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Abstract

The recent advancement of the next generation sequencing technology has enabled the

fast and low-cost detection of all genetic variants spreading across the entire human gen-

ome, making the application of whole-genome sequencing a tendency in the study of dis-

ease-causing genetic variants. Nevertheless, there still lacks a repository that collects

predictions of functionally damaging effects of human genetic variants, though it has

been well recognized that such predictions play a central role in the analysis of whole-

genome sequencing data. To fill this gap, we developed a database named dbWGFP

(a database and web server of human whole-genome single nucleotide variants and their

functional predictions) that contains functional predictions and annotations of nearly

8.58 billion possible human whole-genome single nucleotide variants. Specifically, this

database integrates 48 functional predictions calculated by 17 popular computational

methods and 44 valuable annotations obtained from various data sources. Standalone

software, user-friendly query services and free downloads of this database are available

at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for

the analysis of whole-genome sequencing, exome sequencing and SNP array data,

thereby complementing existing data sources and computational resources in decipher-

ing genetic bases of human inherited diseases.

Introduction

The identification of genetic variants responsible for

human inherited diseases is one of the major tasks in med-

ical and human genetics (1). With the evolution of the next

generation sequencing technology, it becomes more and

more feasible to sequence all genetic variants in the entire

human genome with low-cost in a short period of time

(2,3), making whole-genome sequencing a reality in the

study of human inherited diseases.

Whole-genome sequencing can typically detect much

more genetic variants than the traditional SNP array tech-

nology, and many sequenced SNVs occur in low frequency
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or de novo. For example, single nucleotide variants (SNVs)

detected for an individual in the 1000 genomes project is

about 4 million on average, about 3–4 times more than

those detected by the Affymetrix GeneChip genome-wide

human SNP array 6.0. Among these SNVs, about 29%

occur in low frequency (<1%). These properties, together

with the fact that the number of patients and normal indi-

viduals in a whole-genome sequencing study is typically

small, prohibit the direct application of such statistical gen-

etics approaches as genome-wide association (GWA) stud-

ies (4–6) to the analysis of whole-genome sequencing data.

The recent advancement in exome sequencing studies (7,8)

has shown that the analysis of functionally damaging ef-

fects could be a powerful way in the identification of dis-

ease-causing SNVs (9,10). For example, we have

previously demonstrated that the integration of multiple

functional scores of nonsynonymous SNVs and association

scores of genes hosting these SNVs by a carefully designed

statistical model is effective in pinpointing pathogenic

SNVs for autism, epileptic encephalopathies and intellec-

tual disability (11,12). However, a majority of SNVs in

whole-genome sequencing studies occur in non-coding re-

gions, and there still lacks a repository that collects func-

tional predictions and annotations of such variants. These

facts have greatly restricted the scope of functional analysis

of whole-genome sequencing data. Therefore, an urgent

demand in whole-genome sequencing studies is to con-

struct a database that collects functional predictions and

annotations for the large number of sequenced SNVs.

There have been dozens of computational methods for

predicting functionally damaging effects of nonsynony-

mous SNVs that occur in protein coding regions, with ex-

amples including but not limited to SIFT (13), PolyPhen-2

(14), MutationTaster (15), MSRV (16), SinBaD (17) and

many others (18,19). Whole-exome predictions of these

methods have also been collected in such databases as

dbNSFP (20). For SNVs occurring in non-coding regions,

conservation information based on multiple sequence

alignment or polygenetic trees, such as GERPþþ (21),

SiPhy (22), PhyloP (23), serves as a major feature for char-

acterizing functional implications of SNVs. With the

growth of functional annotations of the human genome,

large-scale efforts have also been made to interpret the

functional non-coding variants. For example, two leading

algorithms, Combined Annotation–Dependent Depletion

(CADD) (24) and Genome-Wide Annotation of VAriants

(GWAVA) (25), have extended their functional predictions

to non-coding variants by integrating various genomic and

epigenomic annotations.

Different computational methods have their own

strength and weakness, due to the reason that they use dif-

ferent annotations, adopt different statistical or machine

learning models, and are trained with different training

data. Therefore, a more comprehensive way for assessing

functional implications of SNVs is to use prediction results

of multiple methods to make more reliable inference. With

this understanding, we developed dbWGFP, a database of

whole-genome single nucleotide variants and their func-

tional predictions. In this database, we collected nearly

8.58 billion possible human whole-genome SNVs. For

each SNV, we collected 32 functional prediction scores cal-

culated by 13 methods, 15 conservation features derived

from 4 approaches, 1 sensitivity measurement and 44 valu-

able annotations obtained from the ENCODE project. We

further compiled a cross-platform program to enable ultra-

fast search of this database and offered user-friendly web

services and free downloads at http://bioinfo.au.tsinghua.

edu.cn/dbwgfp.

Methods

dbWGFP provides a well-designed database that contains

48 functional prediction scores and 44 valuable annota-

tions for nearly 8.58 billion human SNVs. The overall

structure of this database is shown in Figure 1. To meet de-

mands of different research purposes, we offer two ver-

sions of this database. In the lite version, we only include

in the database basic information of SNVs and their func-

tional prediction scores (Table S1). In the full version, we

further include annotations extracted from dbSNP (26),

CADD (24), the ENCODE Project (27) and the 1000

Genomes Project (28) (Table S1). Single functional predic-

tions have their own advantages and limitations in the

scope of usage and the prediction power for different types

of variants. For example, PolyPhen-2, as one of the most

accurate methods for predicting functional effects of non-

synonymous SNVs, is restricted to dealing with variants

located in protein coding regions, because this method cal-

culates functional implications of SNVs based on protein

sequence and structure. phastCons adopts a phylo-Hidden

Markov Model (HMM) to detect conserved elements and

provides a measure of conservation for nearly all possible

SNVs. However, this method lacks the support of func-

tional evidence of variants and overlooks relative import-

ance of variants in the process of transcription and

translation (21). On the other hand, current applications

appeal for functional predictions of not only high accuracy

but also high coverage. For example, in the widely used

strategy for analyzing exome sequencing data, functional

prediction scores are used to filter out variants not likely to

be causative. However, exome sequencing can lead to vari-

ants in not only protein coding regions but also such flank-

ing regions as promoters and splice sites. With this

understanding, we try to construct a database that includes
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as many functional prediction scores and annotations as

possible. Specifically, we collect functional prediction

scores that meet two standards. First, the method for calcu-

lating a prediction score should be formally published.

Second, the method should provide a website for down-

loading pre-calculated scores or a software package for cal-

culating scores. With these criteria, we collected 48

functional prediction scores that were derived from 17

methods. Among them, scores of MSRV and SinBaD were

calculated by using their software, and the other scores

were downloaded from websites.

Collection and curation of SNVs

We collected all possible SNVs in the human genome by

integrating those occurring at least once in dbSNP (26),

dbNSFP (20,29) and CADD (24). By doing this, we ob-

tained a total of 8 576 251 873 human SNVs based on the

GRCh37/hg19 reference. We then extracted annotations

for these SNVs from dbSNP, CADD, the ENCODE Project

and the 1000 Genomes Project, including consequence

type, corresponding codons and genes, allele frequencies,

positions, distance to splicing site and many other

properties.

Extraction of functional prediction scores

We collected 48 functional prediction scores for each SNV,

including 32 functional features, 15 conservation features

and 1 sensitivity measurement. The 32 functional features

are calculated by 13 popular functional prediction meth-

ods, including Grantham (30), SIFT (13,31), PolyPhen-2

(14), LRT (18), MutationTaster (15), Mutation Assessor

(19), FATHMM (32), RadialSVM (29), LR (29), CADD

(24), GWAVA (25), MSRV (16) and SinBaD (17). The 15

conservation features are derived by 4 conservation calcu-

lation approaches, including phastCons (33), PhyloP (23),

GERPþþ (21) and SiPhy (22). The only sensitivity meas-

urement describes subgroups of non-coding categories that

share almost the same selective constraint as coding

Figure 1. Structure of the dbWGFP database.

Database, Vol. 2016, Article ID baw024 Page 3 of 11



genes(34). Details about these functional prediction scores

are summarized in Table 1 and described briefly as

follows.

We extracted SIFT, PolyPhen-2, LRT, MutationTaster,

Mutation Assessor, FATHMM, RadialSVM and LR scores

from the dbNSFP database (Version 2.4). These scores

measure functional changes of the encoded protein for a

nonsynonymous SNV, whose occurrence may results in the

change of amino acid and potentially affects protein struc-

ture and function. Briefly, SIFT takes advantage of the pos-

ition-specific probability estimation using PSSM with

Dirichlet priors to estimate whether the altered amino acid

affects protein function (13). The smaller the SIFT score,

the more likely the SNV could destroy the function of the

protein. PolyPhen-2 calculates a set of features for a SNV

based on the encoded protein sequence and protein struc-

ture, and trains a na€ıve Bayes model coupled with entropy-

based discretization to identify the structural and func-

tional effect of the SNV (14). Based on the null hypothesis

that each codon is evolving neutrally with no difference in

the rate of nonsynonymous to synonymous substitution,

LRT adopts the log likelihood ratio of the conserved rela-

tive to neutral model to predict the deleteriousness of a

SNV (18). Similar to SIFT, the smaller the LRT score, the

more likely a SNV would destroy the function of the pro-

tein. MutationTaster computes a large number of se-

quence-based features and trains a na€ıve Bayes classifier to

predict the potential deleterious nonsynonymous SNVs

(15). Due to evolutionary conservation of the affected

amino acid in protein homolog, Mutation Assessor evalu-

ates the functional effect of the SNV resulting in the amino

acid change (19). Mutation Assessor can predict both som-

atic mutations discovered in cancers or missense SNVs.

FATHMM relies on a hidden Markov models to predict

the functional, molecular and phenotypic effect of missense

variants or cancer-associated variants (32). RadialSVM

and LR are merged prediction scores that are derived by

using SVM and logistic regression respectively to integrate

10 existing prediction scores (SIFT, PolyPhen-2 HDIV,

PolyPhen-2 HVAR, GERPþþ, MutationTaster, Mutation

Assessor, FATHMM, LRT, SiPhy, PhyloP) and the max-

imum allele frequency in the 1000 Genomes Project (29).

We downloaded the Grantham and CADD scores from

the CADD website (Version 1.0). The Grantham score in-

dicates differences of physicochemical properties between

amino acids, and the larger the difference score, the more

likely a SNV would destroy the function of the host protein

(30). The CADD score is obtained by integrating annota-

tions from Ensembl Variant Effect Predictor (VEP) (35),

ENCODE Project (27) and UCSC Genome Browser tracks

(36) to prioritize whole-genome functional variants.

CADD provides two types of prediction scores: the raw

score with high resolution and the scaled score that is eas-

ier to interpret and comparable across different CADD ver-

sions or models.

We downloaded GWAVA score from its website (25).

This method predicts the functional effect of non-coding

genetic SNVs based on sequence-based properties and a

large set of annotations of non-coding elements from the

ENCODE and GENCODE projects (37). We downloaded

PhastCons and PhyloP scores from the UCSC Genome

Browser. PhastCons uses a hidden Markov model to

Table 1. Computational methods for predicting functionally damaging effects or conservation properties of single nucleotide

variants

Method Version Source Website

Grantham Sep-74 CADD —

SIFT Aug-11 dbNSFP http://sift.jcvi.org

PolyPhen-2 v2.2.2 dbNSFP http://genetics.bwh.harvard.edu/pph2

LRT Nov-09 dbNSFP http://www.genetics.wustl.edu/jflab/lrt_query.html

MutationTaster Mar-13 dbNSFP http://www.mutationtaster.org

Mutation Assessor Release 2 dbNSFP http://mutationassessor.org

FATHMM v2.3 dbNSFP http://fathmm.biocompute.org.uk

RadialSVM v2.4 dbNSFP http://sites.google.com/site/jpopgen/dbNSFP

LR v2.4 dbNSFP http://sites.google.com/site/jpopgen/dbNSFP

CADD v1.0 CADD http://cadd.gs.washington.edu

GWAVA v1.0 GWAVA https://www.sanger.ac.uk/sanger/StatGen_Gwava

MSRV Aug-07 MSRV http://bioinfo.au.tsinghua.edu.cn/msrv

SinBaD Nov-12 SinBaD http://tingchenlab.cmb.usc.edu/sinbad

phastCons Nov-09 UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way

PhyloP Nov-09 UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way

GERPþþ May-11 GERP http://mendel.stanford.edu/SidowLab/downloads/gerp

SiPhy v0.5 SiPhy http://www.broadinstitute.org/genome_bio/siphy

Page 4 of 11 Database, Vol. 2016, Article ID baw024

http://sift.jcvi.org
http://genetics.bwh.harvard.edu/pph2
http://www.genetics.wustl.edu/jflab/lrt_query.html
http://www.mutationtaster.org
http://mutationassessor.org
http://fathmm.biocompute.org.uk
http://sites.google.com/site/jpopgen/dbNSFP
http://sites.google.com/site/jpopgen/dbNSFP
http://cadd.gs.washington.edu
https://www.sanger.ac.uk/sanger/StatGen_Gwava
http://bioinfo.au.tsinghua.edu.cn/msrv
http://tingchenlab.cmb.usc.edu/sinbad
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way
http://mendel.stanford.edu/SidowLab/downloads/gerp
http://www.broadinstitute.org/genome_bio/siphy


predict the probability that a SNV belongs to a conserved

element based on the multiple sequence alignment of the

human genome against other species (33). PhyloP com-

putes an exact p-value under a continuous Markov substi-

tution model to estimate the interspecies conservation for

each SNV (23). We downloaded SiPhy scores from the

public ftp site of the Board Institute. SiPhy takes advantage

of rigorous statistical tests to identify bases under selection

constraint based on multiple sequence alignment with 29

mammals. SiPhy also estimates stationary distribution of

different nucleotides at a site (22). GERP adopts maximum

likelihood evolutionary rate estimation to calculate pos-

ition-specific estimates of evolutionary constraint (38).

GERPþþ, an advanced version of GERP, uses a more

rigorous set of algorithms to calculate position-specific ‘re-

jected substitutions’ scores and to indentify evolutionarily

constrained elements (21). GERPþþ neutral evolution

scores, rejected substitution scores, element scores and

element p-values were all downloaded from the GERP

website.

We calculated MSRV and SinBaD scores by using soft-

ware packages provided by these methods. Briefly, MSRV

applies an ensemble learning approach with a set of 24

physiochemical properties and 2 conservation scores to pri-

oritize disease-causing nonsynonymous SNVs (16). SinBaD

adopts a logistic regression model with 90 binary features

obtained from multiple sequence alignment (17) to quanti-

tatively measure functional effects of mutations in not only

protein coding regions but also promoter regions and

introns.

Extraction of annotations

In the full version of dbWGFP, we further collected 44 use-

ful information or annotations from dbSNP, CADD, the

ENCODE Project and the 1000 Genomes Project. First, we

included basic information for each SNV and its corres-

ponding codons and genes, including reference SNP ID, an-

cestral base, annotation type, consequence type of the

variants, ENSEMBL gene ID, ENSEMBL transcript ID,

CCDS ID, gene name, protein accession number and ID in

the UniprotKB database (39), reference codon, reference

and substituted amino acids. Second, we extracted from

the 1000 Genomes Project related annotations, including

the validated status, project phase, common variant or not,

and different types of allele frequency for different type of

populations. Finally, we included from CADD or the

ENCODE Project such annotations as distance to the clos-

est Transcribed Sequence Start (TSS), distance to the clos-

est Transcribed Sequence End (TSE), amino acid position,

codon position, base position from transcription start, rela-

tive position in transcript, base position from coding start,

relative position in coding sequence, distance to splice site,

closest splice site is ACCEPTOR or DONOR, total num-

ber of exons, and total number of introns.

Coverage and correlation of functional scores

Different types of functional scores are designed for differ-

ent types of variants. For example, SIFT and PolyPhen-2

can only predict the deleteriousness of nonsynonymous

SNVs, while CADD and GERPþþ can give estimations of

functional effects for SNVs across the whole genome.

Therefore, we summarized the coverage of each functional

effect score for each chromosome in Table 2. From the

table, we can see that CADD and the four conservation

scores have high coverage, while functional prediction

scores designed only for nonsynonymous SNVs, including

SIFT, PolyPhen-2, LRT, MutationTaster, Mutation

Assessor, FATHMM, RadialSVM, LR, MSRV and

SinBaD, have low coverage.

Different types of prediction methods give different

functional effect scores for the same SNV. Therefore, we

checked pairwise agreement between different prediction

scores for SNVs occurring in chromosome 22 by using the

Spearman’s rank correlation coefficient, and we summar-

ized the results in Figure 2. From this figure, we can see

that most prediction scores have medium to high correl-

ations with a few other scores. For example, prediction

scores of MSRV are highly correlated with those of

SinBaD, and scores of PhastCons are highly correlated

with those of GWAVA. Nevertheless, there also exist some

scores (e.g. MutationTaster) that have low correlations

with the others.

Comparison of the prediction power between

different scores

dbWGFP contains 15 conservation features derived by 4

conservation calculation approaches and 32 functional fea-

tures calculated by 13 popular functional prediction meth-

ods. Seven of these methods (phastCons, PhyloP,

GERPþþ, SiPhy, Grantham, CADD and GWAVA) intend

to provide prediction scores for variants spreading over the

whole genome. The other ten methods (SIFT, PolyPhen-2,

LRT, MutationTaster, Mutation Assessor, FATHMM,

RadialSVM, LR, MSRV and SinBaD) only focus on vari-

ants in protein coding regions. In order to obtain a compre-

hensive understanding about the prediction power of these

methods, we collected a set of disease-causing SNVs from

the HGMD database and a set of neutral SNVs from the

1000 Genomes Project. The disease-causing variants, used

as positive cases, were further partitioned into 52 007 pro-

tein coding SNVs, 8822 splicing SNVs and 1811 regulatory
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SNVs. Accordingly, the neutral variants, used as negative

controls, were also partitioned into 272 534 protein cod-

ing SNVs, 2897 splicing SNVs, and 701 984 regulatory

SNVs. For each of these variants, we extracted the conser-

vation scores and functional scores from the dbWGFP

database, obtaining a total of 17 scores.

Focusing on scores that cover at least 5% of SNVs in a

category. We first performed a t-test to see whether a pre-

diction score is significantly different between positive and

negative SNVs. Results, as shown in Table 3, suggest that

all the 17 scores are significantly different between the

two class of SNVs in protein coding regions. For SNVs in

splice sites, only 8 scores cover 5% or more SNVs. Within

these scores, SinBaD has the highest power in discriminat-

ing disease causing variants against neutral ones. For

SNVs in regulatory regions, only 5 scores cover 5% or

more SNV, and GWAVA has the highest discriminant

power.

We then explored the ability of each score in predicting

disease-causing SNVs. For this purpose, we varied the de-

cision threshold for a score and calculated the sensitivity

and specificity at each threshold value. Here, the sensitiv-

ity is defined as the fraction of positive SNVs whose scores

exceed a threshold, and the specificity is defined as the

fraction of negative SNVs whose scores do not exceed a

threshold. We then plotted the receiver operating charac-

teristic curve (sensitivity versus 1-specificity) and calcu-

lated the area under this curve (AUC). Results, as shown

in Table 3, suggest that the performance of different meth-

ods is quite different. For SNVs in protein coding regions,

LR has the highest performance, followed by RadialSVM,

FATHMM, MSRV and CADD, respectively. For SNVs in

splice sites, SinBAD outperforms all the other methods.

For SNVs in regulatory sites, GWAVA has the highest per-

formance. This comprehensive comparison of the predic-

tion power between different scores therefore provides

insightful understanding in the determination of suitable

prediction scores in real applications. Overall, the predic-

tion of disease-causing SNVs in splice sites and regulatory

regions are much harder than that in protein coding re-

gions, because the AUCs of the former two categories are

typically much lower than those of the later class. Such an

observation suggests the urgent demand of developing an

effective computational tool for predicting functionally

damaging effects of variant in non-coding regions.

The coverage of different types of prediction scores

varies significantly, resulting in the missing data problem.

To address this problem, we propose the following three

methods. First, users can completely ignore missing data

and only focus on scores of complete information. Second,

users can adopt a statistical or machine learning approach

that can easily handle missing data. Fisher’s method andT
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Figure 2. Pairwise Spearman’s rank correlation coefficients between different functional prediction scores.

Table 3. Prediction power of the scores

Type of SNVs Coding SNVs Splicing SNVs Regulatory SNVs

#(disease SNVs) 52007 8822 1811

#(neutral SNVs) 272534 2897 701984

Method p-Value AUC Coverage(%) p-Value AUC Coverage(%) p-Value AUC Coverage(%)

mamPhCons 0 67.22 99.99 5.99E-21 56.89 99.99 1.18E-57 56.89 99.78

mamPhyloP 0 64.59 100 0.0264 51.61 99.99 1.12E-36 58.6 99.8

GERPþþ 0 66.43 100 3.27E-08 56.36 100 4.78E-19 58.73 100

SiPhy 0 56.23 99.94 1.8E-17 55.54 99.91 1.91E-45 60.13 99.23

Grantham 0 60.37 96 – – – – – –

CADD 0 77.31 100 2.44E-21 55.64 100 2.97E-91 65 100

GWAVA 5.74E-66 54.05 88.93 0.0005 53.37 36.35 7.73E-277 81.61 99.67

SIFT 4.33E-308 64.38 93.55 – – – – – –

Polyphen2 0 77.04 93.36 – – – – – –

LRT 0 70.94 86.09 – – – – – –

MutationTaster 0 63.46 99.07 1.15E-08 53.07 72.33 – – –

MutationAssessor 0 77.55 94.12 – – – – – –

FATHMM 0 86.41 90.27 – – – – – –

RadialSVM 0 87.79 96.28 – – – – – –

LR 0 87.96 96.28 – – – – – –

MSRV 0 80.56 89.81 – – – – – –

SinBAD 0 74.16 99.38 1.06E-195 70.48 72.58 – – –

Database, Vol. 2016, Article ID baw024 Page 7 of 11



Na€ıve Bayes are two examples. Third, users can adopt a

strategy to impute missing values and then use the data as

if they were observed completely. In addition, although

some prediction scores are highly correlated, there do exist

scores of low correlations with the others, leading to po-

tential conflict between the scores. To account for this

issue, we propose the following three strategies. First, as a

stringent way, users can define a SNV as functional only if

all the prediction scores indicate the functionally damaging

effect of the SNV. Second, as a loose option, users can de-

fine a SNV as functional if any of the prediction scores in-

dicate its functionally damaging effect. Certainly, these

two strategies are either too rigorous or too loose.

Therefore, a more reasonable way is to comprehensively

consider all the prediction results and determine the func-

tionally damaging effect of a SNV by using the majority

voting rule.

Software

dbWGFP offers a user-friendly web interface to facilitate

the access of the database. The web interface provides two

main components: a query service for retrieving functional

prediction scores and annotations of SNVs in different

data formats and a download service for setting up a local

version of this database. In the step-by-step mode of the

query service, users can upload a file containing query vari-

ants and retrieve results online. In the batch query mode,

users can upload a file containing query variants and an

email address. A URL of the query results will then be send

via email. dbWGFP provides two versions for download-

ing. The lite version includes prediction scores of human

whole-genome SNVs. The full version includes both pre-

diction scores and annotations. Both versions include a

search program that can retrieve predictions and/or anno-

tations in a highly efficient way. Different versions of

dbWGFP are also archived for easy access.

Ultra-fast search program

Sequentially scanning dbWGFP to retrieve a query SNV is

prohibited due to the huge number of SNVs collected in

this database. Therefore, we developed a highly efficient

search program to enable ultra-fast locating of a SNV in

the database. In order to test the speed of the search pro-

gram, we selected an individual (HG00096) at random

from the 1000 Genomes Project, extracted a total of

3 844 226 SNVs occurring in the whole genome of this in-

dividual, and applied the search program to retrieve pre-

dictions and annotations from dbWGFP. The results are

summarized in Table 4. From the table, we can see that

for the lite version of dbWGFP, our search program,

when using 8 threads simultaneously, can efficiently deal

with queries at the speed of 4999 SNVs per second, and it

takes only 769 s to obtain functional predictions for SNVs

spreading across the whole genome of a human. For the

full version of dbWGFP, our search program can efficiently

deal with queries at the speed of 3647 SNVs per second,

and it takes only 1054 s to obtain both functional predic-

tions and annotations for SNVs spreading across the whole

genome of a human. We also notice that the running time

for taking all variants as a single query file is significantly

shorter than the summation of running time for taking in-

dividual chromosomes as separate query files. This phe-

nomenon is due to the fact that multiple threads read

separate database files for different chromosomes in the

former case. Hence, we suggest users combining their data

for different chromosomes into a single query file to maxi-

mize the search performance (Table 4).

Query service

The query service provides two accessing modes. In the

step-by-step mode illustrated in Figure 3, a user can upload

Table 4. Running time of the dbWGFP search program.

Results are obtained using 8 threads in a server with dual

Intel E5-2630V2 CPU (2.6 GHz) and 64GB memory

Chromosome #(SNVs) Lite version Full version

Time (s) #(SNPs)/

second

Time (s) #(SNPs)/

second

1 291 183 86 3386 116 2510

2 306 260 89 3441 121 2531

3 265 905 76 3499 103 2582

4 281 093 72 3904 96 2928

5 240 036 86 2791 94 2554

6 254 105 67 3793 89 2855

7 214 802 58 3703 83 2588

8 201 101 58 3467 73 2755

9 159 777 48 3329 68 2350

10 192 012 54 3556 74 2595

11 194 987 54 3611 75 2600

12 176 087 53 3322 76 2317

13 147 631 42 3515 58 2545

14 124 626 37 3368 52 2397

15 110 700 36 3075 48 2306

16 114 626 35 3275 52 2204

17 102 123 36 2837 47 2173

18 111 964 36 3110 46 2434

19 84 735 26 3259 38 2230

20 77 334 28 2762 37 2090

21 55 667 17 3275 23 2420

22 48 737 16 3046 25 1949

X 88 735 46 1929 57 1557

Combined 3 844 227 769 4999 1054 3647
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a file containing query SNVs and then check the web site

for results. In the batch mode, a user can upload an archive

including query SNVs and an email address, and then

check email for results later. In either mode, a query file

typically includes multiple lines, each of which is given in

one of the following four formats. First, a query line can be

given as two column text (‘chr pos’). In this case, the server

locates the query position in the query chromosome and

output predictions and annotations of all possible SNVs in

the query position. Second, a query line can be given as

three column text (‘chr pos ref’). In this case, the server lo-

cates the query position in the query chromosome and out-

put predictions and annotations of all possible SNVs that

occur in the query position and whose reference nucleotide

is identical to the query. Third, a query line can be given as

four column text (‘chr pos ref alt’). In this case, the server

outputs predictions and annotations of the SNV defined by

the query. Finally, a query line can be given in vcf format.

In this case, the server also outputs predictions and annota-

tions of the SNV defined by the query. Considering that in

a real whole-genome sequencing study, the number of

SNVs is typically huge, the dbWGFP web service also ac-

cepts input files compressed in gz, bz2, zip or rar formats.

Similarly, output files are also given in these compressed

formats.

Download service

The download service allows a user to download parts or

the entire dbWGFP database. For both the lite and the full

versions, we partitioned SNVs according to chromosomes

and provided files compressed in gz format for individual

chromosomes. We further generated a single compressed

archive file for each version.

Conclusions and discussion

In this paper, we have introduced dbWGFP, a database

and web server of human whole-genome single nucleotide

variants and their functional predictions. This database

collects nearly 8.58 billion possible SNVs across the whole

human genome, with each SNV described by 48 functional

prediction scores and 44 valuable annotations. To the best

of our knowledge, dbWGFP is the first large-scale compre-

hensive database for functional predictions and annota-

tions of human whole-genome SNVs.

This database can not only be helpful in the capture of

causative variants from massive candidates derived from

whole-genome or exome sequencing data, but also provide

a valuable resource in the study of human genetic variants.

For example, after sequencing the whole genome of one or

a few patients, a bunch of candidate SNVs can be extracted

from the sequencing data. Given all the candidate SNVs as

input, dbWGFP can be used to effectively collect functional

prediction scores and annotations for each candidate SNV.

Based on these scores and annotations, researchers could

filter out a large set of neutral SNVs that are believed to

have little functional effect, and obtain the remaining func-

tional SNVs for further study. Similarly, dbWGFP can also

be used in the analysis of exome sequencing or SNP array

data, thereby complementing existing data sources and

statistical methods in deciphering genetic bases of human

inherited diseases.dbWGFP can be further improved from

the following aspects. First, currently computational

Figure 3. Illustration of the step-by-step mode of the query service.
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methods for predicting functional effects of whole-genome

variants are still quite limited, since scientists just begin to

make such efforts recently. As more prediction approaches

become available in the near future, more available func-

tional prediction scores can be incorporated into our data-

base. Second, important gene annotations and protein

annotations can also be included in our database. These

annotations may include but not limited to gene annota-

tions from Gene Ontology (40), protein-protein interaction

network from STRING (41), pathway information from

KEGG (42) and many others. Third, phenotypic properties

for human whole-genome SNVs can also be included in

our database. These properties can be extracted from exist-

ing databases such as OMIM (43), HGMD (44) and

COSMIC (45). The inclusion of such phenotypic informa-

tion may further improve the inference of causative vari-

ants for human inherited diseases, as we have done in our

previous studies for prioritizing candidate genes (46).

Finally, although we focus on single nucleotide variants in

the current release of dbWGFP, it is obvious that other

types of variants such as small insertion or deletion can

also be included in the future.
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