
97, 126], endothelial cells [78–80, 85, 86, 127], and neurons
[21, 71, 116, 128, 129]. Oxidative stress also results in elevated
glutathione levels and increased lipid peroxidation in murine
animal models of Type 2 DM [92]. Advanced glycation end
products (AGEs), entities that foster complications in DM
[91], lead to the release of ROS and caspase activation [122].

At the cellular level, uncoupling proteins (UCPs), a
family of carrier proteins found in the inner membrane of
mitochondria and consist of themammalianmembers UCP1,
UCP2, UCP3, UCP4, and UCP5, can significantly influence
cell survival in DM [76, 120, 130]. UCPs uncouple oxygen
consumption through the respiratory chain from ATP syn-
thesis [48, 76, 120, 131]. Subsequently, this leads to oxidative
stress as UCPs disperse a proton electrochemical potential
gradient across the mitochondrial inner membrane resulting
in the activation of substrate oxidation and dissipation of
oxidation energy as heat instead of ATP [76, 120]. Uncoupling
of respiration by UCPs modulates ATP synthesis, fatty acid
release, and glucose oxidation. Overexpression of UCP in
skeletal muscle of mice enhances responsiveness to insulin,
improves glucose transport in skeletal muscle, and increases
resistance to obesity [132]. In addition, skeletal muscle respi-
ratory uncoupling can improve insulin sensitivity in obesity
[133]. In regards to UCP3, it can stimulate insulin uptake
[134], can facilitate fatty acid oxidation, and can limit ROS
production [135]. However, it should be recognized that not
all UCPs are beneficial. Overexpression of UCP2 in isolated
pancreatic islets leads to decreased ATP levels and reduced
glucose-stimulated insulin secretion. Loss of UCP2 improves
insulin secretion and decreases hyperglycemia in leptin-
deficient mice [136].
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Closely tied to the role of UCPs is the impairment of
mitochondrial dysfunction that can occur during oxidative
stress [2, 5, 6, 137, 138]. Skeletal muscle mitochondria in
patients with Type 2 DM have been reported to be smaller
than those in control subjects [139]. Decreased mitochon-
drial proteins and mitochondrial DNA in adipocytes also
have been associated with the development of Type 2 DM
[140]. Exposure of glucolipotoxicity to pancreatic 𝛽-cells
promotes oxidative stress and mitochondrial dysfunction
with cytochrome c release, caspase activation, and apoptosis
[141]. Mitochondrial dysfunction leads to the opening of
the mitochondrial membrane permeability transition pore,
release of cytochrome c, and subsequent caspase activation
[27, 78, 80, 82, 127, 141, 142].

The pathways of programmed cell death that involve
apoptosis [14, 82, 88, 143, 144] and autophagy [8, 34, 61,
145] also regulate cell survival during DM and oxidative
stress. For example, “highly oxidized glycated” low density
lipoproteins that are formed during DM result in oxidative
stress in human retinal capillary pericytes with subsequent
induction of apoptosis and autophagy [116]. Current studies
also suggest that the programmed cell death pathway of
necroptosis may not significantly contribute to cell injury
during DM, but future work may change this perspective
[146]. In murine models of Type 1 DM, necroptosis may have
less than an essential role in cell survival during DM [73]. In
relation to apoptosis, apoptotic cell death during DM occurs
in pancreatic 𝛽-cells [147–149], cardiomyocytes [46, 93, 96],
endothelial cells [79, 83, 84, 127, 150], renal cells [151–153], and
neurons [21, 114, 128, 154].

Autophagy may be cytoprotective as well as detrimen-
tal to cell survival during DM. During elevated glucose,
autophagy can impair endothelial progenitor cells, lead to
mitochondrial oxidative and endoplasmic reticulum stress
[155], and prevent the formation of new blood vessels [27].
Increased activity of autophagy has been associated with loss
of cardiac and liver tissue in diabetic rats during attempts
to achieve glycemic control through diet modification [156].
AGEs also have been shown to lead to the induction of
autophagy and vascular smoothmuscle proliferation that can
cause atherosclerosis [89] as well as cardiomyopathy [126].
Yet, under some conditions, autophagy may be less of a
significant mediator of cell injury [157] and it may actually be
beneficial. Autophagymay be required to eliminatemisfolded
proteins and nonfunctioning mitochondria to avert 𝛽-cell
dysfunction and the onset of DM [141]. Loss of autophagy
with haploinsufficiency of an essential Atg7 gene in murine
models of obesity can lead to increased insulin resistancewith
elevated lipids and inflammation [47]. Autophagy also may
improve insulin sensitivity during high fat diets in mice [65]
and autophagy has been associated with exercise in mice that
regulates glucose homeostasis [158]. Pathways of autophagy
and apoptosis also can work in unison to modulate cell
survival. Induction of autophagymay protect cardiomyocytes
from apoptotic cell death during DM [46].

4. Mechanistic Target of Rapamycin

The mechanistic target of rapamycin (mTOR), also termed
the mammalian target of rapamycin and FK506-binding

protein 12-rapamycin complex-associated protein 1, is a
principal pathway in DM that can significantly affect apop-
tosis and autophagy [2, 91, 159, 160] (Figure 1). mTOR is
a 289-kDa serine/threonine protein kinase. It is encoded
by a single gene FRAP1 [161–163] and is a component of
the protein complexes mTOR Complex 1 (mTORC1) and
mTOR Complex 2 (mTORC2) [164, 165]. mTORC1 con-
sists of Raptor (Regulatory-Associated Protein of mTOR),
the proline rich Akt substrate 40 kDa (PRAS40), Deptor
(DEP domain-containing mTOR interacting protein), and
mammalian lethal with Sec13 protein 8 (mLST8). mTORC2
consists of Rictor (Rapamycin-Insensitive Companion of
mTOR), Deptor, mLST8, the mammalian stress-activated
protein kinase interacting protein (mSIN1), and the protein
observed with Rictor-1 (Protor-1) [165, 166].

mTOR is a vital component of cytokine and growth
factor signaling such as erythropoietin (EPO) [66, 167–171]
(Table 1). EPO uses mTOR for cytoprotection [61, 91, 100,
165, 172]. Through mTOR, EPO protects vascular cells [67,
173], prevents cell injury during 𝛽-amyloid (A𝛽) exposure
[170], modulates bone homeostasis [167], promotes retinal
progenitor cell survival during oxidant stress [169] and blocks
retinal degeneration in models of polycystic kidney disease
[86], promotes the neuronal phenotype of adult neuronal
precursor cells [168], improves cognitive function in sepsis-
associated encephalopathy [171], and limits cell injury during
oxygen-glucose deprivation [174, 175]. In regards to cellu-
lar metabolism, EPO promotes wound healing during DM
[102], maintains cellular mitochondrial function and energy
metabolism [82], reduces the detrimental effects of obesity
in animal models [69], limits high glucose-induced oxidative
stress in renal tubular cells [151], and protects endothelial cells
during experimental models of DM [78, 79].

Cytokines and growth factors are not the only agents that
rely upon the regulation of mTOR in DM to impact cellular
survival. Metformin, an agent that controls hyperglycemia
in DM, inhibits mTOR activity and promotes autophagy.
Metformin oversees mTOR activity through AMP activated
protein kinase (AMPK). AMPK controls the activity of the
hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis
2) (TSC1/TSC2) complex that is an inhibitor of mTORC1
[176]. AMPK phosphorylates TSC2 as well as Raptor to
block the activity of mTOR and the complex mTORC1
during energy stress [177]. By activating AMPK to inhibit
mTOR, metformin prevents cell loss during hypoxia [178],
reduces cardiomyopathy in experimental models of DM
[179], increases cardiomyocyte cell survival [46], and protects
cortical brain tissue during cerebral ischemia [110]. Through
mTOR inhibition, metformin prevents endothelial cell senes-
cence [83], blocks neuronal apoptotic cell death [180], and
prevents androgen upregulation during prostate cancer [181].
AMPK activity can be protective against hypoxia [178],
promote autophagy to reducememory impairment [182], and
reduce oxidative stress that can lead to vascular hypertension
[183]. Yet, AMPK activity is not consistently beneficial and
can cause aberrant A𝛽 stress [184] and A𝛽 toxicity [185],
cardiac tissue hypertrophy [186], and neuroinflammation
[187].
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Figure 1: Oxidative stress in Diabetes Mellitus impacts pathways of stem cell proliferation, programmed cell death, and cellular energy
homeostasis. Diabetes Mellitus (DM) leads to the development of oxidative stress and the release of reactive oxygen species (ROS). Novel
proliferative pathways for targeting new treatments against DM and the complications of this disorder are themechanistic target of rapamycin
(mTOR), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), and Wnt1 inducible signaling pathway protein
1 (WISP1). Each of these pathways is intimately connected through shared signal transduction mechanisms that can oversee stem cell
proliferation, programmed cell death that involves apoptosis and autophagy, and cellular energy homeostasis that can affect mitochondrial
function and insulin sensitivity.

Table 1: Targeting mTOR, SIRT1, and WISP1 in Oxidative Stress and DM.

Target Actions

mTOR

Functions through trophic factors such as EPO to protect vascular cells, promotes neuronal precursors, and blocks
retinal degeneration
Functions through metformin during mTOR inhibition and AMPK activity to protect against cardiomyopathy, protect
cortical brain tissue, and prevent endothelial senescence
Promotes stem cell development, promotes pancreatic 𝛽-cell proliferation, and blocks vascular thrombosis

SIRT1

Promotes telomere elongation and genomic stability of induced pluripotent stem cells, prevents apoptosis in endothelial
progenitor cells and mesenchymal stem cells, increases lifespan in higher organisms, and preserves angiogenesis
Prevents insulin resistance through fat mobilization, mTOR signaling, and control of cellular inflammation
Increases insulin signaling through PI 3-K and Akt and insulin release in pancreatic cells, promotes autophagy to
protect embryonic stem cells during oxidative stress, in conjunction with AMPK activation protects endothelial cells
during exposure to oxidized low density lipoproteins that can lead to atherosclerosis

WISP1

During pancreatic regeneration, WISP1 is one of several genes that are over-expressed, suggesting that WISP1 may be
reparative during DM
Promotes vascular smooth muscle proliferation that may be important for tissue repair, activates PI 3-K and Akt
pathways to protect cells against oxidative stress and programmed cell death
Oversees vascular senescence, modulates AMPK activity that may be sometimes detrimental, maintains the integrity of
SIRT1 and prevent its degradation during oxidative stress

AMPK: AMP activated protein kinase; Akt: protein kinase B; EPO: erythropoietin; mTOR: mechanistic target of rapamycin; PI 3-K: phosphoinositide 3 –
kinase; SIRT1: silent mating type information regulation 2 homolog 1 (S. cerevisiae); WISP1: wnt1 inducible signaling pathway protein 1.

Independently, mTOR activation controls stem cell devel-
opment [2, 16, 165, 176, 188–190], promotes pancreatic 𝛽-
cell proliferation [149], prevents apoptosis, limits insulin
resistance, blocks vascular thrombosis in patients with

metabolic syndrome [191], and prevents pathways associ-
ated with atherosclerosis [192] (Table 1). In addition, mTOR
activation through application of glucagon-like peptide-1
agonists can protect pancreatic 𝛽- cells from cholesterol
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mediated apoptotic cell injury [72]. mTOR also functions
through the epidermal growth factor receptor to prevent
neuronal apoptotic cell loss during DM [154].

5. Silent Mating Type Information Regulation
2 Homolog 1 (S. cerevisiae)

Silent mating type information regulation 2 homolog 1
(S. cerevisiae) (SIRT1), also known as NAD-dependent
deacetylase sirtuin-1, is a member of the Sirtuin family
and plays a significant role in cellular metabolism and DM
(Figure 1). As histone deacetylases, sirtuins transfer acetyl
groups from 𝜀-N-acetyl lysine amino acids on the histones
of DNA to regulate cellular transcription [193–195]. SIRT1
can modulate cellular metabolism [105, 196–198] and may be
critical for the development of new therapies for DM [29,
52, 193, 199]. SIRT1 is one of seven mammalian homologues
of the yeast silent information regulator-2 (Sir2) that control
posttranslational changes of proteins for cellular growth and
maintenance [83, 127, 199, 200]. SIRT1 is dependent upon
NAD+ as a substrate [105, 193, 201, 202] and through nicoti-
namide phosphoribosyltransferase (NAMPT) catalyzes the
conversion of nicotinamide to nicotinamidemononucleotide
[12]. Nicotinamide mononucleotide is subsequently con-
verted to NAD+ by the nicotinamide/nicotinic acidmononu-
cleotide adenylyltransferase (NMNAT) enzyme family [203].
NMNAT can control the deacetylating activity of SIRT1.
NAMPT activity increases cellular NAD levels and enhances
the activity of SIRT1 transcription. Mammalian forkhead
transcription factors can also influence SIRT1 activity [193,
204–206]. Mammalian forkhead transcription factors bind
to the SIRT1 promoter region, a cluster of five putative core
binding repeat motifs (IRS-1) and a forkhead-like consensus-
binding site (FKHD-L) [207]. This binding fosters the ability
of forkhead transcription factors, such as FoxO1, to control
SIRT1 transcription and increase SIRT1 expression [208].

SIRT1 importantly modulates stem cell survival that may
ultimately influence cellular protection during DM as well
as other cellular toxic environments [7, 48, 209]. Recent
work suggests that stem cell strategies may be effective
for maintaining glucose homeostasis during DM in animal
models [210, 211]. SIRT1 is required for telomere elongation
and genomic stability of induced pluripotent stem cells [212]
(Table 1). During oxidative stress, SIRT1 prevents apoptosis
through the induction of autophagy in endothelial progenitor
cells [213]. SIRT1 can regulate autophagic flux [214] to
promote the transition ofmuscle stem cells from a quiescence
state to an active state [215]. Mesenchymal stem cells with
SIRT1 overexpression lead to increased blood vessel density
in the area of cardiac infarcts, reduced cardiac remodeling,
and improved cardiac performance in rodent models [216].
Increased SIRT1 expression also enhances the survival of
cardiomyoblasts [217]. These studies of cardiovascular pro-
tection suggest an important role for angiogenesis especially
since patients with Type 2 DM show a downregulation of
endothelial progenitor cells that has been associated with
decreased SIRT1 protein levels [218]. In particular, SIRT1 pre-
vents senescence and impaired differentiation in endothelial

progenitor cells [219] and is necessary for the angiogenic
properties of human mesenchymal stem cells [220]. SIRT1
also is necessary for endothelial progenitor cell mobilization
and vascular repair during DM in mice [196]. SIRT1 can
preserve angiogenesis in rodent models of DM with bone
marrow-derived early outgrowth cells [221]. In addition,
SIRT1 may function in conjunction with growth factors to
foster improved cardiac performance during glucose deple-
tion through the activation of aged mesenchymal stem cells
[222].

In some cases, a limited activity of SIRT1 may be required
for optimal stem cell function. SIRT1 can be a negative
regulator of subventricular zone and hippocampal neural
precursors in murine animal models. Knockdown of SIRT1
does not eliminate neural precursor numbers but increases
the production of neurons in the subventricular zone and
the hippocampus [223]. Absence of SIRT1 with the induction
of heat shock protein-70 (HSP70) also is necessary to pro-
mote neural differentiation,maturation of embryonic cortical
neurons [224], and the differentiation of human embryonic
stem cells into motoneurons [225]. Neuronal differentiation
also can be driven through the microRNA miR-34a that
leads to decreased SIRT1 expression andDNA-binding of p53.
However, a minimum level of SIRT1 may be necessary for
some cells since increased expression of SIRT1 can increase
the astrocytic subpopulation of cells that are necessary to
support neuronal cell populations [226].

In mature and differentiated cells, SIRT1 can prevent
insulin resistance through a number of mechanisms that
involve fat mobilization [197], mTOR signaling [227], and
control of cellular inflammation [228] (Table 1). SIRT1 can
increase insulin signaling in insulin-sensitive organs through
pathways that involve phosphoinositide 3-kinase (PI 3-K)
and protein kinase B (Akt) [32, 127, 200, 229–231]. SIRT1
also can stimulate glucose-dependent insulin secretion from
pancreatic 𝛽-cells by repressing UCP2 [232]. Loss of SIRT1
can lead to insulin resistance and excessive hepatic lipid
accumulation [197]. Gene deletion or pharmacological inhi-
bition of SIRT1 can impair insulin signaling by interfering
with insulin stimulated insulin receptor phosphorylation and
glycogen synthase [233]. Overexpression of SIRT1 has been
shown to decrease hepatic steatosis and improve insulin
sensitivity [108]. Interestingly, SIRT1 has been shown to
increase lifespan in higher organisms such as Drosophila and
offer protection against oxidative stress [234], and it is used by
EPO to prevent cell injury during oxidative stress and DM.
EPO can increase endogenous cellular SIRT1 activity and
promote the subcellular nuclear trafficking of SIRT1 to result
in endothelial cell protection during oxidative stress [200].
EPO is able to maintain adipose cell energy homeostasis
and protect against metabolic disorders such as DM through
SIRT1 [198].

SIRT1 promotes cellular survival during oxidative stress
and DM by preventing the induction of apoptotic pathways.
Loss of SIRT1 activity in humanmesenchymal stem cells leads
to reduced cellular proliferation with increased apoptosis
[220]. Absence of SIRT1 in mouse cochlear neurons and
in the auditory cortex also is associated with hearing loss
[235]. Decreased levels of SIRT1 that occurs in smokers
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and chronic obstructive disease patients lead to endothelial
progenitor cell dysfunctionwith apoptotic cell death [236]. In
contrast, SIRT1 activation can prevent neuronal apoptosis in
models of traumatic brain injury [237]. SIRT1 activation can
protect endothelial progenitor cells against apoptosis [238]
and enhance skeletal myoblast survival [239] during tumor
necrosis factor-𝛼 (TNF-𝛼) exposure. SIRT1 can prevent the
externalization of membrane PS residues during apoptosis
[32, 127, 200, 240]. As a result of the cytoprotective capacity
of SIRT1, mechanisms that can block SIRT1 degradation are
vital. Pathways involving Wnt signaling have been shown to
prevent SIRT1 degradation and block caspase activation [241–
244]. Decreased levels of SIRT1 activity can be the result of
apoptotic pathways associated with p38 [245] and c-Jun N-
terminal kinase-1 (JNK1) [106]. Caspase degradation of SIRT1
[246] also can lead to further activation of caspases [246,
247]. As described, loss of SIRT1 activity can yield significant
consequences for cellular protection. Absent or insufficient
SIRT1 activity can be detrimental for vascular cells [127, 200,
248], prevent protection against cardiovascular disease [249],
and lead to neuronal injury [231, 243, 250]. Yet, in some cases,
a reduction in SIRT1 activity may be necessary to promote
cellular survival such as in studies involving trophic factors
with insulin growth factor-1 [251].

Autophagy also is another significant component in
determining cell survival with SIRT1. SIRT1 promotes
autophagy in mitochondria [252] that may be required to
maintain a healthy mitochondrial pool associated with cellu-
lar metabolism [253]. SIRT1 activation is able to limit apop-
totic cell injury and improve cognition through the induc-
tion of autophagy in models of cognitive loss that employ
chronic intermittent hypoxia hypercapnia exposure [254].
SIRT1 leads to the induction of autophagy for chondrocyte
survival during oxidative stress. Loss of autophagy through
knockdown of the forkhead transcription factors FoxO1 and
FoxO3 depletes SIRT1 activity and results in chondrocyte cell
death [18]. However, in some scenarios, SIRT1 protection has
been reported to involve the downregulation of autophagy.
SIRT1 blocks cell injury through the inhibition of autophagy
in pulmonary models of oxidative stress during exposure to
cigarette smoke in bronchial epithelial cells [255, 256].

Intimately tied to the ability of SIRT1 to modulate
autophagy are the pathways of AMPK and mTOR (Table 1).
AMPK increases NAMPT during glucose restriction leading
to increased NAD+ [257] and decreased levels of the SIRT1
inhibitor nicotinamide [60]. Resveratrol, an activator of
SIRT1, can enhance AMPK activity through SIRT1 dependent
and independentmechanisms [258, 259].Once active, AMPK
can phosphorylate TSC2 and inhibit mTORC1 activity [8,
165]. Through AMPK activity, SIRT1 inhibits mTOR. As a
result, SIRT1 promotes autophagy to protect embryonic stem
cells during oxidative stress [190]. SIRT1 has been shown
to inhibit mTOR signaling to promote neuronal growth
[260] and assist with mesangial cell proliferation during
high glucose exposure [261]. AMPK also can increase the
cellular NAD+/NADH ratio leading to the deacetylation
of downstream SIRT1 targets that include the peroxisome
proliferator-activated receptor-gamma coactivator 1 (PGC-
1𝛼), FoxO1 [94], and FoxO3a [258]. SIRT1 upregulation with

AMPK activation promotes autophagy that is necessary for
endothelial cell protection during exposure to oxidized low
density lipoproteins that can lead to atherosclerosis [206].
SIRT1 also uses AMPK for the regulation of insulin sensi-
tivity. Endothelial cell protection from oxidized low density
lipoproteins requires SIRT1 as well as AMPK activation [206,
262]. SIRT1 activation with AMPK also may be necessary
to protect against spatial memory impairment in combined
experimental models of DM and Alzheimer’s disease. Loss
of SIRT1 and AMPK activities can lead to cognitive loss,
oxidative stress, and neuronal cell apoptosis [112].

6. Wnt1 Inducible Signaling Pathway Protein 1

The CCN family member Wnt1 inducible signaling pathway
protein 1 (WISP1) has cellular signaling pathways linked to
mTOR and SIRT1 that highlight the significance of WISP1
in DM (Figure 1). The CCN family of proteins consists of
six secreted extracellular matrix associated proteins and are
defined by the first three members of the family that include
cysteine-rich protein 61, connective tissue growth factor,
and Nephroblastoma overexpressed gene [263]. Members
of this family such as WISP1 contain four cysteine-rich
modular domains that include insulin-like growth factor-
binding domain, thrombospondin domain, von Willebrand
factor type C module, and C-terminal cysteine knot-like
domain [264]. The WISP1 gene was identified in a mouse
mammary epithelial cell line [265] and subsequently demon-
strated to modulate gastric tumor growth [266]. WISP1 is
a matricellular protein [267] and a downstream target of
the wingless pathway Wnt1 that has broad cellular effects to
control programmed cell death, stem cell growth, immunity,
nervous, cardiovascular, and musculoskeletal system devel-
opment, and tumorigenesis [79, 268–280].WISP1 can control
cell survival through pathways that involve autophagy [34,
157], apoptosis [243, 281–283], and caspase activation [243,
282, 284]. During oxidative stress, WISP1 can upregulate PI
3-K and Akt [157, 243, 284] and protect against A𝛽 exposure
[185], cardiomyocyte injury [282], and DNA damage [281]
(Table 1). Through Akt, WISP1 also leads to fibroblast prolif-
eration in airway remodeling [285], vascular smooth muscle
proliferation [286], inhibitory phosphorylation of glycogen
synthase kinase-3𝛽 (GSK-3𝛽) [157, 282, 284, 285], and the
maintenance of 𝛽-catenin that can prevent apoptotic cell
death [36, 269, 274, 287, 288].

Similar to pathways involving mTOR and SIRT1, a por-
tion of the protective capacity of WISP1 may rely upon stem
cell oversight. WISP1 can influence induced pluripotent stem
cell reprogramming [289]. WISP1 is differentially regulated
during stem cell migration and stem cell differentiation.
WISP1 expression is increased during stem cell migration
[290] and repressed in adipose-derived stem cells during
hepatic differentiation [291]. WISP1 expression that may be
associated with inflammation and obesity is increased during
human adipocyte differentiation [292]. During pancreatic
regeneration, WISP1 is one of several genes that are over-
expressed, suggesting that WISP1 may be reparative during
DM [293]. WISP1 also may be vital for therapeutic strategies
against vascular disease in DM. WISP1 leads to vascular
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smoothmuscle proliferation that may be important for tissue
repair as well as affect restenosis following vascular grafting
[286, 294]. WISP1 may provide support for vascular repair
and regeneration during saphenous vein crush injury [295].
WISP1 also oversees cellular senescence [296] and does not
lead to excessive cellular proliferation in aging vascular cells
[297] that can lead to atherosclerosis (Table 1).

In regards to mTOR and WISP1 [264, 275], WISP1
activates and phosphorylates mTOR. WISP1 also leads to the
activation of the mTOR signaling pathways of p70 ribosomal
S6 kinase (p70S6K) and the eukaryotic initiation factor 4E-
binding protein 1 (4EBP1) [91, 174]. WISP1 increases mTOR
activity by antagonizing the inhibitory actions of the mTOR
component proline rich Akt substrate 40 kDa (PRAS40)
[298]. WISP1 also oversees the posttranslational phospho-
rylation of AMPK that is involved in glucose homeostasis
[164, 165, 299, 300]. WISP1 controls AMPK activation by
differentially decreasing phosphorylation of TSC2 at Ser1387,
a target of AMPK, and increasing phosphorylation of TSC2
at Thr1462, a target of Akt [185]. The ability of WISP1 to
modulate AMPK activity is vital for the regulation of cellular
metabolism during DM [300]. AMPK activity can reduce
insulin resistance and lessen oxidative stress through activa-
tion of autophagy [65]. AMPK also may prevent myocardial
ischemia in experimental models of DM [301], promote
proper metabolic function of cells [302], and place limits
on adipocyte differentiation, lipid accumulation, and obesity
[262]. Yet, the level of AMPK activity is a significant consid-
eration in DM. In some experimental models of Type 2 DM,
AMPKactivation can lead to apoptosis in pancreatic islet cells
[303].

WISP1 also regulates cellularmetabolism through its pro-
tective actions over SIRT1.WISP1 increases SIRT1 activity and
fosters SIRT1 nuclear translocation [243] to block apoptotic
cell injury [127, 200, 304]. WISP1 controls the mammalian
forkhead transcription factor FoxO3a that is involved in
cellular metabolism to block caspase activity [42, 94, 107, 305,
306] and prevent the degradation of SIRT1 during oxidative
stress [243] (Table 1). As previously described, Wnt signaling
that involves WISP1 is vital to prevent SIRT1 degradation,
prevent caspase activation, and promote cellular survival
[241–244].

7. Conclusions

Oxidative stress is a significant mediator of multisystem dis-
ease in the body during DM. Clinical studies and experimen-
tal models point to cell injury that involves both apoptosis
and autophagy during DM as a result of oxidative stress and
the release of ROS. Given that DM is predicted to become the
seventh leading cause of death by the year 2030, the need for
new therapeutic opportunities to treat DM and its complica-
tions becomes increasingly acute. One exciting strategy for
consideration is mTOR. mTOR activation oversees stem cell
development, fosters pancreatic 𝛽-cell proliferation, limits
insulin resistance, and can prevent pathways that may lead
to atherosclerosis. Protective cytokines and growth factors
such as EPO rely upon mTOR for vascular cell protection,

neuronal cell survival, and bone homeostasis. Furthermore,
EPO can lead to wound healing during DM, maintains
cellular mitochondrial function and energy metabolism, and
reduces the detrimental effects of obesity in animal models.
Yet, inhibitory pathways of mTOR that involve AMPK also
have a critical role during DM. AMPK activity can reduce
insulin resistance and lessen oxidative stress through acti-
vation of autophagy. In addition, metformin, an agent that
controls hyperglycemia in DM, activates AMPK and inhibits
mTOR activity to promote autophagy and cytoprotection.
Metformin reduces cardiomyopathy in experimental models
of DM, prevents endothelial cell senescence, and prevents
neuronal apoptotic cell death. Interestingly, SIRT1 also relies
upon AMPK for the regulation of insulin sensitivity and to
induce autophagy that is necessary for endothelial cell pro-
tection during exposure to oxidized low density lipoproteins
that can lead to atherosclerosis. Yet, AMPK activity is not
consistently beneficial and can lead to A𝛽 stress, A𝛽 toxicity,
cardiac tissue hypertrophy, and neuroinflammation. In some
experimental models of Type 2 DM, AMPK activation can
lead to apoptosis in pancreatic islet cells. SIRT1 importantly
modulates stem cell survival, blocks apoptotic cell injury,
controls autophagy for mitochondrial pool maintenance, and
limits oxidative stress that affects cellular survival during
DM. Although SIRT1 can increase cell survival and preserve
insulin signaling by blocking apoptotic pathways, SIRT1
also can foster autophagy and limit mTOR activation to
preserve mitochondria, promote stem cell proliferation, and
prevent insulin resistance. WISP1 incorporates the pathways
of mTOR and SIRT1 to control stem cell migration as well
as stem cell differentiation. WISP1 may offer protection
against cell loss in DM since it is one of several transcripts
that are expressed during pancreatic regeneration. WISP1
can activate PI 3-K, Akt, and mTOR to protect against A𝛽
exposure, cardiomyocyte injury, DNA damage, and oxidative
stress. WISP1 also increases SIRT1 activity and maintains the
integrity of SIRT1 during oxidative stress to prevent SIRT1
degradation. New insights that develop mTOR, SIRT1, and
WISP1 as effective therapeutic strategies against DM offer
great hope for the millions of individuals that presently suffer
from this disabling disorder. Fruits of such investigations
will weigh heavily upon careful analysis of the intricate and
complex pathways controlled by the proliferative properties
of mTOR, SIRT1, and WISP1 to achieve high clinical efficacy
for patients withDMand limit adverse effects that can involve
organ dysfunction, pancreatic cell loss, tumor growth, and
inflammation.
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