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Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and
function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and
polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids
of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small
and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most
exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids
such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having
potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed
sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH)
techniques in horticultural plants.

1. Introduction

In plant genomic sciences, since the mid-1950s, various
molecular cytogenetic approaches have been developed for
chromosome research. Since Mendelian genetics that guides
about genetic movement of chromosome from generation
to generation, scientific techniques for chromosome observa-
tion have meliorated significantly. During mitosis, staining
of chromosome is the basic technique for chromosome
observation [1].

Cytogenetic research and chromosome analysis are the
main aspects in genomics and genetic sciences. Molecular
cytogenetic techniques, such as in situ hybridizationmethods,
are admirable tools to analyze the genomic structure and
function, chromosome constituents, recombination patterns,
alien gene introgression, genome evolution, aneuploidy, and
polyploidy [2, 3].

After in situ hybridization technique development by
John et al. [4] and Gall and Pardue [5], various approaches
were achieved such as radioactively labeled probes improved

into nonradioactive probes labeled with biotin [6] and
detection by indirect (antibody-fluorochrome conjugate)
and direct (fluorochrome detection) staining. Genomic in
situ hybridization (GISH) was first used to discriminate the
genomesof the intergenerichybridbetweenparental genomes,
that is,Hordeum chilense and Secale africanum [7].

Genomic in situ hybridization (GISH) is an efficacious
technique, that is, used for genome differentiation of one
parent from the other by utilizing special chromosome-
labeling techniques. GISH has a gratuity role in cytogenetics
for investigation of evolutionary relationship of crops and
identification of inserted region in the parent from the alien
species. GISH technique follows the same protocol as in the
fluorescent in situ hybridization (FISH) technique. However,
genomic and blocking DNA utilization in GISH differentiate
it from FISH analysis [8].

In plant species, genome organization and homology
study are carried out by the use of genomic in situ hybridi-
zation (GISH). In addition, karyotype analysis of many plant
species has been performed by the GISH technique [9].
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AnotherGISHapproach is precise dissection of chromosome-
pairing behaviors in interspecific hybrids during meiosis.
Closely related genomes in interspecific hybrids can be
cytological discriminated by well-developed genomic in situ
hybridization analysis [10].

Structural rearrangements, evolution of chromosome,
and phylogenetic as well as genomic relationships can be
studied extensively by modern cytogenetic techniques, that
is, in situ hybridization by fluorescent and genomic probes
(FISH and GISH) [11, 12]. GISH has an ability to distinguish
genomic relationship of polyploids. In polyploids, GISH
effectively confirmed the presumed parental genomes and
in addition this technique also provides their origin infor-
mation, that is, whether polyploids are alloploids or autop-
loids (Table 1) [13].

In situ hybridization by genomic DNA (GISH) is an
approach to identify alien chromosomes as well as chromatin
and chromosomal rearrangements, that is, formed due to
mosaic chromosomes [14]. Genome constitution visualiza-
tion and chromosome discrimination from different genomes
in allopolyploids are carried out by GISH practices [15].

The purpose of this study is to report the applications
and advancements of GISH technique on the genome of
horticultural crops.

2. Chromosomal Evaluation

In situ hybridization method, using genomic DNA of two
species as a probe, is an effective way to approach the individ-
ual chromosome identification of nonsomatic hybrids [16].
Similarly, [17] analyzed satsuma mandarin chromosome for
evolution and identification of individual chromosome by
double-target GISH method of in situ technique. After stain-
ing, 18 chromosomes of satsuma mandarin were classified
into eight groups on the basis of position and relative size
of CMA (chromomycin A3) region as well as relative length
of chromosome. Citrus reticulata Blanco (Dig-rhodamine
labeling) and Citrus maxima Burm (biotin-fluorescein iso-
thiocyanate) were utilized as probe DNAs. GISH clearly
identified 6 individual heterozygous chromosomes and 6pairs
of speculated homozygous chromosomes. In ten chromo-
somes, containing clear GISH signals on the CMA (+) sites,
Dig-rhodamine-labeled regions were detected on 9 chro-
mosomes which showed close evolutionary relationship of
satsuma mandarin with C. reticulata Blanco. Further, GISH
results also proved the involvement of C. maxima Burm in
the satsuma mandarin origin. Therefore, the GISH karyotype
technique has potential for homologous and individual
chromosomal identification of citrus species.

Identification and differentiation of parental chromo-
somes in somatic hybrids of fruiting plants can be analyzed
in detail by the GISH technique such as inDiospyros (persim-
mon) hybrids. Multicolor GISH analysis of Diospyros kaki
(containing 90 total chromosomes) × Diospyros glandulosa
(containing 30 total chromosomes) somatic hybrids proved
this statement. Under fluorescence microscope, GISH find-
ings showed 90 D. kaki chromosomes and 30 D. glandulosa
chromosomes in somatic hybrids. Using GISH advancement
as multicolor detection is a significant approach to analyze

the small and numerous chromosomes such as in Diospyros
species. Another important point is that after five years of
subculturing, somatic hybrid plants of Diospyros can hold
chromosomes of their parents [18].

Chromosome region detection is a remarkable application
of GISH in cytogenetics. In introgression breeding, discrimi-
nationof different genomes and chromosome locus identifica-
tion is carried out by thismethod.Yamashita et al. [19] applied
the GISH technique to find out chromosome site of Rf (a
restoring gene of pollen fertility) locus by comparing GISH
results of male sterile and male fertile plants of introgressed
progenies. To determine Rf locus location on chromosome,
Allium galanthum genomic DNA was used as probe DNA,
while for blocking DNA, Allium fistulosum genomic DNA
was utilized for in situ hybridization of F1 hybrids of both
species and backcross generations. In F1 hybrids, 8 chromo-
somes from A. galanthum were markedly differentiated from
A. fistulosum. Furthermore, chromosome introgression by
continuous backcrossing was possible. Important break-
through in these findings is that A. galanthum chromosomal
region (especially from male fertile plants) in four backcross
generations, that is, BC4 to BC7 were detected simultaneously
through GISH in one chromosome. GISH findings confirmed
that the location of Rf locus is signalized on the 5F chromo-
some of male fertile plant, that is, A. fistulosum.

Advancement in GISH is double GISH technique, in
which two genomic DNA probes differentially labeled are
used, which provides an improvement in the simple GISH
method (Figure 1). Therefore, parental genomic DNA of both
candidates (having approximately equal concentration) par-
ticipated in hybridization with homologous sequences [20].

In mandarins and lemon-lime group, heteromorphic
chromosome-pair evaluations on the basis of rDNA sites
and CMA banding patterns were performed to assess the
evolutionary relationships [21, 22]. However, these methods
obtained some improvement regarding evolutionary rela-
tionships of citrus, but more accurate methods were required
for comprehensive karyological study. The genomic in situ
hybridization (GISH) technique is a useful mean for chromo-
some and genome characterization in somatic hybrids and
polyploids [23]. In many somatic hybrids of fruit trees such
as inCitrus aurantiumL.+Poncirus trifoliata (L.)Raf. in citrus
and D. kaki L. × D. glandulosa Lace, parent chromosome
identification was completed by the GISH method [24, 25].

3. Cytogenetical Classification

Using genomic in situ hybridization (GISH), [26] de-
monstrated noteworthy genomic differentiation among the
diploid North and Central American species of potato. GISH
results indicated the first evidence that the North and
Central American tetraploid species (belongs to longipedicel-
lata series, Solanaceae) are allotetraploids. GISH findings
clearly discriminated parental genome in potato species.
This GISH genomic classification potential, on the basis
of discrimination, was also in accordance with [27, 28] DNA-
sequencing description.

North and Central American potato species, containing
hexaploid level, are genomically originated from Solanum
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demissum and Solanum hougasii. GISH investigation was
carried out by using their presumed diploid (AA, BB, PP)
or tetraploid (AABB) parental genomic DNA, to determine
ploidy recombination in Solanum demissum and Solanum
hougasii. GISH information reveled that S. hougasii has an
allotropic behavior, that is, one genome from AA and the
other belonged to BB. In addition, S. hougasii third genome
is more intimately related to P genome or species related to
P genome. S. demissum, in comparison, containing three
chromosome sets are closely related to the basic genome A.
GISH-based classification of potato species was in agreement
with taxonomic division of Mexican hexaploid species. In
which, S. hougasii belonged to the allopolyploid iopetala
group while S. demissum belonged to the autopolyploid
acaulia group. Therefore, GISH, a DNA technique, plays a
key role to classify the species by using modern cytogenetical
approaches [29].

Genomic in situ hybridization (GISH), a molecular tech-
nique, can be a helpful tool for the species classification. In
GISH analysis, chromosome labeling is uniform and intense
with same species probes. On the other hand, such labeling is
inadequate and irregular if probe DNA is from different
species. Reference [30] applied the GISH method on mango
(Mangifera indica). He selected 8 wild Mangifera species
for using as probes with M. indica as a chromosome sample.

His main aim was to investigate a relationship between 8 wild
species with M. indica. A basic focusing criterion was on
signal strength of genomic in situ hybridization onM. indica
metaphase chromosomes. On the basis of number and inten-
sity of hybridization signals, eight wild species were effectively
phylogenetically classified into four groups. GISH results
clarified thatMangifera sylvaticaRoxb probes showed highest
signal intensity on M. indica chromosomes. Hence, GISH
findings showed a closed relationship between M. indica
and M. sylvatica [31], using AFLP markers, already con-
firmed the phylogenetic relationship among other species.
However, GISH phylogenetic classification further improved
this relationship. Consequently, GISH technique is a precise
way to classify Mangifera species.

4. Genomic Constitution

Horticultural crop genomic compositions and parental
chromosomes can be investigated by utilizing GISH methods
such as in strawberry [32] and D. kaki [24].

GISH analysis can significantly distinguish the different
genomes, foremost the evaluation on the basis of chromo-
some size in each genome. Discrimination of the different
genomes proved the incidence of rearrangements after inter-
specific hybridization [33]. Karyotype and genomic study of

Probe
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hybridization
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Chromosomal
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Figure 1: Genomic in situ hybridization (GISH) mechanism diagram.
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sour cherry proved that GISH can differentiate chromosomes
between parental species chromosomes. On the basis of size
and centromere position, karyotype results of Prunus avium
and Prunus cerasus clearly distinguish chromosomes from
one another. Utilization of genomic DNA as a probe helps in
hybridizationwith species-specific repetitive sequences which
are dispersed over the genome. Hybridization distribution
in 32 chromosomes of sour cherry showed 16 chromosomes
came from P. avium, while the rest of the 16 chromosomes
from P. fruticosa. These finding ensured that P. cerasus
genome constituents are composed of P. fruticosa and
P. avium [34].

In somatic hybrids, chromosome and cytoplasm study
has a key role in molecular analysis. Chromosome constitu-
tion helps in identification of parental chromosomes. Impor-
tant chromosomal composition was figured out by [35], using
genomic in situ hybridization analysis, in somatic hybrids
derived from onion (Allium cepa L.) crossing with garlic
(Allium sativum L.). Results clarify that one line containing
40 chromosomes is composed of 17 garlic chromosomes
and 20 onion chromosomes, while the rest of the three were
chimeric chromosomes. On the other hand, one line contain-
ing 41 chromosomes having similar composition pattern is
composed of 21 onion chromosomes. Important finding
was that chimeric chromosome composition origin was due
to onion and garlic chromosome fusion. Therefore, chro-
mosome deletion caused fragmentation of chromosomes.
Structural amendments in chromosomes may be a reason of
chromosome number variations between the hybrid lines.
PCR-RFLP analysis of both hybrid lines was agreeable with
that of GISH results that onion has more parental contribu-
tion in somatic hybrids.

In molecular cytogenetics, clear and unambiguous
genomic distinction can be obtained by GISH. A phenom-
enon of genomic composition and genomic distinction is
widely used in plants containing large chromosomes such
as in Tulipa [36] and Lilium [37]. However, advances of
GISH are that it has differentiated parental genomes in small
chromosome-containing plants such as tomato [38].

GISH analysis was carried out in begonia for Begonia
socotrana and tuberous hybrid chromosome identification
in various ‘Elatior’-begonia hybrids. This study helped out
to obtain information related to chromosome number and
parental origin of these cultivars. Tuberous Begonia genomic
DNA was used as probe DNA (labeled with digoxigenin-11-
dUTP) while B. socotrana genomic DNA as a blocking DNA.
Clear distinctions of tuberous Begonia genome were visual-
ized when probe concentration was 150 ng per slide, and
blocking DNA concentration was with 30 times more than
that of B. socotrana. According to GISH distinction protocol,
‘Elatior’-begonia hybrids divided into 2 groups, that is,B. soco-
trana containing short chromosomes (0.6μm to 1.03μm in
length) and tuberous Begonia containing long chromosomes
(1.87 μm to 3.88 μm in length), respectively. In ‘Elatior’-
begonia hybrids, chromosome numbers that came from
tuberous Begonia ranged from 14 to 56 while those from
B. socotrana ranged from 7 to 28. Consequently, such GISH
findings recommended variations in ploidy levels among
‘Elatior’-begonia hybrids. Intergenomic recombination has

not been observed in these hybrids. In begonia breeding,
genome composition and ploidy estimation are key points
for further approaches and this can be accomplished by
GISH molecular cytogenetic tools [39].

Genomic in situ hybridization (GISH) provides com-
paratively efficient, however less accurate, mean to observe
genome constitution at whole chromosome or recombinant
segment stage. In sexual and somatic hybrids, GISH tech-
nique is a significant way to make a difference between paren-
tal genomes. This method was applied in many plant species
such as tomato. Yuanfu et al. [40] analyzed intergenic and
interspecific hybrids of Solanum lycopersicoides, Solanum
sitiens, and Lycopersicon esculentum by using the genomic
in situ hybridization method for chromosome differentiation
and relationship assessment among three genomes. L. escu-
lentum is a cultivated tomato while Solanum lycopersicoides
and Solanum sitiens are wild nightshade species. Cultivated
tomato genome, in hybrids, was clearly distinguishable from
two nightshade wild species by using standard protocol
conditions. More specific and precise conditions applied in
the GISH method can also distinguish nightshade species
genome. This indicated a phylogenetically distant relation-
ship between L. esculentum and two wild species. Sequence
homology sharing was high from S. lycopersicoides and S.
sitiens. During meiosis, chromosomal associations of inter-
generic and interspecific hybrids were consistent. During
diakinesis, F1 hybrids of L. esculentumum × S. lycopersicoides
and L. esculentum × S. sitiens express univalent formation
behavior. However, S. lycopersicoides × S. sitiens F1 hybrids
formed bivalents during diakinesis. F1 hybrids of L. esculen-
tum × S. sitiens express lower pairing frequency between
homologous chromosomes as compared to L. esculentum ×
S. sitiens hybrid plants. This was due to the development of
an allotetraploid and a monosomic addition. Homologous
chromosomeconstituentswere observed in trigenomichybrid
containing 12 additional chromosomes from S. sitiens and
2 from Solanum lycopersicoides.

Genomic in situ hybridization (GISH) potential to
confirm constitution phenomenon in somatic hybrids was
elaborated by [41]. Findings revealed that all Allium cepa ×
Allium roylei F1 hybrids had a chromosome number 16, that
is, diploid (2n) while chromosome morphology was not
differed among hybrids. A. roylei genomic DNA was used
as a probe while A. cepa served as blocking DNA. According
to GISH information, 8 chromosomes in each hybrid ex-
pressed green fluorescence which indicated A. roylei genomic
DNA whereas 8 chromosomes exhibited blue fluorescence, a
sign of blocking DNA. In addition, metaphase chromosome
spreads did not show any genomic recombination in somatic
hybrids. Therefore, GISH analysis verified the maternal
origin in onion hybrids.

5. Polyploidy Confirmation

Genomic in situ hybridization (GISH) is a powerful tool in
confirming the origin of polyploid taxon origination and
can also offer initial insights into the genomic rearrange-
ment rate. Camellia reticulata, an ornamental horticultural
plant, has a polyploidy behavior. Variation rate, with basic
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chromosome number x= 15, is from diploid (30) to hexaploid
(90). To determine the evolutionary history and genome
composition of C. reticulata, GISH analysis was applied.
C. pitardii and C. saluenensis genomic DNA was applied
as a probe DNA for labeling and hybridization of C. reticu-
lata metaphase chromosomes. C. pitardii-dyed section was
observed in tetraploid (4n) and hexaploid (6n) camellia
plants, respectively. However, C. saluenensis-painted part
was only expressed in hexaploid (6n) genome. Clear evidence
is provided by GISH about allopolyploid evolutionary origin
of Camellia reticulata. GISH proved that polyploid progeni-
tors are diploid C. saluenensis, C. reticultata, and C. pitardii.
Development of allotetraploids were due to C. reticultata
hybridization with C. pitardii while allohexaploid develop-
ment was because of these allotetraploid hybridization with
C. saluenensis [42].

Genome composition in polyploids, that is, diploid (2n),
triploid (3n), and tetraploid (4n), can be illustrated by using
GISH mechanism. GISH helps in understanding the poly-
ploidy formation due to interspecific crosses between Tulipa
gesneriana and Tulipa fosteriana. Diploid progeny (2n= 24)
showed equal distribution of parental chromosomes, that is,
one set of chromosomes from one parent and one from
the other. However, in triploid plants, 24 chromosomes
from one parent (T. gesneriana) while 12 from other parent
(T. fosteriana) contributed. In addition, tetraploid genome
comprised of 36 T. gesneriana chromosomes and 12 T. fos-
teriana chromosomes. In tulip hybrids, localization of GISH
signals on chromosomal regions of T. gesneriana were
observed predominately in intercalary and telomeric or sub-
telomeric positions. Moreover, in triploid and tetraploid,
putative rRNA gene positions were found in telomeric and
intercalary regions [43].

6. Hybrid Verification

For parental genome discrimination, visualization in somatic
hybrids may require hybridization mixture stringency, post
hybridization washes, and most important ratio of genomic
and blocking DNA [44]. Chromosome-banding technique
can not differentiate the chromosomes related to parental
species. In this regard, the GISH method of detection has a
priority for hybrid analysis and verification [45]. GISH
verified hybridity status in various horticultural crops such
as in citrus [25], cucumber [46], and Buddleja [47].

For hybrid verification in Clivia (Amaryllidaceae), GISH
and giemsa C-banding analyses were applied. Initial informa-
tion clarifies that “Belgian hybrids” and “German hybrids”
were similar to Clivia miniata on the basis of karyotypic
and genomic investigation. C. cyrtanthiflora confirmed its
hybridity status. GISH needed more stringency level and high
blocking DNA ratio as compared to probe DNA. Parental
genome location in mitotic metaphase chromosomes of five
artificially developed hybrids was identified by GISH and
C-banding methods. On metaphase plate, there was a con-
siderable ability for different parental genome centromeres
to inhabit 2 different concentric domains. Genome associa-
tion did not correlate with centromeric heterochromatin
presence or absence. Therefore, Clivia hybrids can be

identified easily through chromosomal study, even during
vegetative phase [48].

Hybrids, developed from interspecific crosses, should be
verified either contained hybrid characters or not. GISH ana-
lytical technique has proved to be the most exact and effective
way for hybrid status confirmation [49].

In plants, acquiring large chromosomes, GISH is an
informative tool to remarkably distinguish donor parental
genomes in hybrids [38].

Interspecific hybrids were obtained from interspecific
crosses between 5 Rhododendron species. Positive GISH
results can only be obtained by using mitotic chromosome
spreads through anthers. Significant distinction of paternal
and maternal chromosomes in hybrid chromosomes was
observed when 50ng probe DNA concentration was used
with blocking DNA, that is, collectively 3mg per milliliter
hybridization genomic mixture. In alien genome and chro-
mosome constitution detection in Rhododendron hybrids,
GISH has a practical importance. Therefore, this method is
a reliable improvement in breeding analysis [50].

Interspecific hybrids of Lycoris taxa are one-third in nat-
ural habitat. Most of them are sterile and morphologically
highly diverse. Partial fertility helps in observing meiotic
process in L. aurea × L. radiata hybrids. In backcross proge-
nies, recovery of functional gametes can be successfully
obtained.GISHdescribesmodifications in chromosomenum-
ber and constitution of such functional gametes.High genome
homologywasobservedbetweenLycorisMT-andA-genomes.
This indicated homoeologous recombination and partial
fertility of interspecific hybrids during meiosis. Variation in
recombination pattern and chromosome complements in
functional gametes recommended that interspecific hybridi-
zation is a major reason of Lycoris species diversification [51].

7. Introgression Breeding

Introgression breeding is used to transfer horticultural traits
successfully in the progeny. In tulip, this approach was
applied in Darwin hybrids and Tulipa gesneriana. Extent of
intergenomic recombination was demonstrated by GISH
technique. Total genomic DNA used for this purpose was
T. fosteriana cv. Princeps and T. gesneriana cv. Ile de France.
Complete distinction of parental genomes and intergenomic
recombination identification was approached by GISH. T.
fosteriana chromosome contribution and recombinations in
genome differed in all progenies. Maximum recombination
by T. fosteriana was five. In recombination, one fragment of
T. gesneriana and one fragment of T. fosteriana were present.
A number of recombinant segments in each chromosome
was two, and their allocation was ranged from distal to highly
interstitial regions. Darwin hybrids served an important role
as intermediate parent for T. fosteriana germplasm introgres-
sion into the T. gesneriana distinction [52].

In molecular cytogenetics, GISH efficiency is applied to
visualize homoeologous chromosome pairing duringmeiosis,
parental genome assortment, and genome recombination
[12]. The GISH method was used in genomic constitution
investigation to determine downymildew resistance potential
through introgression breeding in (A. cepa × A. roylei)
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hybrids by backcrossing with A. cepa. The GISH study
revealed that location of A. roylei fragments, in backcross
generations, containing downy mildew resistance gene is at
chromosome number 3’s long arm (distal end) [53, 54].

Parental genome detection and differentiation during
meiotic chromosome pairing in Paphiopedilum F1 hybrids
was carried out by GISH. Genome homology between the
parental species elucidates the close relationship between
the parental species. This demonstrated regular chromosome
association during P. delenatii interspecific crossing with P.
bellatulum and P. rothschildianum. However, hybrids devel-
oped from distant parents carrying karyotype verification
such as P. delenatii and P. rothschildianum interspecific
crossing with P. callosum, P. glaucophyllum, P. micranthum,
and P. moquetteanum showed irregular chromosome pair-
ing. Multivalents and autosyndesis presence showed that
discrimination of Paphiopedilum species chromosomes was
due to some structural modifications and microrearrange-
ments during interspecific hybridization. In Paphiopedilum
hybrids, genetic interaction and genome homology demon-
strate the chromosome pairing phenomena [55].

InLilium, hybridization of allotriploid lilywith diploid lily
is a successful method of introgression breeding [56]. The
GISH study explained that OTO lilies (allotriploid) introgres-
sing with OO genome lilies (diploid) showed aneuploidy
behavior. In addition, allotriploid lilies played an impor-
tant role in T-genome chromosome variation in the prog-
enies. GISH indicated that male sterile plants as maternal
parents can be used for developing aneuploids [57]. In Lilium
(Oriental × Trumpet) hybrids, GISH analysis identified the
genomic constituents and parental recombination. Results
revealed that most of OT (Oriental × Trumpet) hybrids are

developed by backcrossing the F1 hybrid with oriental parent.
Figures 2(a), 2(b), and 2(d) showed more oriental chromo-
somes as compared to trumpet chromosomes. OT hybrid
“Motown” showed 24 Oriental and 12 Trumpet chromo-
somes with one T/O genomic recombination. Similarly, a tet-
raploid (4x) OT Lilium hybrid “Stentor” showed 36 Oriental
chromosomes with one O/T recombinant chromosome and
only 12 Trumpet chromosomes were signalized containing
one T/O parental recombination. In one triploid hybrid
“Morini,” chromosomal composition were remarkably
deviate from the normal genomic composition, that is,
Trumpet chromosomes were more as compared to Orien-
tal chromosomes which proved that this hybrid was devel-
oped by backcrossing with Trumpet parent. Furthermore,
GISH results confirmed no recombinant chromosomes in
“Trudy” (OT) Lilium hybrid. In addition, 24 oriental and
12 Trumpet chromosomes were observed in this hybrid.
Consequently, for genomic investigation and parental
genomic contribution, GISH is a consistent method.

Tetraploid interspecific hybrids (OA) produced by
somatic chromosome doubling can be used for breeding
purposes. Such tetraploids crossing with diploid Asiatic and
tetraploid Asiatic or tetraploid OA hybrid developed triploid
and tetraploid progenies, respectively. GISH authentic analy-
sis of F1 OA hybrids explained that each parent (Oriental and
Asiatic) contributed 12 chromosomes. However, 24 Asiatic
chromosomes and 12 Oriental chromosomes developed trip-
loid plants in backcross progeny. Important point illustrated
by GISH was that tetraploid progeny developed by tetraploid
OA crossing with OA hybrids consisted of equal number of
maternal chromosomes, that is, oriental and Asiatic con-
tributing 24 chromosomes, respectively. In O×OA (2x–4x)

(a) (b)

(c) (d)

Figure 2: Genomic in situ hybridization (GISH) images of OT (Oriental × Trumpet) hybrids. (a) Motown (3x), (b) Stentor (4x), (c) Morini
(3x), and (d) Trudy (3x), with Oriental (red) and Trumpet (yellow) chromosomes, respectively.
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progenies, some progenies showed complete or double con-
tribution of Oriental parental chromosomes [58].

Detail genomic constitution and parental genomic
recombination can be identified in hybrids and polyploids
through modern genomic techniques such as GISH method
of in situ cytogenetic analysis [36].

In tulip, F1, BC1, and BC2 progenies developed from
Darwin hybrids backcrossing with Tulipa gesneriana were
analyzed cytogenetically through GISH. GISH can measure
thenature andextent of intergenomic recombination.One tet-
raploid (2n=4x=48) and one aneuploid BC2 (2n=2x=25+1)
were obtained in BC1 and BC2, respectively. F1b hybrid
morphometric analysis discriminates T. fosteriana and T.
gesneriana parental chromosomes on the basis of total length
of chromosomes. In addition, some heterochromatin seg-
ments in the intercalary and telomeric sites expressed higher
fluorescence intensity. The FISH study, confirming the GISH
results, showed these sites rich with rDNA. Noticeable in-
formation about genome was that there was a significant
amount of intergenomic rearrangement between parental
genomes of two species. This genomic recombination ranged
from 3 to 8 in numbers in BC1 progeny while 1 to 7 in BC2
plants. Recombinant chromosomes carried mainly a single
recombinant segment developed from single or in few situa-
tion double crossover phases. This makes the information
clear that, unlike the condition, most F1 hybrids of other
plant species and certain genotypes of Darwin hybrid tulips
showed normal diploid behavior, that is, haploid gamete
and diploid sporophyte development [59].

Lilium hybrids have extensive intergenomic recom-
bination in their backcross progenies. Trumpet or Martagon
chromosome fragments participated a lot during backcross-
ing breeding program. Therefore, it enhances the fertility of
new developed progeny. In this regard, backcross progenies
of OT andMAhybrids were analyzed through the GISH tech-
nique. In OT hybrids, BC1 progenies developed 15 euploids
(2x and 3x) and 6 aneuploids while BC2 developed only
aneuploids. First division restitution (FDR) produces 2n eggs
which was the basic reason of triploid progeny production
whereas aneuploid progeny production was due to viable
aneuploid gametes. In GISH analysis of MA hybrid, two
BC1 progenies showed aneuploid behavior containing chro-
mosome number 35 and 32, respectively. One BC1 progeny
carrying triploid nature was the result of indeterminate
meiotic restitution (IMR) [60].

Parental chromosome discrimination in intergenomic or
interspecific hybrids required a molecular tool such as GISH.
Mode of 2n gametes origin and intergenomic recombina-
tion in lily hybrids can be illustrated easily using such
technique [57]. Potential value of intergenomic hybrids
(L. auratum × L. henryi) can be confirmed by this method.
GISH confirmed equal participation of both parents in
L. auratum × L. henryi hybrid progeny. Viable 2n gamete
producing ability of progeny gives an opportunity to produce
Oriental AuratumHenryi hybrids after crossing with oriental
hybrids. OAuH progeny showed triploid behavior com-
prising of 12 Oriental chromosomes and 24 AuH hybrid
chromosomes. Cytogenetic study explained that FDR (first
division restitution) mode in F1 hybrids and through sexual

polyploidization recombinant chromosome fragments can
be transferred to further generations for obtaining horticul-
tural characters [61].

8. Conclusion

As a cytogenetic tool, GISH is a primitive and prominent
technique in plant genome analysis. GISH is a key advance-
ment to identify and characterize the genomes of hybrids and
progenies developed by classical breeding methods. Chromo-
some structure, genetic organization, genomic constituents,
and genomic recombinations are easily approachable by
the use of this technique. Although GISH provides a large
range of genomic study, genome sequencing provides more
clear genetic information. Therefore, further improvement in
genetic information can be performed due to advancements
in GISH such as multicolor GISH analysis.
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