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Minimal fatal shocks in multistable 
complex networks
Lukas Halekotte* & Ulrike Feudel

Multistability is a common phenomenon which naturally occurs in complex networks. Often one of 
the coexisting stable states can be identified as being the desired one for a particular application. 
We present here a global approach to identify the minimal perturbation which will instantaneously 
kick the system out of the basin of attraction of its desired state and hence induce a critical or fatal 
transition we call shock-tipping. The corresponding Minimal Fatal Shock is a vector whose length can be 
used as a global stability measure and whose direction in state space allows us to draw conclusions on 
weaknesses of the network corresponding to critical network motifs. We demonstrate this approach 
in plant–pollinator networks and the power grid of Great Britain. In both system classes, tree-like 
substructures appear to be the most vulnerable with respect to the minimal shock perturbation.

Many processes in nature can be well described in terms of nonlinear dynamical systems possessing multiple 
stable states for constant external conditions1,2. As long as perturbations are small, it is sufficient to consider 
the linearized problem around an attracting state to evaluate its ’local’ stability. However, in real systems, the 
most threatening perturbations are usually not small but large, even constituting extreme events like storms, 
earthquakes or financial crises3–5. Obviously, large perturbations in multistable systems call for a ’global’ stabil-
ity paradigm.

Adequate frameworks have been introduced in the ecological literature—by Holling6,7—as well as in the 
engineering literature—by Soliman and Thompson8 (see9 for a recent review)—who both argued that the local 
approach to stability needs to be accompanied by non-local measures capturing the characteristics of a state’s 
basin of attraction. Recently, this global approach has been picked up in the field of complex networks in which 
multistability and large disturbances occur naturally as well10–14. Suitable aspects of a basin of attraction are its 
size, shape and depth, which until now have all been used—separately15–19 or in combination20–22—to measure 
the stability of multistable systems.

The suitability of a certain stability criterion for a specific problem also depends on the shape or distribution 
of the perturbations that occur. If perturbations are best described as noise, a suitable approach is to analyze 
the most likely escape path from the basin of attraction23–25. This path is determined by the position of the sad-
dle point on the basin boundary possessing the lowest barrier to escape26. A very different situation occurs if 
perturbations are singular, large and abrupt. The response of nonlinear systems to such perturbations has been 
considered in terms of linear response theory as well as transient dynamics in climate science27, fluid dynamics28,29 
and energy networks18,30,31. In networks, the most frequently applied characteristic to measure a system’s sta-
bility against large abrupt perturbations is the relative basin size which is usually estimated by a probabilistic 
measure called basin stability32–35. The frequent use of the basin stability approach might be justified due to 
its easy application and interpretation but is problematic as basins of attraction can be highly complex and/or 
distorted29,36–38. Accordingly, the sole inspection of the relative basin size could underestimate the actual risk of 
a critical transition due to specific perturbations.

A complementary characteristic is the shortest distance between a stable state and its basin boundary8,17. 
Remarkably, the same quantity is of interest in the field of hydrodynamics, where the corresponding direction in 
state space depicts the energetically most efficient perturbation—or minimal seed—that induces turbulence in a 
laminar flow28,39,40. Inspired by this minimal seed approach41, we employ an optimization technique to identify 
the smallest perturbation or shock being capable of kicking a dynamical network out of its current stable state 
and into the basin of another state. However, our interpretation of the critical perturbation is crucially different. 
We assume that the critical transition—also called tipping42— which the shock induces leads from a desired to 
an undesired state in which the system function is impaired or, in the worst case, lost. In an ecological setting, 
the system function could be the coexistence of species, and, hence, in accordance with its effect, we name the 
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specific perturbation the Minimal Fatal Shock (MiFaS). Since tipping occurs here as a consequence of one abrupt 
shock, we call the related critical transition shock-tipping or S-tipping. An important advantage of computing the 
MiFaS constitutes in providing not only the magnitude of the shock as a quantifiable global stability measure but 
also its direction in state space. In a network setting, the entries of this vector can be interpreted by means of the 
vertices of the underlying network topology. This gives us a promising tool to identify weak points constituted 
by certain substructures of the network and to understand their topological and dynamical origin.

We demonstrate the MiFaS in two exemplary systems—one ecological and one technical—which lay the 
ground for human food and electricity supply. These are mutualistic systems of plants and pollinators43,44, for 
which until now stability analyses were primarily based on local approaches45–48 or on perturbations of the 
topology49–51, and power grids13,14, for which various recent studies—using e.g. linear reponse theory52,53, sto-
chastic escape54–56 or the basin stability approach32,33—focus on unravelling the impact of network structure on 
network stability. Despite being dynamically crucially different, the two systems share two major similarities. 
Firstly, the dynamics of boths systems can well be captured within a network setting whose operating modes 
depend on the interplay between two different types of nodes and, secondly and more essentially, their operat-
ing modes naturally compete with alternative states which represent certain failures of the systems, namely the 
extinction of species and power outages. In both systems, we are able to identify and classify weak topological 
structures which make these systems particularly vulnerable with respect to perturbations.

Results
Minimal fatal shock.  The first step in identifying the MiFaS for a given system is to define a desired state 
X0 . We then assume that, prior to perturbations, the system resides on X0 and that a shock—applied at t = 0
—kicks the system’s state instantaneously to X(0) . A shock—now defined as x(0) = X(0)− X0—is said to be 
fatal if X(0) is located outside the basin of X0 and non-fatal if X(0) is located within the basin of X0 . Accordingly, 
the MiFaS is a vector which displays the shortest distance between the desired state and its basin boundary and 
the corresponding direction in state space (Fig. 1a).

The second essential step, is defining a norm for the perturbation size. It is important to note that the use 
of a certain norm is not only a technical but also an interpretative decision. Throughout this work, we use the 
Euclidean distance to the desired state X0 to quantify the magnitude d of a perturbation

To determine the MiFaS, we develop a search algorithm which is based on the minimal seed approach41 and 
which can be divided into two stages, the global random initialization (stage I) and the local non-random opti-
mization (stage II).

In stage I, we randomly draw initial conditions from a shrinking subspace in state space to find a fatal shock 
with a preferably small magnitude d (see “Methods” and Supplementary Fig. S1). Stage II starts with the smallest 

(1)d = ||x(0)|| = ||X(0)− X0||.

Figure 1.   Representation of the Minimal Fatal Shock and the related search algorithm. (a) The MiFaS (red 
arrow) is the smallest perturbation to the desired state X0 which puts the system outside the basin of X0 and 
into the basin of an alternative attractor Xa . (b) The search algorithm starts with a relatively large perturbation 
magnitude. The related subspace of allowed initial conditions is given by the largest circle and the direction of 
maximum amplification is displayed by the green arrow. As the magnitude of allowed perturbations is reduced, 
the direction of maximum amplification converges towards the MiFaS. Color coding marks the objective 
function (distance to the desired state after a short integration time) with dark colors displaying large values and 
bright colors small values. This figure was generated using MATLAB version R2020a (https​://www.mathw​orks.
com/).

https://www.mathworks.com/
https://www.mathworks.com/
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fatal shock received from stage I (Supplementary Fig. S1). From this point on, we take two seemingly oppos-
ing steps. First, we adapt the direction of x(0) in order to move X(0) away from the basin of X0 while keeping 
d fixed. Second, we move X(0) towards the basin by reducing d by a step size �d . By repeating these two steps 
iteratively, we attain smaller and smaller fatal shocks which finally converge towards a local MiFaS (see Fig. 1b 
and Supplementary Fig. S1). It is important to note that the outcome of the search—and thus the achieved local 
MiFaS—is dependent on the initialization in stage I. Accordingly, to attain the global MiFaS, we need to run the 
search algorithm multiple times and select the minimum of the local MiFaS as the global one.

The centerpiece of the outlined algorithm is the adaptation of the direction of x(0) during stage II, which aims 
at maximizing the distance between X(0) and the basin boundary of X0 . However, since this distance is not easily 
accessible, it is approximated by an objective function which can be maximized within a constraint optimiza-
tion. For the two applications we present here, the objective function can be thought of as the amplification of 
the shock over a preselected time T (see “Methods” for specific definition). The mechanism behind this is that 
trajectories close to the basin boundary stay close to it for long times as they move along the stable manifold of 
a saddle-type state while trajectories far off the boundary approach an alternative attractor faster and thus lead 
to earlier and stronger amplifications.

In summary, as a result of the optimization procedure we obtain the magnitude of the smallest distance to 
the basin boundary which can be utilized as a quantitative measure of global stability and the direction of the 
perturbation in the high-dimensional phase space.

Plant–pollinator networks.  In our first example, we consider a simple model of mutualism which cap-
tures the crucial aspects of a system of plants and their corresponding pollinators43,45. The mutualistic system is 
described as a bipartite network, with one set of nodes representing a number of NP plant species and one set 
representing a number of NA animal species whose dynamics are given by

where Pi denotes the abundance of plant species i ( i = 1, . . . ,NP ) and Aj the abundance of animal species j 
( j = 1, . . . ,NA ). In Eq. (2), the parameter α gives the intrinsic growth rate, βik ( β̃jl ) the competitive pressure of 
plant (animal) species k (l) on plant (animal) species i (j), γij ( ̃γji ) the benefit plant (animal) species i (j) obtains 
from animal (plant) species j (i) and h the handling time for pollination. As a general principle, we assume the 
benefit a species gains from pollination to be obligatory for its own growth, an assumption which is necessary 
to obtain multistability in this model57. Therefore, we choose the net growth rate α ≤ 0.

In order to keep the parametrization as simple as possible, we set α , βii ( β̃jj ) and h to be equal for all species. 
To reduce the complexity of the overall interaction pattern, we assume all-to-all coupling for the interspecific 
competition between species within one set, whereby βik = β0/(NP − 1) for i  = k ( β̃jl = β0/(NA − 1) for j  = l ). 
By contrast, a mutualistic interaction between an animal and a plant species can either be absent, in which case 
γij = 0 ( ̃γji = 0 ), or present, in which case γij = γ0/κi ( ̃γji = γ0/κ̃j ), where κi ( ̃κj ) denotes the degree or the num-
ber of mutualistic partners of plant (animal) species i (j). This formulation corresponds to a full trade-off between 
the benefit a species attains from one partner and the number of partners this species has45. An important aspect 
of the chosen parametrization is that species solely differ on account of their position in the mutualistic network. 
In the following, we determine the MiFaS for realistic plant–pollinator networks from the Web of Life Database58 
representing networks from different geographic locations across various climate zones (see Supplementary 
Fig. S5 and Supplementary Table S2). With α = −0.3 , βii = 1.0 , β0 = 1.0 , γ0 = 4.5 and h = 0.1 , we choose the 
model parameters in a way that ensures that each of the studied systems possesses a state in which all species 
coexist. This ’desired’ state X0 is opposed to multiple ’undesired’ states in which one or more species are gone 
extinct (the MiFaS is actually fatal).

To interpret the results, it is useful to state some general considerations first. Due to the mutualism, the 
growth of a species depends on the abundance of its mutualistic partners. As the growth of these partners can 
also depend on further other partners, these further partners indirectly support the growth of the first species. 
We could continue building this chain of dependencies but essential is that species being close to each other 
within the network and especially those sharing partners benefit from each other. On the other hand, due to 
competition high abundances of one species directly impede the growth of all species within the same group 
(animals or plants). Hence, the net effect which an increase or decrease of a species’ abundance has on another 
species depends on the interplay between the two processes. The indirect benefits can either balance or enhance 
the negative effects due to competition depending on whether species are close (balance) or far apart (enhance).

At first, we compute the minimal fatal shock (MiFaS) for an exemplary network from Morant Point in Jamaica 
(Fig. 2a). The topology of this system is characterized by an asymmetric division into a small tree-like part and 
a large core, i.e. a large mostly well connected component. This topological division is mirrored in the direc-
tion of the MiFaS which is visualized by the color-coding. A small negatively perturbed part consisting of the 
tree-like periphery (nodes within the yellow shaded region in Fig. 2a) plus its single non-peripheral neighbor is 
opposed to the rest of the network which is positively perturbed. This division exemplifies how the mutualistic 
and competitive interactions between species shape the system’s response to perturbations. In the tree-shaped 
part of the network, all species are close to each other but far away from most other species. Furthermore, due 
to the sole connection between the two characteristic structural parts of the network, the share of partners 
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between the two is minimal. As a result, the interdependency of species within the tree-shaped part is extremely 
high. Accordingly, the loss of abundance of any species in the tree-like structure—as it is the case in the MiFaS 
(Fig. 2)—significantly affects all other species in this tree-like periphery. On the contrary, the competitive stress 
due to species within the large component is high as it is not balanced by the indirect benefits. It is actually even 
enhanced as the increase of abundance of one species boosts the growth of its partners which again enhances 
the competive stress on the peripheral tree-like structure.

After the system has been hit by the MiFaS, all ten species within the tree-like periphery are lost in the long 
run (Fig. 2c and yellow shaded region in Fig. 2a). The remaining species—except for the single neighbor of the 
periphery—tend to higher abundances as the competitive pressure on them is relaxed. Accordingly, the new 
asymptotic state (Fig. 2c) again shows that the net impact of the peripheral species on most other species has 
been negative. Apart from the new asymptotic state, the transient leading there (Fig. 2b,c) is of interest as well. 
In fact, the transient behavior is typical for an initial state close to the basin boundary which is made up by the 
stable manifold of a saddle point. The transient at first moves towards the saddle fast (Fig. 2b), stays in its vicin-
ity for some time as the repulsion is weak and finally settles on an attractor which, in this case, is the undesired 
state of partial extinction (Fig. 2c).

Overall, we examine the MiFaS for a total of 59 plant–pollinator systems, each being based on one of the real-
world network topologies. For comparison, we order the networks from sensitive to robust according to the mag-
nitude of their respective MiFaS and depict the direction of the MiFaS for five further exemplary systems (Fig. 3).

Some characteristics found for the MiFaS of the exemplary network (Fig. 2) prove to be generally valid. For 
each system, the division of the MiFaS into a small negatively perturbed part and a larger but weaker positively 
perturbed part displays how mutualistic interdependency and competition shape the system’s response to per-
turbations. In this context, the negatively perturbed part marks the weakest point of the network at whose outer 

Figure 2.   Minimal Fatal Shock for an exemplary plant–pollinator network. (a) Direction of the MiFaS. The 
perturbation vector is scaled to a length of 1. The relative contribution of each element of the vector (node in the 
network) to the overall perturbation is represented by the area and the color saturation of the respective squares 
and circles. A pink coloring denotes a loss and a green coloring a gain in species abundance at the respective 
node. Squares portray pollinators and circles plants. Species being lost after the perturbation are marked by 
the yellow shaded region. Placement of the vertices is based on the Kamada–Kawai algorithm66 obtained from 
python-igraph version 0.7.1 (https​://igrap​h.org/). (b) Transient behavior following the MiFaS. Dark gray area 
shows the situation before the perturbation (desired state). Lighter gray area shows how the state variables 
are altered due to the perturbation. Light gray area depicts the transient behavior after the system has been 
perturbed. (c) Evolution over a longer time span. Vertical line displays the time interval shown in (b). The figure 
was generated using MATLAB version R2020a (https​://www.mathw​orks.com/).

https://igraph.org/
https://www.mathworks.com/
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edge the extinction occurs. Speaking in ecological terms, we find these weak points always being associated with 
specialization and the distribution of negative perturbations depends on the nature of the caused interdepend-
ency: in the exemplary system (network 1 in Fig. 3), where the specialization among all species within the tree-
like structure is rather mutual, all involved species are significantly perturbed (the same for network 13 and partly 
for network 4, Fig. 3). However, the more asymmetric the specialization gets—meaning that many specialists are 
connected to a single generalist—the stronger the negative perturbation focuses on this generalist (networks 4 → 
26 → 27 → 49, Fig. 3). This perturbation structure proofs to be efficient as the dependency of the generalist on 
each single specialist is low but its cumulated dependency on all specialized partners is high. A perturbation at 
the generalist therefore induces a negative feedback whose strength also depends on the number of connections 
the generalist has to other-non-specialized species. Accordingly, network 49 is much more robust than network 
26 as the decisive generalist is highly connected to the core.

The positive contribution to the overall MiFaS marks the impact of competitive forces which depends on 
the global interdependency among species. In the case of a single well-connected core and a periphery which 
only consists of specialists being directly connected to this core, indirect positive effects between species bal-
ance competive effects as all species are close and well connected. Accordingly, we do not find any significant 
contribution of positive perturbations to the overall MiFaS (networks 37, 49, Fig. 3). The contrary is the case if 
the core is not well build, meaning that only a few connections between important hub nodes exist (networks 4, 
26) or if—due to strong reciprocal specialization—a larger peripheral structure exists (networks 1, 13). In such 
cases, positive perturbations at rather central core-species contribute significantly to the overall MiFaS and thus 
to the extinction of peripheral species. In summary, a strong global interdependency among all species favors a 

Figure 3.   Magnitudes of 59 and direction of six MiFaS in plant–pollinator networks. The 59 networks are 
ordered, from low to high, and labeled according to their respective magnitude of the MiFaS. In addition, the 
direction of the MiFaS is shown for six exemplary networks. Perturbation vectors are scaled to a length of 1. 
The relative contribution of each element of the vector (node in the network) to the overall perturbation is 
represented by the area and the color saturation of the respective squares and circles. A pink coloring denotes 
a loss and a green coloring a gain in species abundance at the respective node. Squares portray pollinators and 
circles plants. Species being lost after the perturbation are marked by the yellow shaded region. Placement of the 
vertices is based on the Kamada–Kawai algorithm66 obtained from python-igraph version 0.7.1 (https​://igrap​
h.org/). The figure was generated using MATLAB version R2020a (https​://www.mathw​orks.com/).

https://igraph.org/
https://igraph.org/
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system’s robustness whereas a strong local interdependency paired with a weak global interdependency depicts 
the worst case scenario.

Great Britain power grid.  As a second example we consider a coarse-grained model of a power grid which 
exhibits synchronization dynamics. In this framework, a power grid is described as a network of Kuramoto-
like13 second order phase oscillators whose dynamics are given by

where φi and ωi denote the phase and frequency deviation of oscillator i from a grid’s rated frequency (which 
will hereinafter be referred to as phase and frequency). The parameters α and Pi are the grid’s damping constant 
and the net power input/output of oscillator i, respectively. The capacities of the transmission lines and therefore 
also the topology of the grid are contained in the matrix K, with Kji = Kij > 0 if oscillators i and j are connected 
and Kij = 0 otherwise.

As an example, we consider the Great Britain power grid which consists of 120 nodes and 165 transmission 
lines59. For reasons of simplification, we assume one half of the oscillators to be generators ( Pi = +P0 ) and one 
half to be consumers ( Pi = −P0 ) whose distribution within the grid we draw randomly (see Fig. 5). Further-
more, we choose the same maximum capacity for all transmission lines, either Kij = K0 or Kij = 0 . In a realistic 
parameter setting of this model, one ’desired’ synchronized state ( φi = const and ωi = 0 for all i) representing 
stable operation competes with several ’undesired’ non-synchronized states. With α = 0.1 , P0 = 1.0 and K0 = 5.0 , 
we choose the model parameters accordingly. In this setting, the MiFaS represents the smallest perturbation to 
the synchronous state which induces a shift to one of the non-synchronous states interpreted as a power outage.

The combination of frequencies and phases is actually problematic when determining the MiFaS since they 
differ in units. We therefore only take into account perturbations in the frequencies ω . In this context, choosing 
the frequencies ω instead of the phases φ seems reasonable as disturbances usually occur due to fluctuations 
in the power generation or consumption60. Such parametric disturbances would first affect the frequencies via 
dω/dt (Eq. 3). Furthermore, considering only frequencies allows a clearer depiction of the MiFaS, since the cor-
responding vector contains exactly one entry per node of the power grid.

Examining one random realization of the power grid (Fig. 4a), we find that, like in the exemplary plant–pol-
linator network, the MiFaS is associated with a tree-like structure including the most peripheral nodes of the 
network (according to the resistance centrality proposed by61, see Supplementary Fig. S7). In fact, the same 
structure is highlighted by some of the eigenmodes of the graph Laplacian (see Supplementary Fig. S8). However, 
apart from the observation that the MiFaS is orthogonal to a neutral perturbation affecting all oscillators in the 
same way which is equivalent to its first eigenmode, we find no simple connection to the graph Laplacian (see 
Supplementary Information).

In order to understand the effectiveness of the MiFaS, it is instructive to have a closer look at how the desyn-
chronization occurs after the system has been hit by the MiFaS (Fig. 4c,d). The desynchronization is triggered 
by an overload on the transmission line which connects the seven northermost oscillators to the rest of the grid 
(Fig. 4b). Due to the accumulation of consumers within this tree-like structure (5 consumers towards 2 genera-
tors), already in the unperturbed state, the load—K sin(φj − φi) for the line connecting nodes j and i—on the 
’trigger transmission line’ is comparatively close to its maximum capacity K (see Fig. 4c). Intuitively, a strong 
deceleration of oscillators inside plus an acceleration of oscillators outside the tree-like structure seems to be an 
efficient way to induce an overload. Indeed, we find the strongest negative perturbations at the seven oscillators 
within (Fig. 4b) as well as positive perturbations at several oscillators outside the tree-like structure. However, 
in the northern part of the grid, the overall MiFaS roughly follows a broad gradient distribution with negative 
perturbations on both sides of the trigger transmission line and the strongest positive perturbations at rather 
distant nodes in the northwest of Great Britain. This distribution is efficient as the perturbations in frequencies 
first have to be transferred into phase deviations to induce an overload. A relatively smooth gradient ensures that 
the arising phase deviations are balanced slowly and thus a large transmission load can build up.

This transfer can be observed in the first stage of the transient following the MiFaS (Fig. 4c,d). In this stage, the 
system evolves rather smoothly towards a point where the frequency deviations of all oscillators are close to zero 
but where, at the same time, the transmission load on the trigger line (red line in Fig. 4) has passed its maximum 
capacity. The system subsequently enters a stage in which both transmission loads as well as frequencies oscillate 
erratically until the oscillations suddenly collapse and the system settles on an undesired attractor. It is remark-
able that the final overload (green line in Fig. 4) is not located on the line which triggered the desynchronization 
but on a line deeper in the tree-like structure (Fig. 4c). The final overload is similar to a cutoff of two consumers 
from the rest of the grid, as the frequencies in the two departed components evolve more or less independently. 
It is however important to note that this particular undesired state represents only one of several possible out-
comes. Indeed, already the slightest variation (smaller than the finite precision of the search algorithm) of the 
initial perturbation can lead to a different non-synchronous asymptotic state, although the trigger transmission 
line is always the same. Such high sensitivity is often an indicator for complexly intervowen basins of attraction, 
characteristic to many highly multistable systems62.

In order to gain more insights into how certain topological features harm a power grid’s stability against 
shocks, we examine some of the local MiFaS inducing power outages (Fig. 5). These local minima correspond 
to different outcomes of the applied optimization scheme for the same network topology and parametrization 

(3)

dφi

dt
= ωi

dωi
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N
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and thus represent further close but less crucial distances between the desired state and its basin boundary. As 
we are interested in distinct topological weak points of the grid, we take into account only those local minima 
which differ in the involved trigger transmission line (highlighted edges in Fig. 5).

The local MiFaS, and in particular the examination of the associated trigger transmission lines, reveal two 
mutually reinforcing sources for the emergence of weak points. Firstly, desynchronization events are triggered 
on transmission bottlenecks which result from the loose connection between a peripheral subgraph and the 
rest of the grid. Four out of five of the shown local MiFaS (Fig. 4 and Fig. 5a–c) are actually related to the most 
pronounced case of such a bottleneck which is a bridge, i.e. a single edge connecting two subnetworks. Secondly, 
the accumulation of oscillators of the same type within a subgraph induces a local mismatch between power 
generation and consumption (Fig. 4 and Fig. 5a–d). We find each of the shown local MiFaS to be related to 
such a local mismatch. Already in the unperturbed state, this mismatch has to be balanced by a high initial load 
on the connecting transmission line(s) which in turn results in a low threshold for an overload (Fig. 5d). This 
overload is then triggered by the MiFaS by reinforcing the generation/consumption imbalance between the two 
subgraphs. Accordingly, all fatal shocks involve strong frequency perturbations with a sign according to the 
already established power mismatch in the peripheral subgraph and frequency perturbations in the opposite 
direction in adjacent areas of the grid. However, as in the global MiFaS, the boundary between positive and 
negative perturbations is not sharp but more (Fig. 5a,c,d) or less (Fig. 5b) follows a kind of gradient.

Of particular interest is the local MiFaS shown in Fig. 5c as its underlying topological motif is quite com-
mon in the network: a node with degree 1, also termed ’dead end’32. Apart from the two dead ends within trees 
(Fig. 5a,b), the portrayed dead end is the one being most sensitive to perturbations despite or seemingly because 

Figure 4.   Minimal Fatal Shock in the Great Britain power grid. (a) Direction of the MiFaS. The perturbation 
vector is scaled to a length of 1. The relative contribution of each element of the vector (node in the network) to 
the overall perturbation is represented by the area and the color saturation of the respective squares and circles. 
A blue coloring denotes a deceleration and a pink coloring an acceleration at the respective node. Squares 
portray consumers and circles generators. Width of transmission line scales with respective initial transmission 
load. (b) Blow-up of tree-like structure in (a). (c, d) Transient behavior following the MiFaS. (c) Time series 
of the loads on the transmission lines included in (b). Colors of highlighted loads correspond to colors of 
transmission lines in (b), remaining loads are depicted in white. (d) Time series of the frequency deviations of 
all oscillators, color coding corresponds to perturbation magnitude and direction at each node. The figure was 
generated using MATLAB version R2020a (https​://www.mathw​orks.com/).

https://www.mathworks.com/
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it is connected to a rather central node of degree 6 (see also Supplementary Fig. S7). For none of the surroundings 
of the other dead ends, which are all adjacent to lower degree nodes, we find a local MiFaS of similar low mag-
nitude. Accordingly, we conclude that a rather central position of the node from which the peripheral subgraph 
branches off might actually harm its robustness against particular perturbations.

Discussion
One of the fundamental questions in the theory of complex networks is how structure affects stability. We address 
this issue from a new perspective by examining the smallest non-small perturbation which induces a critical tran-
sition towards an undesired state in a multistable system. As we treat perturbations as instantaneous state changes 
in phase space, we refer to them as shocks. Following an ecological interpretation of the induced shock-tipping or 
S-tipping event, we term the corresponding perturbation vector the Minimal Fatal Shock (MiFaS) and present an 
optimization algorithm to identify the MiFaS in typically high-dimensional networks. The optimization proce-
dure provides a direction vector containing perturbation magnitudes for each node. Due to the straightforward 
visualization of this vector in a network setting, the MiFaS enables us to draw conclusions on structural and 
dynamical characteristics being responsible for the system’s high sensitivity in this particular direction. Further-
more, we show that we can combine this information with the comparison of different network topologies by 
using the magnitude of the MiFaS as a stability criterion. Since we are dealing with high-dimensional systems, it 
is difficult to prove whether the identified MiFaS is indeed the global minimal fatal shock. However, what seems 
to be a drawback at first sight, is in fact advantageous, namely, as we receive not only one but various dangerous 
perturbations which point to different topological weaknesses of a network.

We demonstrate applications of the MiFaS in two exemplary systems. The first example are pollination 
networks in which, to our knowledge, we are the first to tackle the issue of global stability. In the second exem-
plary system—power grids—the global approach to stability analyses is already much more common. Here, the 

Figure 5.   Local Minimal Fatal Shocks in the Great Britain power grid. Direction of the local MiFaS. The 
perturbation vectors are scaled to a length of 1. The relative contribution of each element of the vector (node 
in the network) to the overall perturbation is represented by the area and the color saturation of the respective 
squares and circles. A blue coloring denotes a deceleration and a pink coloring an acceleration at the respective 
node. Squares portray consumers and circles generators. (a–d) Blow-ups of the significantly perturbed area 
of four local MiFaS which correspond to different outcomes of the optimization process. Highlighted edges 
represent the trigger transmission line of the particular perturbation. The figure was generated using MATLAB 
version R2020a (https​://www.mathw​orks.com/).

https://www.mathworks.com/
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MiFaS approach complements former analyses by adding the perspective of the most dangerous perturbation. 
Dynamically the two systems are crucially different which ultimately requires an individual formulation of 
the optimization problem for each system (see “Methods” and Supplementary Information). Nonetheless, the 
MiFaS show some prominent similarities. Most importantly, in both cases, the direction vectors of the MiFaS 
highlight local structures. It is this ’localization’ of the MiFaS which allows the identification of critical network 
motifs which account for the low stability against targeted perturbations. However, it is not only the localization 
but also the deduced motifs which resemble one another. We find most MiFaS being associated with intersec-
tion points—like articulation points, bridges or bridge-like edges—whose removal would disconnect or nearly 
disconnect a peripheral structure from the rest of the network. In fact, in both exemplary systems, the most 
endangered structure we find is a tree-like structure being connected to the rest of the network via a single bridge.

Nevertheless, since the nature of the edges in the two exemplary networks is different, the mechanism induc-
ing the sensitivity against particular shocks is quite different as well. Plant–pollinator systems are interaction 
networks in which the edges represent the mutualism (aka pollination) which is vital for a species’ growth 
or reproduction. Accordingly, at the edge of the periphery, intersection points indicate high local mutualistic 
dependencies. These structures are vulnerable to targeted attacks as a perturbation can spread to the periphery 
and get stuck which ultimately induces a negative feedback loop. Responsible network motifs typically either 
consist of (i) several interconnected specialists or of (ii) a single generalist which is linked to many special-
ized species. In the latter case (ii), the generalist represents an articulation point in the network which can be 
translated to a ’keystone species’50 in an ecological sense. In case (i), the intersection is given by a bridge or a 
bridge-like structure which, in addition, increases the diameter of the network and thus the negative impact of 
competition on the peripheral species.

In power grids, the edges are supposed to balance the mismatch between generated and consumed power 
across the network (diffusive coupling). This process fails if the necessary load on a line exceeds its maximum 
capacity. To capture the effect of a MiFaS, we introduced the notion of a trigger transmission line which is the 
line on which the initial overload is observed. Naturally, a high initial load enhances the sensitivity of a trigger 
transmission line, especially if a mismatch between generated and consumed power exists within a peripheral 
part of the grid. Furthermore, we find that the most severe trigger transmission lines are bottlenecks connecting 
dead ends and other tree-like structures to the grid. This observation fits well with former studies32,34 in which 
the negative impact of these structures on network stability has been reported as well as with the recent study 
by Tyloo et al.63 which identified peripheral nodes as the ’key players’ of network synchronization (see also Sup-
plementary Fig. S7). Due to our MiFaS approach, we observe how a perturbation in frequencies can build up 
phase differences which can only be balanced through a bottleneck, the trigger transmission line.

Apart from the exemplary systems presented here, the MiFaS approach is applicable to a large class of high-
dimensional multistable systems, in which the global stability of a desired steady state is of crucial interest, e.g. 
food webs, genetic or metabolic networks or any other system which can be described by differential equations. 
We emphasize again that it does not only provide a quantitative measure of stability but, more importantly, direc-
tions for the most dangerous perturbations. For applications in networks this provides a tool to gain insights 
into the relationship between topology and stability. Specifically for interaction networks this allows to pinpoint 
the essential processes in the dynamics contributing to the destabilization of the desired state. Furthermore, as 
we have shown with the second example, the MiFaS approach works also well if not all state variables but only a 
subspace of perturbations is accessible—a problem relevant to many technical and natural systems. This paves 
the way to extent this method to single-node and multiple-node versions which enable us to compare the results 
with corresponding variations of other global stability techniques like basin stability32,33,64.

Up to now, we only discussed situations in which the proper functioning of a system is endangered by pertur-
bations. However, the starting situation could be the exact opposite and one might be willing to actually apply the 
MiFaS to leave the current undesired state in favor of a desired state with minimal effort. Possible applications 
are the most efficient resettlement of species within an ecosystem or the combat against diseases with minimal 
invasive interventions. This opens another wide range of possible applications for the MiFaS.

Methods
Search algorithm for the MiFaS.  In this section, we elaborate on the two stages of the search algorithm 
(outlined in “Results”) which we apply to identify a local Minimal Fatal Shock (MiFaS). A graphical representa-
tion of the two stages is given in Supplementary Fig. S1.

Stage I: random global initialization The first stage provides the starting point for the constraint optimization 
in Stage II. We start by defining a large maximum perturbation magnitude dmax . We then proceed by drawing 
random intial conditions X(0) (i.e. desired state X0 plus random shocks x(0)) from a uniform distribution within 
the subspace centered around X0 and bounded by the maximum perturbation magnitude dmax

65. By numerical 
integration, we check for each initial condition whether it is fatal or non-fatal. As we receive a fatal shock, we 
declare it the current best guess for a MiFaS. We adapt dmax to the magnitude of the best guess and continue our 
random search within the now downsized subspace. After a certain number of trials ( ntrials ) we terminate the 
random search and proceed with Stage II.

Stage II: nonrandom local search The second stage basically consists of two things: (1) Stepwise reducing the 
perturbation magnitude d and (2) adapting the direction of the perturbation to keep it fatal. Starting from the 
final best guess from Stage I, we apply an optimization procedure with the perturbation magnitude d as a con-
straint (optimization on a (n− 1)-dimensional sphere in a n-dimensional phase space, see Fig. 1b). The optimi-
zation aims at adapting the direction of the perturbation in order to receive system states X(0) as far away from 
the basin boundary of X0 as possible. However, since the distance to the boundary is not easily accessible, we 
need to choose an objective function to approximate it. The choice of an objective function is context dependent 
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and an appropriate choice has to take into account the location of the desired and the undesired attractors. In 
the plant–pollinator networks, we use the distance after integration time T (see “Constraint optimization in 
plant–pollinator networks”) and in the power grid, we use the mean distance over the integration time T (see 
“Constraint optimization in the power grid”) which can be interpreted as the final and mean amplification of the 
initial perturbation. The mechanism behind this is that trajectories close to the basin boundary stay close to it 
for long times as they move along the stable manifold of a saddle while trajectories far away from the boundary 
approach an alternative attractor faster. Since in both systems, the undesired states are distant to the desired one, 
the latter lead to strong amplifications.

After having found the optimal perturbation x(0) for the initial d, we stepwise decrease d with step size �d 
and determine for each d the new local optimum starting from the direction of the former one. Furthermore, 
we check for each d if the corresponding optimal perturbation is still fatal. If it is, it is declared the best guess 
for a MiFaS. If it is not, �d is decreased and the procedure continues from the best guess so far. In fact, the last 
point is only true for the plant–pollinator system. For the power grid system, the basin landscape features fractal 
structures and therefore, the reduction of d is only terminated if the received optimum is non-fatal nin times 
consecutively. The whole procedure including the reduction of �d is then repeated until the requested precision 
of the perturbation magnitude is reached. The default parameter settings of the search algorithm are outlined in 
Supplementary Table S1. The dependence of computation time on network size and stability for the plant–pol-
linator networks is displayed in Supplementary Fig. S6 and further discussed in the Supplementary Information.

Constraint optimization in plant–pollinator networks.  In the following, we present the Lagrange 
multiplier approach for the plant–pollinator network. The depicted formulation generally complies with the 
description by Kerswell et al.41.

In a plant–pollinator system, the stable stationary state X0 = (P∗1 , . . . P
∗
NP

,A∗
1 . . .A

∗
NA

) with P∗i > 0∀i ∈ NP and 
A∗
j > 0∀j ∈ NA is defined as the desired state, whose stability is examined. Since we use the Euclidean distance 

as a norm for the perturbation size (Eq. 1), it appears obvious to use it as a norm for the final distance as well. 
Accordingly, the objective function is defined as

where X = (P1, . . .PNP ,A1 . . .ANA) holds the state variables according to Eq. (2). As the optimization is con-
straint to perturbations x(0) with the same magnitude d, the objective function can be interpreted as a measure 
of the amplification of the initial perturbation over the integration interval T.

Since we are mainly interested in the distance between the system’s actual state and its desired state, it is 
instructive to reformulate the equations of motion to present the temporal evolution of the state variables in 
relation to the desired state ( x := X − X0)

which corresponds to a dynamical description of the shock evolution.
In this case, the problem of maximizing ||x(T)|| (objective functional), while simultaneously satisfying the 

dynamical constraint (second term) and the initial distance constraint (third term), can be formulated by the 
Lagrangian

where ν(t) is a vector of Lagrange multipliers with the same dimension as x(t) and � is a scalar Lagrange mul-
tiplier. In order to attain maxima of the Lagrangian, first variations of L with respect to ν , � , x(T) , x(0) and x 
have to equal zero. Variations with respect to ν and � thereby lead to the dynamical constraint (Eq. 5) and the 
initial distance constraint ||x(0)|| = d . First variations of L with respect to the final and initial state vanish for

Moreover, the partial first variation of Eq. (6) with respect to x is given by

which is assured to equal zero for all variations of x(t) if

is valid in the time interval t ∈ [0, T] . This expression, which is called the adjoint dynamical equation, describes 
the dynamics of the Lagrange multipliers ν(t) . As ∂F/∂x contains the partial derivatives of the actual dynamics 

(4)o = ||x(T)|| = ||X(T)− X0||,

(5)
dx

dt
= F(x; X0),

(6)L (x, ν, �; X0, d, T) := ||x(T)||2 +

∫ T

0
ν ·

(

dx

dt
− F

)

dt + �(||x(0)||2 − d2).

(7)
δL

δx(T)
= 2x(T)− ν(T) := 0

(8)
δL

δx(0)
= 2�x(0)− ν(0) := 0.

(9)
δL

δx
= −

∫ T

0

[

dν

dt
+ ν ·

∂F

∂x

]

dt,

(10)
dν

dt
= −ν ·

∂F

∂x
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(Eq. 5), it depends on x(t) . For the derivation of the complete optimization problem, including the derivation 
of the adjoint dynamical equations, see the Supplementary Information.

In applying the set of Eqs. (5), (7), (8) and (10), and the initial distance constraint, the Lagrangian can now 
be maximized. For a defined value of d, the solution of all five equations thereby supplies a maximum, which can 
only be attained by an iterative method (see Supplementary Information for a detailed description of the iterative 
solution). First, according to equation ||x(0)|| = d , an initial state is chosen and Eq. (5) is integrated forward in 
time. The final state x(T) is then applied to initialize ν(T) via Eq. (7). Integrating Eq. (10) backward in time, a 
value for ν(0) is calculated. At this point, the only condition which remains unsatisfied is Eq. (8). Therefore, in 
order to approach the maximum, x(0) is moved in the direction of δL/δx(0) (see Supplementary Fig. S2 and 
notes in the Supplementary Information for a description of the step size control). Starting with the updated x(0) , 
the whole procedure is repeated until the the enhancement of the current objective function is smaller than a 
predefined small value on+1/on < 1+ δcrit , which indicates the arrival at a maximum of L . We note that we can 
not prove mathematically that this maximum is the global maximum of the optimization problem.

Constraint optimization in the power grid.  The formulation of the optimization problem for the power 
grid model is similar to the one in the plant–pollinator network. However, some necessary adaptations are dis-
cussed in the following.

We only consider perturbations in the frequencies ω and thus the initial distance constraint is restricted to 
one half of the state variables. An extra benefit is that we do not need to reformulate the model equations (see 
Eq. 5) to be centered around the desired state, as the desired state of complete synchronization already features 
ωi = 0∀i . Another adaptation concerns the objective function. As for the initial perturbations, we neglect phases 
φ . However, since the system dynamics are oscillatory, we cannot rely on the Euclidean distance after a specific 
integration time as a corresponding objective function would be subject to strong fluctuations. Instead we use 
the mean Euclidean distance between the trajectory following the perturbation and the synchronized state over 
the integration time T. With these adaptations the optimization problem for the power grid can be formulated as

where x = (φ1, . . . , φN , ω1, . . . , ωN ) , xf = (0, . . . , 0, ω1, . . . , ωN ) and F holds the system’s dynamics according 
to Eq. (3). The derivation of the complete optimization problem can be found in the Supplementary Information.

The choice of integration times.  One of the most delicate choices in the constraint optimization proce-
dure is the integration time T. Obviously, the use of short integration times is advantageous as it keeps the overall 
computation time short. But even more importantly, short integration times smooth differences between the 
magnifications caused by adjacent initial perturbations (landscape of the objective function, see Supplementary 
Fig. S3 and Supplementary Fig. S4) and thus allow the application of the optimization even in highly complex 
landscapes of basins of attractions. However, in order to resolve small scale structures close to the basin bound-
ary, longer integration times are needed (see Supplementary Information). We solve this issue by increasing 
the integration time T during the search algorithm (whenever �d is decreased, see Supplementary Fig. S1 and 
Supplementary Table S1).

Plant–pollinator data processing.  The topologies of the 59 studied plant–pollinator networks have been 
taken from the Web of Life dataset (www.web.of-life.es, see Supplementary Table S2 for original data sources). 
In order to attain comparable, connected networks, we processed the original data as follows: (1) All networks 
are considered as being unweighted. (2) From every dataset, only the largest connected component is taken as 
the network topology while all other components are omitted.

Data availability
The datasets generated during the current study are available from the corresponding author upon request.

Code availability
The computer code which has been used to determine the MiFaS for the plant–pollinator networks and the Great 
Britain power grid can be found at https​://githu​b.com/halek​otte/mifas​.
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