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Abstract: Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are 
highly debilitating. IBDs are associated with the imbalance of inflammatory mediators within the 
inflamed bowel. Conventional drugs for IBD treatment include anti-inflammatory medications 
and immune suppressants. However, they suffer from a lack of bioavailability and high dose- 
induced systemic side effects. Nanoparticle (NP)-derived therapy improves therapeutic efficacy 
and increases targeting specificity. Recent studies have shown that nanomedicines, based on 
bowel disease’s pathophysiology, are a fast-growing field. NPs can prolong the circulation period 
and reduce side effects by improving drug encapsulation and targeted delivery. Here, this review 
summarizes various IBD therapies with a focus on NP-derived applications, whereas their 
challenges and future perspectives have also been discussed. 
Keywords: inflammatory bowel disease, nanoparticles, targeted delivery, nanomedicine 
applications

Introduction
Inflammatory bowel disease (IBD) is an umbrella term of immune response- 
mediated chronic remission and relapse bowel diseases. IBD is classified with 
Crohn’s disease (CD) and ulcerative colitis (UC) with different etiologies. CD 
and UC are diseases of unidentifiable causes. CD presents ulcers and granuloma 
centered on the small and large intestines where inflammatory occurs in the 
alimentary canal from the mouth to the anus. UC presents inflammatory response 
and successive ulcers and abscesses in the colonic mucosa.1,2 Patients with IBD 
have a raised potential risk relative to colon cancer. Due to the chronic inflamma-
tion development and a great number of immune cell filtration as well as immune 
cell-mediated organ destruction, IBD has become the third most common disease 
worldwide.3

IBD is a chronic inflammatory syndrome that influences the gastrointestinal (GI) 
tract and shows clinical variations not only in the developed countries (such as 
North America and Europe) but also in the developing countries (such as India and 
China).4,5 More than 5,000,000 people globally suffered from IBD. Currently, 
approximately 25 per million people yearly (developed countries) and 5 per 
one million people yearly (developing countries) lived with.6 This chronic inflam-
matory and debilitating disease need lifetime therapy, with enormous financial 
burden and healthcare system support.7
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Colitis-associated colorectal cancer and sporadic color-
ectal cancer are mostly developed due to two significant 
issues: irregular inflammation and immunosuppression of 
carcinogenesis.8 Recent research has shown that chronic 
inflammation in IBD could trigger the development of 
colorectal cancer. Oxidative stress from inflammation 
sites can induce DNA damage, leading to the activation 
of pro-carcinogenic genes or the silence of tumor suppres-
sor signals. Moreover, microbiota alteration in the gut can 
lead to chronic inflammation-mediated carcinogenic com-
ponent productions. These mechanisms are attracting 
increasing research interests.9

Recently, fast-developing diagnosis and treatment in 
IBD, such as the use of anti-inflammatory agents, have 
significantly reduced the surgery and hospitalization 
rates for patients. Therapies such as 5-aminosalicylic 
acid, corticosteroids, immunomodulators, antibiotics, 
and biological agents have been widely offered in IBD 
treatment, significantly reducing colitis-associated color-
ectal cancer.10–12 These tools are also defined as effec-
tive early preventions. However, immunomodulators 
may often lead to severe side effects among healthy 
tissues, such as lymphoma development.13 Without tar-
geting delivery, IBD treatment drugs may be absorbed 
into the systemic circulation and exposure to healthy 
tissues, resulting in increased severe side effects. Drug 
efficacy and safety have become an emerging question 
that calls for advanced drug delivery systems that would 
target-deliver medications into the inflamed sites and 
avoid absorption from the healthy tissues.14

Nanomedicines have been widely utilized in the phar-
maceutical field for loading hydrophobic drugs, showing 
a significantly reduced dosage use and increased treatment 
efficiency, leading to promisingly minimized systemic side 
effects.15,16 Current conventional therapeutic agents, such 
as powders and tablet formulations (orally administrated) 
as well as solution and emulsion formulations (intrave-
nously injected), are widely used for improving drug 
bioavailability.17 Nanocarriers may facilitate such conven-
tional delivery systems in a way that could overcome 
existing biological barriers, thus delivering drugs to 
designed specific sites.18,19 In the following content, we 
will focus largely on such new strategies that the nanocar-
rier system could bring in for IBD treatments.20,21

Disease Pathogenesis
In a closer look, IBD is a consequence of the dysregulated 
immunology among the chronic damaged of inflamed gut 

against antigens activation.22 In specific, bacterial load and 
alpha diversity significantly decreased in the microbiome 
environment, with a change of pH ranging from 2.3 to 8.3 
within ~24 h transit time frame.23,24 Compared to healthy 
bowel, IBD induces multiple unwanted symptoms such as 
fever, abdominal pain, bowel obstruction, chronic diar-
rhea, rectal bleeding, and weight loss, eventually causing 
colorectal cancer. The development and pathogenesis of 
IBD are multifactorial, representing a complex reciproca-
tion between different elements such as environmental 
factors, microbial dysbiosis, and genetic variations.25,26

When IBD occurs, innate immunity is the first line to 
initiate a primary defense by neutrophil accumulation and 
antigen activation, and then mononuclear phagocyte 
infiltration.27 In a normal homeostatic stage, macrophages 
and dendritic cells could effectively recruit TNF-β and IL- 
10-secreting T regulatory cells to sites to prevent imbal-
anced inflammation. The activated antigen presentation 
cell, such as dendritic cells, could provide antigens to 
activate naive T cells into effector cells. But this is not 
the case during IBD.28,29

Physical barriers and chemical barriers both changed in 
the inflamed tissue, resulting in epithelial barrier integrity 
loss and immune cell (such as Th1, Th2, and Th17) 
recruitment. Functional reprioritizing of leukocytes and 
leukocyte-mediated “genetic storm” have been widely stu-
died in IBD.30 Such studies showed that immune activa-
tion during IBD arouses protective effects, balancing the 
excessive amount of pro-inflammatory and anti- 
inflammatory factors. These factors are dynamically 
mediated by the production of targeted chemotaxis, cyto-
kines, and the generation of reactive oxygen species 
(ROS), phagocytosis, nitric oxide, and matrix 
metalloproteases.31 The systemic inflammatory responses 
expanded into numerous immune system-activating 
aspects, as well as considerably suppressive aspects. 
Although naturally developed to clear molecular dangers, 
these extensively generated pro-inflammatory cytokines 
(such as IFN-γ, IL-17, IL-4, and IL-13) may often facil-
itate IBD pathogenesis.32

Current Therapeutics
Traditional therapeutic approaches often function on med-
iating the systemic immune responses via regulating 
mucosal and aggravated inflammatory progression. These 
therapeutics are based on immune-modulatory medicines 
(such as aminosalicylic acid, corticosteroids, immunomo-
dulators (6-Mercaptopurine and Azathioprine), antibiotics, 
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and biological agents (Infliximab)), as well as strategies 
against pro-inflammatory factors (chemokines, integrins, 
and cytokines).33–37

For instance, corticosteroid dampens the initiation of 
the inflammatory response by hampering pro-inflammation 
cytokine production, inhibiting immune cell recruitment, 
and suppressing cellular translation of nuclear factor-κB 
(NF-κB). As a result, it improves vascular permeability, 
vasodilation, neutrophil infiltration, fibroblast activation, 
vascular proliferation, and collagen deposition.38,39 

Immunosuppressive medicines, such as tacrolimus,39 

mercaptopurine,40 methotrexate,41 azathioprine,42 and 
cyclosporine,43 could effectively inhibit lymphocytes acti-
vation and proliferation. Amino salicylate, for example, 
suppresses macrophage chemotaxis, mitogen-activated 
protein (MAP) kinase, and NF-κB signaling pathways. It 
also increases the peroxisome proliferator activator recep-
tor gamma (PPARγ).44

The dysfunction of the intestinal immune system may 
lead to microbial dysbiosis in the gut microbial commu-
nity, resulting in IBD. A variety of therapeutics is applied 
for immune dysregulation. For initial therapy and remis-
sion, antibiotics (such as ciprofloxacin and rifaximin) and 
probiotics (such as Bifidobacterium and Lactobacillus) are 
applied.45 One of the vital biological treatments in IBD is 
monoclonal antibodies (mABs).46 The mABs against pro- 
inflammation cytokines such as TNF-α and IFN-γ would 
target crosstalk among IL-23, IL-6, IL-17, IL-13, and 
TGF-β. The mABs against adhesion molecules like 
ICAM-1 could inhibit the recruitment of effector 
T cells.47,48 Inhibitors against chemokine receptors, hom-
ing-linked receptors (such as α4β7 integrin), and sphingo-
sine-1-phosphate receptors have also shown promising 
effects on IBD treatment.49,50 Notably, in the clinic, cur-
rent large-scale applications for IBD treatment include 
infliximab (anti-TNF-α mAbs),51 vedolizumab (α4β7 
integrin inhibitor),52,53 ustekinumab (IL12/IL-23 
inhibitor),52,54 and tofacitinib (JAK inhibitor).55

Immune cells are also largely investigated in IBD 
treatment. Cell-based therapies often include the suppres-
sion of immune response associated with antigen- 
presenting cells (macrophages and dendritic cells) and 
effector T cells, and also the depression of pro- 
inflammatory cytokines produced by leukocytes.28,56 

Recently, mesenchymal stem cells and hematopoietic 
stem cells are regarded as potential treatments for 
IBD.57–61 These cells have shown cell renewing property 
and may differentiate into multiple cell types with 

immune-suppressive and anti-inflammatory effects, as 
well as long-term gene expression tendency.

Although comparably effective, conventional treatments 
for IBD are limited in many aspects, such as minimal drug- 
bioavailability and systemic drug exposure-induced side 
effects.62,63 Nowadays, a fast-growing field of IBD treatment 
is focusing on developing new therapeutic strategies with 
various drug delivery systems. These systems may help us 
gain insights into disease progression and prognosis.63,64

Nano-mediated Therapies
In 2001, the targeted accumulation of small nanoparticles 
(NPs) size around 100 nm in the inflamed murine colon 
rather than a healthy murine colon was first 
demonstrated.65,66 Because of this passive accumulation 
property, NPs have become a promising drug delivery 
system for IBD treatment. Defective mucus layer and 
loss of barrier integrity of the inflammatory intestinal 
mucosa enable NPs to leak into the inflamed tissue pas-
sively. In specific, the defective epithelial barrier of 
inflamed intestinal tissue would increase gut barriers’ per-
meability, which promotes NPs’ infiltration. Moreover, 
inflamed mucosa increases mucus secretion, which facil-
ities NPs’ adhesion and diffusion through the layer of 
intestinal mucus. In the meantime, immune cells such as 
neutrophils and macrophages also infiltrate into the layer 
of inflamed mucosal and submucosal, promoting cellular 
uptake of NPs to the inflammation sites.15,67,68

Accumulated research has shown the safety and effec-
tiveness of nanomedicines as a promising approach for 
IBD treatment. With the help of rational drug delivery 
systems, conventional treatment drugs can be packed into 
the inflammatory tissues to treat IBD. Not only delivering 
natural compounds and conventional agents, but these 
delivery systems can also facilitate remission of IBD by 
enhancing treatment efficacy and reducing systemic expo-
sure in the healthy tissues.69–71 On the one hand, these 
delivery systems had passively or actively target them-
selves to the inflammation sites. On the other hand, they 
increase drug bioavailability and concentrations. Owing to 
epithelial enhanced permeability and retention effect 
(EPR), small size NPs were selectively uptake into the 
inflamed tissues’ intracellular matrix.72–74 Increased per-
meability of the intestinal epithelial barrier due to IBD 
also facilitates the transcellular transport of NPs. Once 
uptake, endocytosis induces NPs to transcytosis at the 
apical membrane of cells. NPs are then released at the 
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basolateral pole and interact with leukocytes at the sub-
mucosal layer.75–79

By increasingly understanding pathophysiological and 
pathogenesis in the inflammatory GI tract, we herein 
review the current nanocarriers attributed to inflammatory- 
targeted drug delivery.

Nanocarrier Systems
Biodegradable Nanomedicines
Drug delivery systems aiming to protect the hydrophobic 
agents often work by avoiding premature degradation and 
enhancing the sustained release of drugs at the targeted 
site.80 A controlled-release system, in such cases, provides 
an ideal strategy to maintain the frequency and concentra-
tion of drug release.73,81–83

For instance, high-water content hydrogel, a copolymer 
with a cross-linked network, has high biocompatibility 
with its physical similarity to biological tissues.84 

Hydrogels are proven effective in loading hydrophilic 
drugs and protecting them from being desaturated or 
aggregated.85 It has been shown that a hydrogel drug 
delivery system with alginate and chitosan in encapsulat-
ing anti-inflammatory tripeptide Lys–Pro–Val (KPV) to be 
significantly effective. Upon delivering to the inflamed 
colon, the hydrogel was efficiently released for treating 
colitis disorder in this dextran sulfate sodium-induced 
colitis model.86

Lipid NPs packaged with budesonide, when orally 
administrated, have shown a significant anti- 
inflammatory effect in colitis in vivo compared to free 
drug usage. After 12 hours of administration, 
a significantly higher concentration of NPs was detected 
in the inflamed colon. Alongside, these lipid NPs also 
improved histological scores, reduced myeloperoxidase 
activity, and suppressed pro-inflammatory cytokines in 
the inflamed colon.87 On the other hand, hyaluronic acid- 
conjugated self-assembled NPs, when loaded with bude-
sonide, have also shown a significant suppression of TNF 
and IL-8 among inflamed cells in vitro.88 In these studies, 
NPs are proven as biocompatible vehicles with minimal 
toxicity. As hyaluronic acid showing an anti-inflammatory 
effect, blank NPs also elicited significant IL-8 reduction.88

In rodent colitis models, dexamethasone-loaded solid 
lipid nanoparticles, when orally administrated, could sig-
nificantly suppress pro-inflammatory cytokines IL-8 and 
TNF compared to the free drug.89 Orally administered the 
Immunosuppressant tacrolimus-loaded PLGA NPs when 
orally administrated have also shown significantly higher 

drug accumulation in the inflamed tissue and greater colitis 
resolution than standard formulations in comparison.90

When incorporated into NPs, anti-sense oligonucleo-
tides could achieve high stability by NPs’ protection away 
from DNases’ degradation. In a rodent colitis model, 
orally administrated NF-κB anti-sense oligonucleotides 
showed efficacy.91 In the clinic, anti-sense oligonucleotide 
treatments such as Alicaforsen and Mongersen are also 
involved.92,93 These treatments are believed to be benefi-
ciaries of the NP-mediated drug delivery system.78,94–96 

Moreover, recombinant protein prohibitors-loaded PLGA- 
NPs, when orally administrated, have shown significant 
antioxidant effect and suppression of colitis disease 
severity.97

TNF is one of the vital targets for IBD treatment which 
plays an essential role in disease immunity.98 It originates 
from innate immune cells, feedbacks between innate and 
adaptive immune systems, and dominates IBD pathogen-
esis. In the mice model, intraperitoneal administration of 
engineered NPs loaded with polyethyleneimine/TNF-α 
siRNA had significantly suppressed TNF-α expression 
compared to siRNA itself.99,100

Natural Product-based Nano-systems
Natural polysaccharides, such as pectin, alginate, and chit-
osan, have been developed as oral hydrophobic drug deliv-
ery systems for targeting inflamed colon. These systems 
are non-toxic, easily manufactured, and FDA approved. 
These applications from the polysaccharide family protect 
against premature drug release and selectively release IBD 
drugs into the small intestine, colon, and also 
stomach.101,102

For instance, an engineered polysaccharide system sig-
nificantly suppressed colitis by inhibiting IL-22 
expression.103 Eucheuma cottonii and Acmella oleracea- 
extracted polysaccharides have been shown to regulate 
inflammation and inhibit colonic damage in dextran sulfate 
sodium (DSS)-induced colitis.103,104 Non-starch polysac-
charides were used for IBD treatment in vitro and in vivo, 
exhibiting significant improvement of immune stimulation, 
gut-microbiota modulation, anti-inflammation, and reoc-
currence rates.105 Amylose cornstarch packaged with 
Mesalamine has shown an accurate release of drug in the 
inflamed colon with a high withstandment of enzymatic 
and acidic conditions in the GI tract.106

Poly (epsilon-caprolactone) (PCL) microspheres, con-
sisting of NPs-in-microparticles, were designed to load 
plasmids and nucleic acids in oral deliveries. These 
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microspheres have been shown to target released at the 
inflamed intestine and tolerance against enzymatic degra-
dation in the upper GI tract.107,108 Moreover, quercetin- 
loaded chitosan-based NPs have been reported in an acetic 
acid-induced colitis rabbit model, demonstrating effective-
ness compared to free drug.109,110

Edible plant-derived non-toxic NPs have also been 
studied for IBD treatment.111 Grapefruit-derived NPs 
have the capacity of biodegradable, biocompatible, and 
stable in various pH conditions. Methotrexate-loaded 
grapefruit-derived NPs upgraded anti-inflammatory 
response in dextran sulfate sodium-induced IBD by redu-
cing IL-1β and TNF-α in macrophages of intestine 
tissue.112 Ginger-derived NPs have been developed to 
increase intestinal epithelial cell proliferation by upregu-
lating anti-inflammatory cytokines and reducing pro- 
inflammatory cytokines (IL-6, TNF-α, and IL-1β).113

Phytochemicals can target various pathogenesis and 
inflammation routes in IBD. A natural biopolymer-based 
nanocarrier is designed to carry an active compound 
6-shogaol to the inflamed colon.101,114 Ulva lactuca poly-
saccharide-selenium NPs represent a promising therapeu-
tic approach in anti-inflammatory for acute colitis.115 

Broccoli-extracted NPs demonstrated suppression of coli-
tis by stimulating adenosine monophosphate-activated pro-
tein kinase.116 In another study of the colitis model, krill 
oil liposomes loaded with budesonide could also inhibit 
TNF-α and have shown great potential in oral drug 
delivery.117

Cells and Exosomes
Bioengineered red blood cells as nanoparticle carriers is 
a new strategy for IBD treatment, showing high biocom-
patibility capacities and a significantly longer circulation 
time within blood.118,119 In a clinical trial among pediatric 
steroid-dependent CD patients, autologous red blood cells 
were used to load dexamethasone-21-phosphate, showing 
a significant therapeutic effect with 44% remission in 
patients.120 In the next six years’ continued study, 50% 
of patients showed sustained therapy efficacy and 
safety.121,122

Exosomes are extracellular vesicles (EVs) that are 
released by mammalian cells. Due to their nano-sizes, 
these EVs are considered natural NPs. EVs can transport 
signals such as proteins and RNAs from host cells to the 
recipient cells.123 EVs have been used for various innova-
tive drug delivery strategies so far. For instance, intestinal 
exosomes have been proven as a new strategy for IBD 

therapy.124,125 Intestinal epithelial cell-derived EVs con-
tain a large amount of transforming growth factor-beta 1 
(TGF-β1) with immunosuppressive activity.126 In dextran 
sulfate sodium-induced colitis, these EVs worked on 
immunosuppressive dendritic cells and regulatory T cells 
to protect against colitis progression. In an in vivo model, 
EVs secreted by granulocytic myeloid-derived suppressor 
cells were demonstrated to reduce dextran sulfate sodium- 
induced colitis, showing an attenuated Th1 cell population 
and an enhanced T regulator cell population in mesenteric 
lymph.127

Reduced levels of interferon (IFN)-γ and TNF-α were 
found in mice models of IBD. A study exhibited that IL-10 
incubated bone marrow-derived DCs would secret EVs to 
reduce colitis from trinitrobenzene sulfonic acid induction. 
In specific, EVs from IL-10 treated cells were associated 
with IL-10 mRNA upregulation, IL-2, IFN-γ, and TNF-α 
mRNAs downregulation, and T regulator cell upregulation 
in colonic tissue. These studies implied the importance of 
EVs as potent natural nanoparticles for transporting biolo-
gical contents in IBD treatment.128

The repairs of injured cells/tissues in the intestine can 
also benefit IBD treatment. Mesenchymal stem/stromal 
cell-derived EVs have shown therapeutic efficacy on tissue 
injury repair in colitis.129,130 EVs secreted by mesenchy-
mal stem/stromal cells in bone marrow, adipose tissue, and 
the umbilical cord could provide a promising approach for 
regenerative therapy. These EVs have the ability to 
migrate into damaged tissues, promote tissue repair, and 
modulate immune responses.20,129,131 Therefore, EVs may 
serve as potential nanocarriers for efficient, targeted drug 
delivery in IBD treatment.

Targeted Drug Delivery System
Targeted Nano-systems
Depending on the inflammation level (luminal or sys-
temic) and severity (mild, moderate, or severe) of IBD, 
nano-delivery systems can be administrated either orally 
or intravenously.122 Luminal and mild inflammation can be 
nano-targeted orally, whereas severe systemic inflamma-
tion often requires targeted intravenous delivery. In IBD, 
various nano-systems have adapted different targeting stra-
tegies to enhance inflammation site-delivery. These strate-
gies include but not limited to passive targeting NPs; 
mannose receptor targeting NPs; inflammatory receptor 
targeting NPs; charge-mediated targeting NPs; and micro-
environment-responsive targeting NPs (eg, redox, ROS, 
and pH-triggered release).62,132
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Various receptors are overexpressed in the endothelium 
of the inflammatory bowel. Therefore, ligand-mediated 
NPs may target these receptors and increase the accumula-
tion of drugs in the inflamed sites.133,134 For instance, 
hyaluronic acid could precisely target to CD44 receptor. 
Overexpressed CD44 on the surface of inflamed macro-
phages and epithelial cells can be specifically bond to 
hyaluronic acid among colitis tissues.135,136 On a UC 
mice model, hyaluronic acid-incorporated copolymeric 
NPs were encapsulated with tripeptide for colitis 
delivery.137

Inflammatory sites also exhibit an overexpressed level 
of folate receptors. Folate receptor-targeted NPs have been 
demonstrated to bind to activated macrophages and accu-
mulate in the inflamed intestine in mice colitis via active- 
mediated targeting.114,138,139 Moreover, macrophages 
express abundant mannose receptors in the membranes. 
An ex vivo study has shown that mannosylated-target 
PLGA-PEG NPs had more accumulation of model drug 
ovalbumin in inflamed murine colonic tissues than non- 
targeted PLAG-PEG NPs.15

Mesalazine-loaded pectin-silica-based NPs were 
designed to be controlled-release in the colon. These NPs 
exhibited a minimized release in the upper GI tract but 
increased release of mesalazine in the simulated colonic 
fluid due to enhanced sensitivity of pectin towards the 
pectinase.140 On the other hand, TNF siRNA loaded 
macrophage-targeted copolymer NPs effectively targeted 
macrophages and increased therapeutic effect than non- 
targeted NPs in IBD treatment. In rodent colitis models, 
the combination of TNF and cyclin D1 siRNA-loaded 
multi-compartmental NPs-in-microsphere oral system 
showed lipase-triggered drug release in the intestine. It 
exhibited significant gene silencing, suppression of mye-
loperoxidase activity, and also IL-1 and IFN reduction.141

CD98 plays a vital role in the homeostasis of the 
intestinal immune responses. It is overexpressed in epithe-
lial cells and macrophages in the colon of IBD.142 In the 
mice model, upregulated CD98 leads to colitis-associated 
tumorigenesis. In the dextran sodium sulfate-induced mice 
model, CD98 siRNA-coated polyethyleneimine (PEI)/ 
polylactic acid NPs were orally administered to treat colo-
nic inflammation.143 The results showed a significant sup-
pression of CD98 protein in the macrophages and 
epithelial cells of the intestine. In another rodent colitis 
model, this NPs-mediated drug delivery system has also 
been used for the local delivery of IL-10 expressing plas-
mid. Their results showed significant suppression of 

inflammation, and highly improved clinical activity 
score.143,144 Thus, ligand-incorporated NPs are demon-
strated effective in various applications.

The Trigger-release Nano-systems
Resveratrol is a hydrophobic therapeutic agent from a natural 
herb for the treatment of IBD. A study has shown that a pH- 
trigger-released poly(N, N-dimethylamino ethyl methacry-
late) NP system was established. In this system, chitosan was 
integrated into a hydrophilic vector, showing high biocom-
patibility and low toxicity. The loaded resveratrol was sus-
tain-released for drug efficacy.145

Eudragit-coated budesonide-loaded PLGA NPs were 
pH-dependent in ameliorating murine colitis model and 
demonstrated significantly increased efficacy compared to 
non-coated NPs. Eudragit loaded PLGA-modified copoly-
meric blend. Eudragit®L and Eudragit®S are anionic copo-
lymers containing methacrylic acid and methyl 
methacrylate and are approved non-biodegradable by 
FDA. These non-absorbable, non-toxic, and pH- 
dependent polymers are often utilized for IBD 
treatment.146 Moreover, dual sensitive (pH/time, pH/ 
enzyme, etc.) release NPs have also been developed to 
improve IBD therapy. For instance, carboxymethyl inulin 
responds to both redox and pH. Carboxymethyl inulin- 
engineered NPs showed a high accumulation in the 
inflamed tissue than that of free drug in colitis mice.147

The concentration level of endogenous ROS indicates 
oxygen metabolism. Increased ROS was found in the 
inflammatory intestinal mucosa. In IBD patients, mucosal 
ROS concentration is 10–100 times higher in the inflamed 
intestine than health controls.148,149 Nitroxide radicals in 
NPs have been shown to selectively and effectively inhibi-
tions ROS. In a colitis model, the disease activity index 
was significantly lower after seven days of orally admin-
istering engineered NPs.150 In another study, NPs were 
designed to trigger release molecules’ free radical scaven-
ger tempol to increase ROS concentrations in inflamed 
intestinal sites. Their design exhibited high therapeutic 
efficacy in both acute and chronic colitis mice.151

Orally administered nucleic acid for IBD therapy is 
usually hindered by poor cell membranes trans passing. 
NPs, when logically designed, may enhance RNA payload 
delivery. For instance, the pro-inflammatory cytokine TNF 
plays an important role in the progression and develop-
ment of IBD. A recent study found that orally admini-
strated, TNF siRNA-loaded Thioketal NPs may degrade in 
an environment of high ROS concentration in the inflamed 
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sites and may successfully suppress colonic TNF protein 
expression in colitis in vivo.150,152

The Charge-mediated Targeting
In IBD, the charged surface of inflammatory tissues can be 
specifically targeted by NPs of opposite charge via elec-
trostatic interactions. The mucosal composition of the 
inflamed colonic mucins comprises negatively charged 
carbohydrate fractions, unlike the healthy regions. Thus, 
cationic NPs as nanocarriers can increase mucous interac-
tion and prolong drug residency.153–155 In ex vivo studies, 
researchers have demonstrated significantly increased tar-
geting efficiency of positively charged chitosan NPs to the 
human inflammatory intestinal mucosa.156

On the other hand, cationic proteins such as transfer-
rin and eosinophil cationic proteins are abundant in 
inflamed areas. Thus, negatively charged NPs give pre-
ferential adhesion to these cationic proteins. In a colitis 
model of rats, negatively charged liposomes exhibited 
a higher accumulation in the inflammatory regions than 
cationic or neutral charged liposomes.157 These results 
showed that NPs positively or negatively charged can 
interact with components in the GI tract and offer spe-
cificity in drug deliveries.87 However, unwanted electro-
static interactions remain issues among these systems. 
Charged NPs may interact with the oppositely charged 
GI tract components like soluble mucins and bile acids. 
Thus, the efficacy remains investigated. The combination 
of ligand-mediated and charge-mediated NPs may facil-
itate the specificity.158–160

Conclusion and Future Perspectives
Current drugs for IBD, such as 5-aminosalicylic acid deri-
vatives, corticosteroids, anti-TNF mediators, immunosup-
pressive agents, and other biologic components, suffer 
from immunosuppression and long-term systemic expo-
sure. The utilization of nanocarriers could provide an 
efficient and safe approach for IBD therapy. To date, 
various nanocarriers have been studied, including self- 
assembled polymeric NPs, natural product-based NPs, 
exosomes, etc.

Compared with the conventional method, nanocarriers 
may prolong the retention period at inflamed sites and 
minimize administration frequency. Moreover, with the 
help of specific ligands-conjugated NPs, therapeutical 
agents can be delivered and accumulated to the inflamed 
GI tract, showing both high drug concentration at the 
disease sites and minimal systemic exposure to healthy 

tissues. Here we summarized recent research using nano- 
delivery strategies for IBD treatment. These delivery sys-
tems have been studied in multiple types of research and 
clinical trials with satisfactory results.

In summary, inflammatory region-specific targeting 
nanocarriers are likely to present a promising result in 
IBD treatment. The orally administrated formulation is 
the most desirable route so far, giving a suitable alternate 
for parenteral administrations. The versatility design of 
nanocarriers for proteins and nucleic acids also opens up 
opportunities for more advanced drug delivery designs, 
such as charge-mediated targeting, micro-environment 
triggered release targeting, and ligand-mediated targeting. 
These advanced drug delivery systems have shown the 
potential to improve current IBD treatment with enhanced 
therapeutic efficacy and improved patients’ life qualities.

Although general concerns have been brought up on 
the level of nanocarriers’ adverse effects, no factual data 
or conclusion has occurred so far. Nanotoxicology studies 
in animal models and the human GI tract are a must. NP 
sciences expand to various sizes, materials, and surface 
interactions. Thus, their applications in IBD therapy 
should be further explored with an increasing understand-
ing of the human GI tract. Immune cells and immune 
functions altered dramatically during inflammatory dis-
eases’ pathogenesis. Major immune regulators such as 
macrophages polarized to a pro-inflammatory state, facil-
itating system dysfunction. Thus, the switch of immune 
cells’ phenotypes with the help of NPs can be further 
investigated. With most nanocarrier designs applied in 
UC inflammation, therapies toward CD should be empha-
sized in the future.

The trend of applying multifunctional, multi-targeting 
NP in diagnosis and therapy is rising, but for successful 
clinical translation achieving long-term safety and minimiz-
ing pre-metabolism within system circulation are still the 
key. NP structural stability needs further optimization and 
validation. For NP scale-up and reliable manufacturing, 
delivery systems are often simplified from bench to bedside. 
Such simplification should base on achieving reduced drug 
load as well as prolonged remissions. Designing efficacious 
formulations and dosage forms for human administration 
needs to be further explored. Personalized patient IBD ther-
apy tailored by targeted nanomedicine will be realized.
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