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5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5′-phosphate (PLP)-
dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in
metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and
is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the
key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally
positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational
studies demonstrated that the overall enzyme reaction is limited by subtle conformational
changes of a hairpin loop gating the active site. These findings, coupled with structural
information, facilitated early prediction of allosteric regulation of activity via an extended
C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently
supported by the discoveries that mutations in the extended C-terminus of the erythroid
ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not
by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular
modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate
by modulating conformational flexibility of the active site loop. However, the precise identity
of any such molecule remains to be defined. Here we discuss the most plausible allosteric
regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures
and suggest how the mystery of the mechanism whereby the extended C-terminus of
mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be
unraveled.
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INTRODUCTION

5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) catalyzes the initial and key regulatory step of heme
biosynthesis in metazoa, fungi, and the α-subclass of proteobacteria (Stojanovski et al., 2019; Taylor
and Brown, 2022). Pyridoxal 5′-phosphate (PLP) is an essential cofactor for the reaction, which
involves the condensation of the α-carbon of glycine with the succinyl group of succinyl-Coenzyme
A (SCoA) to produce 5-aminolevulinate (ALA), carbon dioxide, and Coenzyme A (Hunter and
Ferreira, 2011) (Supplementary Figure S1). In metazoa and fungi, ALAS is translated as a precursor
with an N-terminal signal sequence that codes for import into the mitochondrial matrix. Following
import, the signal sequence is cleaved, and the mature enzyme has access to the substrate SCoA,
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which is produced in mitochondria as part of the citric acid cycle.
The requirement of SCoA as a substrate integrates heme
biosynthesis with oxidative respiration, and as a result the two
pathways are synchronized under normal healthy conditions.
ALAS activity is additionally synchronized with cellular iron
transport as porphyrin biosynthesis and iron transport unite
in the final step of heme production wherein the enzyme
ferrochelatase inserts ferrous iron into protoporphyrin IX to
yield heme (Kafina and Paw, 2017; Poli et al., 2021). As a
result of the central position of ALAS in these fundamental
biochemical pathways ALAS activity is highly regulated and
new modes of ALAS regulation continue to be discovered
(Tanimura et al., 2016; Zhang et al., 2017; Liu et al., 2018;
Peoc’h et al., 2019; Bailey et al., 2020; Nomura et al., 2021;
Rondelli et al., 2021).

Vertebrate genomes encode two chromosomally distinct
copies of the ALAS gene: ALAS1, which acts as a

“housekeeping” gene and initiates heme biosynthesis in all
cells for production of cytochromes and other heme-binding
proteins, and ALAS2, which is expressed only in developing
erythrocytes and produces, almost exclusively, the much larger
quantities of heme required for hemoglobin formation (Riddle
et al., 1989; Peoc’h et al., 2019). The catalytic cores of human
ALAS1 and ALAS2 are 75% identical and 94% similar in terms
of amino acid sequences, suggesting gene duplication and
similar enzymology despite the different metabolic
functionalities of the gene products. The high degree of
similarity in the catalytic cores of ALAS1 and ALAS2 is
lessened in the extended N- and C-termini of the enzymes
(Supplementary Figure S2) but the precise extent to which the
mature mitochondrial enzymes might be differentially
regulated is still an open question. The monomeric primary
structures of prokaryotic and vertebrate ALASs are illustrated
schematically in Figure 1A.

FIGURE 1 | (A). Schematic representation of ALAS monomeric structure. In vertebrate species the ALAS gene is duplicated, and the protein catalytic core (light
blue) observed in prokaryotes is bracketed by extended N- and C-termini. The mitochondrial targeting sequence is illustrated in light purple, while the intrinsically
disordered N-terminal extension (IDR) is in magenta, and the C-terminal extension is in dark red. Five conserved Heme Regulatory Motifs (HRMs, colored in cyan) are
conserved in vertebrate ALAS isozymes, as is a CXXC motif (yellow) in the extended C-terminus. The position of the active site lysine residue that binds PLP in the
active site is denoted by a white line, and the loop that gates the active site is represented by a dark blue line. (B). The position corresponding to the heme-binding site in
C. crescentus ALAS modeled into mammalian ALAS2. AlphaFold-predicted structures for human (light blue and gold; AlphaFold entry P22557) and murine (dark blue
and gold; AlphaFold entry P08680) ALAS2were aligned with R. capsulatus ALAS crystal structure (PDB code 2bwn; not shown) using Pymol. Themodeled site depicted
in yellow here is not expected to bind heme in mammals due to evolutionary divergences, and this site is illustrated solely for perspective on its spatial relationship to the
mammalian ALAS2 active site loop (purple), the C-terminal extension (shades of gold), and HRMs 4 and 5 (red). Additionally, the CXXC motifs are in green with the
cysteines shown as sticks.
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The ALAS-catalyzed reaction not only represents the first
committed step of heme production, but also the rate-
determining step of porphyrin biosynthesis, as most
poignantly evinced by the consistent observation that
exogenous ALA administration to mammalian cells leads to
rapid protoporphyrin IX accumulation (Hunter and Ferreira,
2011; Nokes et al., 2013). This is clinically important because
it means aberrations in ALAS activity can change the overall rate
of porphyrin production and cause porphyrin biosynthesis to
decouple from oxidative respiration and iron transport, resulting
in metabolic imbalances (Taylor and Brown, 2022). For instance,
certain liver toxins, such as allylisopropylacetamide, have long
been known to elevate ALAS1 activity beyond the rate of iron
transport, resulting in porphyrin accumulation and chemically
induced porphyria (Goldberg and Rimington, 1955; Granick,
1966). Conversely, genetic defects in ALAS2 that lead to lower
enzymatic activity have been identified as the basis for X-linked
sideroblastic anemia, a condition characterized by accumulation
of iron in erythroblast mitochondria (Abu-Zeinah and DeSancho,
2020). Remarkably, however, loss-of-function mutations are not
the only cause of ALAS2-associated metabolic disorder. A limited
number of mutations causing premature truncation or
frameshifts in the extreme C-terminal extension of ALAS2
lead to variants with increased catalytic efficiencies and a
disorder known as X-linked protoporphyria (Whatley et al.,
2008; Ducamp et al., 2013; Wang et al., 2020). Interestingly,
mutations in ALAS1 have not been associated with any disorder
(Stenson et al., 2003).

5-AMINOLEVULINATE SYNTHASE IS A
FOLD TYPE I PYRIDOXAL
59-PHOSPHATE-DEPENDENT ENZYME
WITH A DISTINCT ACTIVE SITE LOOP

PLP-dependent enzymes are structurally classified into seven
different fold types, of which fold type I, sometimes referred
to as the transaminase family, is by far the largest, with over 170
different Enzyme Classification numbers currently assigned
(Percudani and Peracchi, 2009). Like other members of the
PLP-dependent fold type I family ALAS is a homodimer with
the active site buried near the center of the enzyme at the interface
between the two monomers, with residues from each monomer
being critical for substrate recognition (Brown et al., 2018;
Stojanovski et al., 2019). Even though fold type I PLP-
dependent enzymes have very little overall primary sequence
similarity the active sites are highly conserved and facilitate
phylogenetic analyses demonstrating function-based
evolutionary relationships (Catazaro et al., 2014). It is thus
informative to compare the structure of aspartate
aminotransferase (AATase), which has been extensively
characterized and is generally considered to be a model for the
fold type I family (Toney, 2014), with the ALAS catalytic core, as
seen in Supplementary Figure S3. The aligned structures of
AATase in the open and closed conformations reveal the
structure collapses inwards towards the PLP cofactor upon

substrate binding (McPhalen et al., 1992a; McPhalen et al.,
1992b) A short active site loop (green and gold in
Supplementary Figure S3A) closes inward over the active site
cleft upon substrate binding, culminating in an arginine residue
that is highly conserved in fold type I enzymes, and functions to
form an ionic bond with the carboxylate group of the amino acid
substrate (Tan et al., 1998; Liang et al., 2019). In AATase, this
arginine is one of only two amino acids that has been designated
as a “closure-inducing residue”, meaning it is essential for
substrate-induced conformational change from the open to the
closed state in which catalysis is optimized (Hayward, 2004).
Comparison of these structures to analogous structures of
Rhodobacter capsulatus ALAS (Supplementary Figure S3B)
reveals that in ALAS substrate-induced conformational
changes are largely limited to the active site loop, which has
become longer and is turned more inward over the active site cleft
relative to AATase.

Detailed mutational, kinetic, and molecular modeling studies
have found that the rate of ALAS catalysis, and hence the rate of
porphyrin production, are controlled by the slow opening of this
active site loop, which allows the products to rapidly dissociate
from the enzyme (Hunter and Ferreira, 1999; Hunter and
Ferreira, 2011; Hunter et al., 2007; Stojanovski et al., 2019).
This rate-dependence on conformational dynamics would
seem to be an ideal situation for allosteric feedback inhibition
of the heme biosynthesis pathway via a mechanism wherein
effector binding to ALAS would modulate the active site loop
conformational dynamics, as we previously suggested (Hunter
et al., 2007).

5-AMINOLEVULINATE SYNTHASE
STRUCTURAL FEATURES REVEAL
IMPORTANT CLUES TO THE POSSIBILITY
OF ALLOSTERIC REGULATION

Feedback inhibition of ALAS activity by heme has been known
for over 50 years (Granick, 1966), and since then this regulation
has been found to occur at a variety of levels, including gene
transcription (Yamamoto et al., 1982), transport into
mitochondria (Lathrop and Timko, 1993; Munakata et al.,
2004), and targeting for degradation (Cable et al., 1996;
Yoshino et al., 2007; Tian et al., 2011; Nomura et al., 2021).
However, as of this writing direct binding of heme leading to
allosteric feedback inhibition of ALAS has only been reported for
the enzyme from the prokaryote Caulobacter crescentus, in which
axial heme binding by H340 and C398 near the C-terminus of the
enzyme causes PLP dissociation (Ikushiro et al., 2018)
(Figure 1B). While the authors reported that these residues
are conserved in some other α-proteobacteria and did confirm
that recombinant R. capsulatus ALAS could also be isolated as a
mixture of PLP- and heme-bound forms, these residues are not
conserved in eukaryotes, so if allosteric feedback inhibition of
ALAS in higher species occurs it must be via a different site. The
recently resolved crystal structure for human ALAS2 revealed
that the extended C-terminus might act as an autoinhibitory
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element by folding directly over the active site cleft, clearly
implying the existence of some allosteric modulator that alters
the conformational dynamics about the C-terminus to allow
substrates to access the active site (Bailey et al., 2020), and yet
the identity of this effector remains a mystery.

Each of the vertebrate ALAS isozymes contains five heme-
regulatory motifs (HRMs), consensus sequences containing a
cysteine-proline dipeptide with the cysteine functioning as a
ligand to Fe3+-heme (Figure 1A) (Carter et al., 2017;
Fleischhacker et al., 2020). HRMs are important in regulating
the activity of a wide variety of enzymes controlling gene
transcription (Hou et al., 2006; Fleischhacker et al., 2018;
Arunachalam et al., 2021), protein synthesis (Igarashi et al.,
2008), circadian rhythms (Yang et al., 2008), iron homeostasis
(Nishitani et al., 2019), signal transduction (Shen et al., 2014;
Schmalohr et al., 2021), and heme degradation (Fleischhacker
et al., 2015; Fleischhacker et al., 2018). The first two ALAS HRMs
reside in the mitochondrial import signal sequence, where they
are positioned to bind excess labile heme and form a complex that
is not imported into mitochondria, thus providing a form of
feedback inhibition (Lathrop and Timko, 1993; Munakata et al.,
2004). Following import the signal sequences are proteolytically
removed to produce mature enzymes with intrinsically
disordered N-termini (Stojanovski et al., 2016; Nomura et al.,
2021). This N-terminal extension contains a third conserved

HRM that feedback inhibits ALAS1 by binding heme to form
a complex targeting ALAS1 for proteolysis by the matrix
peptidase chaperone subunit ClpX (Nomura et al., 2021).
ClpX also controls ALAS2 turnover (Rondelli et al., 2021), and
since HRM 3 is conserved in ALAS2, it seems likely that HRM 3
also mediates ClpX degradation of ALAS2 in a heme-dependent
fashion, although this remains to be conclusively demonstrated.

The catalytic core of mammalian ALAS, which is
approximately 44 kD in size, contains two additional
conserved HRMs, which we designate HRMs 4 and 5. To the
best of our knowledge, no studies have yet examined their
potential biochemical significance. Along with the human
ALAS2 crystal structure, the mammalian ALAS1 and
ALAS2 AlphaFold-predicted structures reveal that even though
HRMs 4 and 5 are ~132 amino acids apart in the primary
sequence, in the three-dimensional structures the cysteine α-
carbons are only 11 Å apart, and most importantly, they are near
or at the enzyme surface in proximity to both the active site loop
and the extended C-terminus, in conspicuous positions for heme-
mediated feedback regulation of the mature enzyme (Figure 2).
The positions of HRMs 4 and 5 in the AlphaFold-predicted ALAS
structures are virtually indistinguishable from those in the human
ALAS2 crystal structure (Figure 2B).

There are, however, important differences in the relative
positions of the extended C-termini of the ALAS1 and ALAS2

FIGURE 2 | AlphaFold structures for mammalian ALAS1 and ALAS2 reveal C-terminal divergences from the human ALAS2 crystal structure. (A). Alignment of
AlphaFold-predicted structures of ALAS1 from human (UniProt accession # P13196), orangutan (UniProt accession Q5R9R9), bovine (UniProt accession A6QLI6),
beluga whale (UniProt accession Q9XS79), mouse (UniProt accession Q8VC19), and rat (UniProt accession # P13195). (B). Alignment of human ALAS2 crystal and
AlphaFold-predicted structures. AlphaFold-predicted structure (UniProt accession # P22557; blue) and crystal structure (PDB code 6HRH; beige with red
C-termini). (C). Zoom of panel (A). (D). Zoom of panel (B).

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 9206684

Hunter and Ferreira C-Termini in ALAS Isoforms

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


isozymes as it relates to HRMs 4 and 5. As seen in Figures 2A,C,
all six of the currently available AlphaFold-predicted structures
for mammalian ALAS1 position the extended C-terminus such
that the CXXCmotif forms a hairpin loop that brings the cysteine
sulfur atoms within ~ 3.5 Å of each other, suggesting disulfide
bond formation and a possible redox sensing role. Furthermore,
the CXXC loop is positioned almost directly over HRM5.

In contrast to the consensus positioning of the ALAS1
extended C-terminus over HRMs 4 and 5, the AlphaFold-
predicted mammalian ALAS2 structures have more
conformational heterogeneity about the C-terminal extension
(Figures 2B,D). Moreover, none of the ALAS2 C-terminal
extensions align with the ALAS1 C-terminus. Instead, the
ALAS2 C-terminal extensions fall into one of three different
conformations. In the AlphaFold-predicted structures for
orangutan, bovine, beluga whale, and rat ALAS2s, the
extended C-terminus folds over the active site to form an
“autoinhibited” structure, in excellent alignment with the
recently solved human ALAS2 crystal structure (Bailey et al.,
2020), but the AlphaFold-predicted human ALAS2 structure
places the extended C-terminus away from the catalytic core
in what would presumably correspond to an active enzyme
conformation. Meanwhile, in the mouse ALAS2, the extended
C-terminus adopts a conformation between these two extremes.
In all cases the cysteines of the ALAS2 CXXC motifs, like those of
the ALAS1 CXXC motifs, are in sufficient proximity to reversibly
form disulfides, and thus potentially act as redox sensors. But
unlike ALAS1, HRMs 4 and 5 of ALAS2 are not occluded by the
C-terminal extension and are thus more available to bind heme in
what would presumably be a feedback-inhibited complex.

A CASE FOR DIFFERENTIAL REGULATION
BY THE C-TERMINAL EXTENSIONS

Remarkably, in ten out of twelve different mammalian ALAS
mitochondrial import presequences AlphaFold predicts the side
chains of the cysteines in HRMs 1 and 2 to be almost ideally
positioned to act as axial ligands for heme (Supplementary
Figure S4). This agrees with experimental evidence
demonstrating HRMs 1 and 2 bind heme to feedback inhibit
mitochondrial import (Lathrop and Timko, 1993; Goodfellow
et al., 2001; Munakata et al., 2004). Further, it leads us to suggest
that the predicted conformational differences in the extended
C-termini might in turn be experimentally revealed to be accurate
predictors of important structural/functional divergences
between the two ALAS isozymes.

The AlphaFold structural database currently has nearly a
million protein structures available, including complete
proteomes for Homo sapiens and 47 other species (Jumper
et al., 2021; Tunyasuvunakool et al., 2021). These structures are
rapidly facilitating an unprecedented understanding of
structural biology (Hegedus et al., 2022; Porta-Pardo et al.,
2022; Varadi et al., 2022; Wehrspan et al., 2022). Yet, the
accuracy of AlphaFold in terms of predicting otherwise
unsolved structures is relatively untested since it only
became publicly available less than a year ago. AlphaFold is

reported to accurately predict not just the highly organized
structures observed in crystallized proteins, but also the extent
of conformational dynamics or even intrinsic disorder in
individual residues or peptides by calculating a per residue
confidence score referred to as a predicted local distance
difference test (pLDDT) (Tunyasuvunakool et al., 2021).
The current interpretation of this score is that it predicts
the extent to which a residue is unstructured, meaning a
low score should be seen not so much as an indication the
structure is inaccurate, but more as an accurate indication of
greater conformational dynamics. Because of this AlphaFold
should provide important insight into dynamic regulatory
structures that have been difficult to crystallize.

The ALAS1/2 conserved CXXC motif is of particular interest
since similar motifs act as allosteric redox switches via reversible
formation of a disulfide bond in many enzymes, including the
PLP-dependent enzymes cystathionine β-synthase and human
mitochondrial branched chain aminotransferase (Conway et al.,
2004; Wouters et al., 2010; Niu et al., 2018; Herbert et al., 2020).
The CXXCmotif-containing region was only partially resolved in
the human ALAS2 crystal structure, implying a high degree of
conformational mobility. The AlphaFold pLDDT scores for the
six mammalian ALAS2 (and six ALAS1) structures in the public
database agree, as they drop from very high confidence to low or
even very low for the corresponding amino acids in all species
except human ALAS2 (Supplementary Figure S5), in which the
extended C-terminus adopts what is presumably an activated
enzyme conformation. In this “activated” ALAS2 structure the
scores for the CXXC motif are mostly confident, indicating
greater structural organization, and with the cysteine side
chain sulfur atoms within 3.7 Å of each other, disulfide bond
formation is possible. Given all these considerations, if the CXXC
motif in the extended C-terminus of ALAS2 acts as a redox switch
we would predict that the “activated” structure would be oxidized
to the disulfide, while the more disordered autoinhibited
structure would be reduced.

The positioning of the human ALAS2 extended C-terminus
over the active site leads us to raise the questions as to what the
active conformation might look like and how the interconversion
between the inhibited and activated conformations might be
triggered. The corresponding AlphaFold structure appears to
provide a plausible answer to the first of these two questions,
but only hints at the answer to the second. Binding of the β-
subunit of succinyl-CoA synthetase (Furuyama and Sassa, 2000;
Bishop et al., 2012; Bishop et al., 2013) and/or other heme
biosynthetic enzymes might promote activation (Medlock
et al., 2015). A novel, but certainly not mutually exclusive,
possibility supported by the structures analyzed here is that
the CXXC motif acts as a redox sensor to modulate
conformational dynamics about the extended C-terminus.

In contrast to ALAS2, a crystal structure for ALAS1 has not yet
been reported, and the AlphaFold-predicted structures indicate
only one conformation for the ALAS1 extended C-terminus. Yet,
the CXXC motif is conserved in ALAS1, and if it has a redox
switching function then some degree of conformational
perturbation presumably occurs to form an autoinhibited
conformation or to alter the dynamics about the active site
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loop, which controls the catalytic rate. This latter possibility is
attractive as it would be consistent with the anti-correlation
between the active site loop and C-terminal extension of
ALAS2 during molecular dynamics simulations (Na et al.,
2018). Additionally, the shielding of the otherwise solvent
exposed HRMs 4 and 5 by the ALAS1 C-terminal extension
suggests an alternative conformation that would allow heme
access to feedback inhibit the enzyme. Given these
considerations we posit that the ALAS1 structures represent
an activated form wherein the CXXC motif is oxidized to the
disulfide and positioned to prevent allosteric feedback inhibition
by heme. Reduction of the CXXC motif would then facilitate a
conformation change allowing heme to allosterically feedback
inhibit ALAS1 via HRMs 4 and/or 5. A more prominent role of
redox sensing in ALAS1 is in part attractive due to the role of
ALAS1 in producing heme specifically for hemoproteins
catalyzing redox chemistry, such as cytochrome P450 enzymes,
catalase, and superoxide dismutase.

CONCLUSION AND OUTLOOK

In summary, based upon the alignment of the ALAS1 structures
we put forth the following postulates: 1) HRMs 4 and/or 5
facilitate feedback inhibition of ALAS1; 2) under oxidizing
conditions, the CXXC motif forms a disulfide bond that causes
the C-terminal extension to fold over HRMs 4 and 5 such that it
sterically prevents hemin binding and feedback inhibition; 3)
under non-oxidizing conditions, the CXXC motif is reduced and
adopts an alternative conformation wherein HRMs 4 and 5 are
exposed to provide feedback inhibition by excess heme. Stated
more concisely, feedback inhibition of ALAS1 by heme is
dependent upon cellular redox status.

Based on the alignment of the ALAS2 structures we put forth
the following postulates: 1) the C-terminal extension of ALAS2
adopts two different conformations, neither of which prevents
feedback regulation via heme binding to HRMs 4 and 5. 2) In

ALAS2 oxidizing conditions cause disulfide bond formation in
the CXXC motif and movement of the extended C-terminus not
over HRMs 4&5 but instead to a more equatorial and activated
position relative to the enzyme, thereby relieving the
autoinhibition observed when the extended C-terminus folds
over the active site. Stated more succinctly, heme and redox
status independently regulate ALAS2 activity.

These postulates are not incompatible with the possibility
of protein-protein interactions regulating activity. Of course,
experimental data will be required to further support or refine
the views presented here, but whatever the outcome the
remarkably divergent structures discussed here will likely
represent a key test of the capacity of AlphaFold to discern
fine structural differences and facilitate prediction of
allostery in all enzymes, including those dependent upon
PLP for functionality.
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