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Abstract

Matrix metalloproteinases (MMPs) are key biological mediators of processes as diverse as wound 

healing, embryogenesis, and cancer progression. Although MMPs may be induced through 

multiple signaling pathways, the precise mechanisms for their regulation in cancer are 

incompletely understood. Because cytoskeletal changes are known to accompany MMP 

expression, we sought to examine the potential role of the poorly understood cytoskeletal protein, 

nestin, in modulating melanoma MMPs. Nestin knockdown (KD) upregulated expression of 

specific MMPs and MMP-dependent invasion both through extracellular matrix barriers in vitro 

and in peritumoral connective tissue of xenografts in vivo. Development of 3-dimensionsal 

melanospheres that in vitro partially recapitulate non-invasive tumorigenic melanoma growth was 

inhibited by nestin KD, although ECM invasion by aberrant melanospheres that did form was 

enhanced. Mechanistically, nestin KD-dependent melanoma invasion was associated with 

intracellular redistribution of phosphorylated focal adhesion kinase (pFAK) and increased 

melanoma cell responsiveness to transforming growth factor-beta (TGF-β), both implicated in 

pathways of melanoma invasion. The results suggest that the heretofore poorly understood 

intermediate filament, nestin, may serve as a novel mediator of MMPs critical to melanoma 

virulence.
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Introduction

Matrix metalloproteinases (MMPs) are endopeptidases involved in dissolution and 

remodeling of extracellular matrix (ECM) elements. Accordingly they play important roles 

in physiological processes such as embryogenesis and tissue repair, as well as in multistep 

cancer progression where tumorigenic cells in primary lesions acquire the ability to infiltrate 

connective tissue and ultimately to metastasize 1. In melanoma, an established model for 

tumor progression 2, MMPs and their tissue inhibitors (TIMPs) are expressed in both tumor 

cells and tumor stroma, and these two compartments are believed to collaborate in 

facilitating infiltration of malignant cells through ECM and away from the main tumor 

nodule 3. This model is most relevant to the concept of vertical growth of primary melanoma 

where cells both aggregate as expansive nodules driven by self-renewing cells 4 and/or may 

infiltrate into surrounding dermis where they associate with vessels that communicate with 

lymph nodes and/or the peripheral circulation 1, 3, 4. Thus, both tumorigenic and infiltrative 

growth patterns are important and complementary facets of melanoma virulence 1, 3, 4, both 

at primary sites where subsets of tumorigenic cells of the vertical growth phase invade 

stroma and seek access to vessels, and at metastatic loci where migrant cells endeavor to 

reform tumor nodules, thus creating durable metastases.

Multiple signaling pathways are involved in molecular regulation of MMPs 5, with 

cytoskeletal alterations most recently implicated 6. In this regard, melanomas express a 

physiologic stem cell and tumor virulence-associated type VI intermediate filament 

cytoskeletal protein, nestin, the function of which in cancer remains incompletely 

understood 7. Although nestin is a molecule normally associated with neural crest stem 

cells 8 and has been advanced as a melanoma stem cell/initiating cell marker 7, 9, the cellular 

localization of nestin in most melanomas, in our experience, is more ubiquitous than that 

seen in the more discrete and infrequent subsets defined by conventional biomarkers such as 

ABCB5 and CD271 that identify rigorously defined self-renewing cells capable of 

pluripotency 10, 11. Accordingly, we posited that the functional role of nestin in melanoma 

may differ from that of conventional cancer initiating cells 12, 13. Supporting this notion, 

experimental nestin depletion recently has been shown to be associated with invasiveness of 

prostate carcinoma cells 14. We thus initially screened two nestin-expressing and nestin 

knockdown (KD) melanoma cell lines for genes associated with invasion/epithelial 

mesenchymal transition. Among genes analyzed, nestin depletion (as originally observed by 

one of us, QZ), was most significantly associated with upregulation of MMP expression, 

leading to the series of experiments and related observations reported herein. Our data 

suggest that nestin is an important regulator of MMP expression and the invasive phenotype 

in melanoma, and that multiple pathways may converge to influence this nestin/MMP axis.
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Materials and Methods

Study design

Association between nestin sub-cellular distribution and melanoma growth patterns was 

initially explored in 10 primary cutaneous melanomas (5 nodular and 5 infiltrative, 

desmoplastic) and further confirmed in a total of 153 cases of primary and metastatic 

melanomas. To investigate the function of nestin in modulating melanoma tumorigenic 

versus infiltrative growth, mRNA levels of metastasis-related genes including matrix 

metalloproteinases were compared in two melanoma cell lines with stable nestin gene 

knockdown. Subsequent analyses of nestin expression and melanoma growth pattern were 

performed in both in vitro cell migration and invasion and spherogenic growth and in vivo 

tumorigenic growth and invasion using mouse xenograft models.

Human melanoma specimens

The use of human melanoma specimens was approved by the Institutional Review Board of 

the Brigham and Women’s Hospital. Five purely nodular and 5 infiltrative/desmoplastic 

melanomas were screened from patients who underwent surgery. Additional 153 cases of 

primary and metastatic melanomas demonstrating clear nodular or infiltrative growth 

patterns were evaluated for nestin expression in melanoma tissue microarrays (TMA) 

purchased from Folio Bio (Powell, OH), US Biomax (Rockville, MD), and Imgenex (San 

Diego, CA). All cases were confirmed by a Board-certified dermatopathologist (GFM). In 

the TMA, nodular growth patterns involved coalescent, cohesive, and expansive regions 

formed primarily by rounded, epithelioid melanoma cells, whereas infiltrative growth 

patterns consisted of dyshesive nests, fascicles, and single cells that were often elongated to 

fusiform and that intermingled with and infiltrated through stroma. Although some of those 

with nodular growth patterns may have been melanomas of the so-called nodular vertical 

growth phase subtype, and some of those with infiltrative growth patterns may have 

represented more desmoplastic/sarcomatoid vertical growth phase variants, the TMA was 

not annotated such that these distinctions used in diagnostic classification could be made.

Routine histology

All human and mouse melanoma specimens were formalin-fixed, paraffin-embedded, 

sectioned, and stained with hematoxylin and eosin (H&E) for histopathological evaluation.

Immunohistochemistry and immunofluorescence staining

Immunohistochemistry and immunofluorescence staining was performed according to a 

standard protocol 13, 15. Sections were treated with heat-induced epitope retrieval using 

target retrieval solution (Dako, Carpenteria, CA, USA) and heated in a Pascal pressurized 

heating chamber (Dako, 125°C for 30 sec, 90°C for 10 sec). After incubation with primary 

antibodies at 4°C overnight, sections were incubated with HRP-conjugated secondary 

antibodies for 30 minutes at room temperature, and signals were visualized with NovaRED 

HRP substrate (Vector Laboratories, Burlingame, CA) with a hematoxylin counter stain. 

Alternatively, cells plated on chamber slides (ibidi µ-slide) were fixed in 4% 

paraformaldehyde, penetrated with 1% Tween-20, incubated with primary antibodies at 4°C 
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overnight, followed by incubation with fluorophore-conjugated secondary antibodies for 30 

minutes at room temperature. Isotype-matched immunoglobulin was used in place of 

primary antibodies as controls. Antibodies against human nestin 16 (1:200, Millipore, 

MAB5326), MMP3 17 (1:50, Abcam, ab32607), SOX2 15 (1:200, Neuromics, Edina, MN, 

GT15098), phospho-FAK (pT397) 18 (1:50, Cell Signaling, D20B1), and mouse F4/80 19 

(1:200, AbD Serotec, MCA497GA) and CD31 20 (1:100, Abcam, ab28364) were employed. 

MMP3 expression in melanoma cells was quantified by microdensitometry using ImageJ. 

Nestin staining was qualitatively evaluated as diffuse cytoplasmic (a pattern that produced 

apparently stronger reactivity and that characterized more rounded melanoma cells that grew 

in cohesive and expansive nodules), and sub-plasma membranous (a pattern that resulted in 

apparently weaker reactivity and that tended to be restricted to more elongated to fusiform 

melanoma cells showing stromal infiltration). Subcellular patterns of pFAK redistribution 

were quantified as previously described18.

Cell culture

Human melanoma cell A2058 and A375 and transformed human embryonic kidney cell 

HEK293T were originally obtained from American Type Culture Collection (Manassas, 

VA). Cells were recently confirmed to have no mycoplasma contamination by PCR 21. All 

cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM, Lonza, Hopkinton, 

MA). Culture media were supplemented with 10% heat inactivated fetal bovine serum (FBS, 

HyClone), 200 mM L-glutamine, 100 IU/ml penicillin and 100 µg/ml streptomycin (P/S/G, 

Life Technologies, Carisbad, CA), and maintained at 37°C, 5% CO2. If not otherwise stated, 

subconfluent cell culture was treated with 0.25% trypsin/EDTA solution (Hyclone) at 37°C 

for 1–2 minutes. Single cells were washed and resuspended in complete medium and stained 

with trypan blue. Viable cells were counted under a hemocytometer, and seeded on tissue 

culture plates. Cells were treated with TGF-β1 (Peprotech, Rocky Hill, NJ) at 5 ng/ml for 3 

days or focal adhesion kinase (FAK) inhibitor PF-573228 (Sigma-Aldrich, St. Louis, MO) at 

1 µM for 24 hours and harvested for analysis.

Knockdown of nestin

Nestin expression was knocked down (KD) by a lentivirus-based shRNA approach. shRNA 

vectors specifically targeting nestin (TRCN000014728 and TRCN000014729) were 

purchased (Sigma-Aldrich, St. Louis, MO). A non-targeting, scramble vector (SHC002, 

Sigma-Aldrich) or eGFP-targeting vector (SHC005, Sigma-Aldrich) was used as vector 

control (Vec). shRNA lentiviruses were produced in HEK293T cells by co-transfecting 

shRNA vectors with packaging vectors pHR’8.2dR and pCMV-VSV-G (gifts from Robert 

A. Weinberg, Whitehead Institute) into subconfluent HEK293T cells with FuGENE 6 

(Promega, Madison, WI) as described before 15. Viral supernatant was collected at 48 hours 

post transfection and filtered through 0.45 µm filters to remove cell debris. 5×104 target cells 

were seeded in each well of 6-well culture plates. After overnight culture, cells were 

transfected with 2 ml of viral supernatant containing nestin-targeting shRNA or control 

vectors in the presence of polybrene (8 µg/ml) for 8 hours, and allowed to recover in 

complete media. Twenty-four hours post transfection, transduced cells were selected with 

puromycin (1 µg/ml). Efficacy of nestin KD was assessed by quantitative RT-PCR and 

Western blot. Among the shRNA vectors examined, TRCN000014728 targeting nestin 3’-
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UTR gave the highest nestin knockdown efficiency and was routinely used in this study. To 

exclude the possibility of off-target effects of shRNA, nestin-specific shRNA vectors 

TRCN000014729 was used to validate the effect on downstream gene expression.

Gene Expression Analysis

Total RNA was extracted (RNeasy mini Kit, Qiagen, Valencia, CA) from adherent vector 

control, nestin KD cells, and melanoma spheres in spherogenic culture. cDNA was 

synthesized from total RNA using SuperScript III First-strand Synthesis System (Invitrogen, 

Carisbad, CA) and served as the template for gene expression analysis. Relative expression 

of 84 genes involved in cell migration and metastasis were compared between A2058 Vec 

control and nestin KD cells using a human tumor metastasis PCR Array (PAHS-028A, 

SABiosciences, Frederick, MD). Results from the PCR array were further validated by real-

time quantitative RT-PCR in triplicate using Applied Biosystems 7300 system (Foster City, 

CA) and the ΔΔCt analysis method as mentioned previously 15. Taqman quantitative PCR 

primers of human nestin (Hs00707120_s1), SOX2 (Hs00602736_s1), OCT4 

(Hs00742896_s1), CD271 (Hs00609976_m1), MMP2 (Hs01548727_m1), MMP3 

(Hs00968305_m1), MMP9 (Hs00234579_m1), TIMP1 (Hs00171558_m1), TIMP2 

(Hs00234278_m1), and actin (4310881E) were purchased from Applied Biosystems. 

Primers of MMP1, MMP7, MMP10, MMP11, MMP13, TIMP3, TIMP4, and GAPDH were 

designed in house for SYBR Green quantitative PCR reaction (Table S1). Changes of 

mRNA levels > 2-fold were considered significant.

Western Blot

Subconfluent cell cultures and culture medium were collected for Western blotting analysis. 

Adherent cells were treated with non-enzymatic cell dissociation buffer Versene (Life 

Technologies), collected, washed twice with PBS, and lysed in cell lysis buffer (Cell 

Signaling, Danvers, MA) containing proteinase inhibitor cocktail and PMSF. Protein content 

was determined by bicinchoninic acid assay kit (Thermo Scientific, Rockford, IL). An equal 

amount of total proteins in cell lysate (100 µg) and 50 µl cell culture medium (equivalent to 

2×105 viable cells/ml) was separated on SDS-PAGE (4–12% Bis-Tris, Invitrogen) at 100 

volts at 4°C for 3.5 hours, transblotted onto nitrocellulose membrane at 340 mA at 4°C for 

1.5 hours, and blocked with 5% non-fat milk in TBS/0.1% Tween 20 (TBST) at room 

temperature for 1 hour. The membrane was incubated with primary antibodies at 4°C 

overnight with constant shaking. After washing three times for 5 minutes in TBST, the 

membrane was incubated with horseradish peroxidase (HRP)-conjugated secondary 

antibodies at room temperature for 30 minutes, washed again with TBST three times, and 

immunoreactive bands were detected by chemiluminescent reagents (Thermo Scientific) 

according to manufacturer’s protocol. Chemiluminescence was visualized using CL-

XPosure film (Thermo Scientific) or ChemiDoc+ XRS (Bio-Rad). Densities of immunoblot 

bands were quantified by ImageJ and normalized to β-actin. Antibodies for the Western blot 

were commercially available for mouse anti-nestin 22 (1:1,000, Millipore, MAB5326, clone 

10C2, Billerica, MA), rabbit anti-MMP1 (1:1,000, Abgent, AP11874c, clone RB18908, San 

Diego, CA), rabbit anti-MMP3 23 (1:1,000, Abcam, ab53015, Cambridge, MA), mouse anti-

MMP9 24 (1:1,000, Abcam, ab58803, clone 56-2A4), rabbit anti-MMP10 25 (1:1,000, 

Abcam, ab28206), rabbit anti-FAK 18 (1:1,000, Cell Signaling, #3285), rabbit anti-phospho-
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FAK (pT397) 18, (1:1,000, Cell Signaling, D20B1), and mouse anti-β-actin 26 (1:10,000, 

Abcam, ab6276, clone AC-15).

Cell Proliferation Analysis

To measure cancer cell proliferation in adherent monolayer culture, 100,000 viable cells/

well were seeded on 6-well tissue culture plates in six replicates. Viable cells were 

quantified by trypan blue exclusion using a hemocytometer at 72 hours.

Melanoma Cell Culture on Matrigel

Matrigel (50 ul, Dickinson Bioscience, Bedford, MA) was spotted onto 6 cm cell culture 

plates and allowed to set at 37°C for 2 hours. A2058 cells (2×103 viable cells per 10 ul 

complete medium) were loaded over Matrigel, incubated at 37°C, 5% CO2 for 2 hours, 

overlaid with complete medium and cultured for 10 days. Cells on Matrigel were fed with 

0.5 ml of fresh medium twice a week 27. Melanoma spheres on Matrigel were fixed with 

formalin and embedded in paraffin. Sections perpendicularly across Matrigel were stained 

with H&E and photographed for histological analysis. Spheres with less than 20%, 20–

100%, and 100% of sphere depth invading into Matrigel surface were defined as surface, 

partial invasion, and complete invasion into Matrigel, respectively. Numbers of melanoma 

spheres that invaded into Matrigel were counted and compared by a Chi-square test.

Anchorage-independent cell culture

Anchorage-independent spherogenic cell culture 28 was performed in suspension or in soft 

agar culture with the culture medium devoid of epidermal growth factor (EGF) and basic 

fibroblast growth factor (bFGF) which may potentially alter nestin expression 29, 30. For 

melanosphere culture in suspension, melanoma cells were cultured at low cell plating 

density (2,000 viable cells per 6-well or 1,000 viable cells per 24-well) in DMEM 

supplemented with 10% FBS, P/S/G, and 0.5% methyl cellulose (Sigma-Aldrich) in the 

ultra-low attachment plates (Corning, Acton, MA), and maintained at 37°C, 5% CO2 for 14–

21 days. Melanoma spheres were fed with 0.5 ml of fresh medium twice a week. Serial 

passage of melanoma spheres was performed to confirm in vitro self-renewal capability. 

Melanoma spheres were dissociated with 0.25% trypsin/EDTA solution at 37°C for 3–5 

minutes, and single cells derived from melanoma spheres were plated in the ultra-low 

attachment plates and allowed to form secondary spheres for 14 days. For soft agar culture, a 

6-well plate was covered with DMEM medium containing 10% FBS, P/S/G, and 1% agar 

noble (BD Biosciences, San Jose, CA), overlaid with 25,000 viable cells in culture medium 

containing 0.4% agar at 37°C, 5% CO2 for 28–35 days. Soft agar colonies were fed with 1 

ml of fresh medium containing 0.35% agar weekly. Spheres and colonies were stained with 

200 ul of 0.4% p-iodonitrotetrazolium violet (Sigma-Aldrich) overnight and photographed 

by a Canon T1i camera and Sigma 50mm/f2.8 macro lens. Numbers of spheres and colonies 

from triplicate experiments were counted by ImageJ (National Institutes of Health, ver. 

1.44k).

Lee et al. Page 6

Lab Invest. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cell migration analysis

BioCoat 24-well control inserts (Becton Dickinson Bioscience, Bedford, MA) were used for 

tumor migration analysis. Vector control and nestin KD cells were collected from 

subconfluent cultures by Versene (Life Technologies), washed with PBS, and resuspended 

in loading media of DMEM containing 0.1% bovine serum albumin. Single cell suspension 

were stained with trypan blue and counted under a hemocytometer. 1×104 viable cells in 0.2 

ml of loading media were loaded onto control inserts, 0.75 ml of DMEM containing 10% 

FBS was added to the outer well immediately, and incubated at 37°C, 5% CO2 for 4, 6, and 

8 hours. After incubation, unwanted cells were removed by scrubbing, and cells on the other 

side of the control insert membrane were fixed by 10% formalin and stained with 

hematoxylin and 0.1% ammonium hydroxide. Cell counting was facilitated by 

photographing at three randomly selected fields at 10× magnification on each control insert 

membrane. Six replicates were set up for each cell line; migrating cells (on the lower surface 

of control insert membranes) and non-migrating cells (on the upper surface of control insert 

membranes) were counted in triplicate. To control loading error, percent cell migration 

through the control insert was calculated by dividing the mean number of migrating cells by 

total cell number loaded (sum of migrating cells and non-migrating cells). A two-sample Z-

test was used to assess whether the probability of cell migration in nestin KD groups 

differed from vector control groups. A p-value less than 0.05 is considered significant.

Matrigel invasion analysis

BioCoat control inserts and growth factor reduced Matrigel invasion chambers (Becton 

Dickinson Bioscience) were used for Matrigel invasion assays as described previously 15. 

Vector control and nestin KD cells were prepared as mentioned above in the migration 

analysis. 1×104 viable cells in 0.2 ml of loading media and 2.5×104 viable cells in 0.5 ml of 

loading media were loaded onto a control insert and a Matrigel insert, respectively, and 0.75 

ml of DMEM containing 10% FBS was added to the outer well immediately and incubated 

at 37°C, 5% CO2 for 20 hours. After incubation, non-migrating cells were removed from the 

upper surface of insert membranes by scrubbing, and migrating cells on the lower surface of 

insert membrane were stained and counted as mentioned above. Triplicates were set up in 

control and Matrigel inserts for each cell line. To characterize the function of MMP 

enzymatic activities in Matrigel invasion of A2058 and A375 nestin KD cells, MMP3-

selective inhibitor UK356618 (Tocris, Bristol, UK) at 20 nM (IC50=5.9 nM) 31 and the 

broad spectrum MMP inhibitor Marimastat (Tocris) at 20 nM (IC50=5, 6, 3, 13, and 9 nM 

for MMP-1, 2, 9, 7, and 14, respectively) 32 were added to the loading media within the 

insert and complete media in the outer well. These two MMP inhibitors were selected 

because of their potent inhibitory activities and no known cytotoxicity or adverse effect on 

cell proliferation 32. To control the difference in cell migration and loading error, percent 

Matrigel invasion was calculated by dividing the mean number of migrating cells on the 

lower surface of Matrigel invasion chambers by the mean number of migrating cells on the 

lower surface of the control inserts.

Lee et al. Page 7

Lab Invest. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mouse xenograft and histological analysis

Specific pathogen-free, female NOD.CB17-Prkdcscid/J (NOD/SCID) or male NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were originally purchased from the Jackson Laboratory 

(Bar Harbor, ME) and were maintained in accordance with the institutional guidelines of 

Children's Hospital Boston and Harvard Medical School. Experiments were performed 

according to approved experimental protocols 33, 34. A2058 vector control and nestin KD 

cells derived from subconfluent monolayer culture were injected subcutaneously into the 

flanks of mice at 6–8 weeks of age. To ensure tumor formation for evaluation of tumor 

invasion into stroma and macrophage and vascular invasion into tumors, and diminish the 

potential influence of nestin knockdown in xenograft tumor formation due to changes in the 

frequency of malignant melanoma initiating cells (MMIC) 13, melanoma cells were injected 

into both flanks of NSG and right flanks of NOD-SCID mice at 1×106 (N=16 injections per 

cell line, 2 injections each mouse) and 3×106 (N=5 injections per cell line, one injection 

each mouse) viable cells in 100 µl PBS, respectively. Sample sizes of animal studies and cell 

numbers injected were based on pilot studies and previously published approaches 10, 35 by 

our laboratory, as the differences evaluated focused on qualitative parameters involving 

detection of invasion and protein expression based on immunohistochemistry. No animals 

were excluded from analysis. Tumor size was measured weekly with a caliper and tumor 

volume was calculated as 3.14/6×L×W×W. Mice were euthanized on 7, 14, and 20 days 

(NSG mice), or on 28 days (NOD/SCID) post tumor inoculation. Tumors were fixed in 

formalin and embedded for histological analysis. Investigators were not blinded to group 

allocation during the experiment or when assessing initial outcomes. However, to further 

validate outcome when qualitative parameters were primary read-out, blinded observers 

were required to assign accurately the outcome parameters in a prospective manner to each 

of the experimental conditions.

Statistical analysis

All experiments were technical triplicates or greater. Data were compared by two-tailed 

Student's t-test unless otherwise stated. One-way ANOVA test with Tukey’s multiple 

comparison was used when more than two samples were compared. Nestin distribution in 

nodular and infiltrative patient melanoma and nestin subcellular distribution were compared 

by Chi-square test. Statistical analysis was performed using GrapdPad Prism 5 (GrapdPad 

Software Inc., La Jolla, CA). Data are presented as mean ± standard error of the mean 

(s.e.m.). A p-value < 0.05 is considered significant.

Results

Nestin affects melanoma matrix metalloproteinase (MMP) expression

We initially produced nestin KD lines in A2058 and A375 cells, one derived from primary 

skin melanoma (A375), one from lymph node metastasis (A2058) 36. Nestin mRNA levels, 

averaged over a minimum of four replicate determinations, were significantly 

downregulated in nestin KD cells of A2058 (89.5% decrease, p<0.001) and A375 (91.4% 

decrease, p<0.001) lines, as compared to vector controls (Figure 1a). Decreased nestin 

protein levels were confirmed in nestin KD A2058 (92.7% decrease) and A375 (97.7% 
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decrease) cells as compared to vector control cells by Western blotting (Figure 1b). Nestin 

KD did not significantly influence overall proliferation in bulk cultures (Figure 1c).

Because nestin expression has been shown to correlate with invasion and metastasis of 

certain cancers 7, 37, 38, we next examined the relationship between nestin and 84 tumor 

epithelial-mesenchymal transition (EMT)/metastasis-related genes. Among these, nestin KD 

most profoundly affected the expression of MMP genes (Figure 1d and e). Specifically, 

mRNA levels of MMP1, 3, 9, and 10 were significantly upregulated in both A2058 and 

A375 lines (Figure 1d and e). Western blot analysis confirmed upregulation of MMP1 and 3 

proteins in lysates of nestin KD A2058 cells and MMP1 in nestin KD A375 cells; as well as 

MMP1, 3, and 10 in supernates of nestin KD A2058 cells and MMP1 and 10 in nestin KD 

A375 cells (Figure 1f). There was no detectable MMP9 in A2058 cells and MMP3 and 10 in 

A375 cells (Figure 1f). To establish further the apparent regulatory influence of nestin on 

MMP expression and exclude the possibility of off-target effects of nestin shRNA, 

additional nestin shRNA construct transfected into A2058 cells validated that mRNA levels 

for MMP1, 3, and 10, were significantly upregulated as a consequence of confirmed nestin 

KD (supplemental Figure 1). There was no compensatory change in mRNA levels of tissue 

inhibitor of metalloproteinase 1–4 (TIMP1-4) expression with nestin KD in A2058 cells or 

in TIMP1-3 in A375 cells (data not shown). These results suggested a reciprocal relationship 

in the melanoma lines tested between expression of nestin and certain MMPs known to 

enhance tumor invasion 39.

Nestin KD-associated MMP upregulation enhances melanoma invasion in vitro

The effects of nestin expression on cell migration and the ability of melanoma cells to 

traverse an ECM barrier facilitated by serum-mediated chemotaxis were next assessed. To 

control loading error, cells migrated through microporous transwell or Matrigel were 

normalized to total loaded cells or to non-Matrigel control insert, respectively. The 

migratory kinetics of both control melanoma cells and nestin KD melanoma cells through 

microporous transwell assays were similar, with increments for the first 6 hours, followed by 

gradual decrements thereafter, although a significantly lower percentage of nestin KD cells 

migrated by the 6 and 8 hour timepoints.(Figure 2a). However, nestin KD cells exhibited 

significantly greater ability to invade through ECM barriers containing collagen and 

basement membrane proteins (Matrigel-coated transwell membranes) when compared to 

vector controls after 18 hours (Figure 2b and c). Additional nestin shRNA construct 

transfected into A2058 cells further validated significantly enhanced Matrigel invasion in 

nestin KD cells and further ruled out the possibility of off-target effects of nestin shRNA on 

invasion (supplemental Figure 1d). The potential contribution of MMPs to nestin KD-

enhanced invasion next was addressed using the MMP3-specific inhibitor UK356618 31, 

which suppressed invasion of A2058 nestin KD cells by 33%. The broad-spectrum MMP 

inhibitor, Marimastat 32, had a slightly greater effect (43% inhibition), and combination of 

UK356618 and Marimastat resulted in further enhancement of inhibition (56%) (Figure 2d). 

In A375 nestin KD cells where MMP3 protein was not upregulated in comparison to A2058 

(Figure 1F), Matrigel invasion was suppressed by Marimastat by 45% but not by the MMP3 

inhibitor, UK356618 (Figure 2d). These data collectively support a role for MMP induction 

in nestin KD cells in facilitating in vitro ECM invasion.
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Nestin KD is associated with decreased sphere formation in vitro

Melanospheres are 3-dimensional micronodular aggregates of cohesive tumor cells that 

develop from melanoma cells exhibiting anchorage-independent growth 28. Melanospheres 

thus have been proposed to recapitulate, in part, tumorigenic growth due to self-renewing 

subpopulations in vivo 28, 40. To determine the potential relationship of nestin expression to 

three-dimensional spherical growth potential, we generated melanospheres avoiding serum-

free media that requires supplements known to influence nestin expression 29, 30. Cells 

forming melanospheres showed self-renewal capability confirmed by serial passage, and 

when compared to adherent cells, expressed mRNA for nestin, CD271, OCT4, and 

SOX2 7, 11, 35, 41 (data not shown). Nestin KD lines had significantly decreased anchorage-

independent growth and sphere-forming ability compared to their vector controls in 

suspension culture (Figure 2e) as well as diminished colony formation in soft agar culture. 

When melanospheres were grown on Matrigel membranes in the absence of a chemotactic 

stimulus, those that formed from nestin KD cells were irregularly-sized, internally 

dyshesive, and depleted of immunoreactive nestin (Figure 2f). In contrast, spheres derived 

from vector controls were uniform in size, cohesive, and replete with strong nestin 

immunoreactivity (Figure 2f). Remarkably, the poorly-formed nestin KD melanospheres 

penetrated into the Matrigel membrane, in contrast to vector control melanospheres that 

remained localized to the ECM surface (Figure 2f). These results suggest that nestin 

expression favors 3-dimensional spheroidal growth that may be partially switched to a less 

spherogenic, more invasive phenotype as a consequence of nestin KD.

Nestin KD is associated with stromal invasion in vivo

To test whether the in vitro relationship between nestin and MMP expression is relevant in 

vivo, melanoma xenografts next were evaluated. In contrast to in vitro kinetics where we 

noted no differences in cell proliferation between bulk cultures of nestin KD and vector 

control melanoma cells, melanoma xenograft growth may be inhibited by nestin KD when 

cell inoculation is limited 7. Therefore we employed relatively high inoculation cell numbers 

(1×106 or 3×106) of A2058 cells calibrated to produce similar growth characteristics 

between tumors derived from nestin KD and vector controls (Figure 3a) in order to control 

for potential effects of differential cell proliferation on MMP synthesis 42. Nestin depletion 

was confirmed by immunohistochemistry in tumors derived from nestin KD cells, while 

nestin was abundantly expressed in tumors derived from vector control cells (Figure 3b). 

Consistent with our in vitro data, immunoreactivity for MMP3 was significantly increased in 

nestin KD tumors compared to vector controls, as confirmed by computer image analysis 

(48.18±1.525 versus 30.35±1.928) (Figure 3b). Tumors derived from vector control cells 

were composed of nestin-high and MMP3-low melanoma cells that formed smooth 

bordered, uniformly circumscribed nodules that interfaced sharply with adjacent stroma 

(Figure 3c). In contrast, tumors derived from nestin KD cells were comprised of nestin-low, 

MMP3-high melanoma cells that generated tumors with borders that focally were 

interrupted by jagged and irregular zones of early stromal invasion. The regions were 

prominent as early as 7 days after xenografting (Figure 3c), and the invasive relationship 

between tumor and adjacent stromal cells was further confirmed by intimate admixture of 

melanoma cells with CD31-endothelial cells and F4/80-positive macrophages (Figure 3c).
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Nestin expression correlates with infiltrative patterns in clinical melanomas

To determine whether nestin expression patterns seen in xenografts was reflected in clinical 

lesions, we first screened a small number of primary patient melanomas with tumorigenic 

(cohesive and expansive) growth patterns and found nestin to be abundantly expressed by 

immunohistochemistry throughout the cytoplasm of large rounded cells that formed 

cohesive tumor nodules (N=5) (Figure 3d). In contrast, melanomas with predominantly 

infiltrative patterns (e.g. desmoplastic melanomas) showed less prominent nestin reactivity 

that was primarily restricted to the sub-plasma membranous regions of cells (N=5) (Figure 

3d). These patterns were next evaluated in a larger cohort (N=153) of patient melanomas 

represented in tissue microarray, where a prominent cytoplasmic pattern of nestin 

distribution was observed preferentially in nodules formed by cohesive rounded tumor cells 

(91 of 111; 82%), and a weaker or mixed pattern was documented in infiltrative regions of 

melanomas composed of stroma-associated cells (42 of 42; 100%) (p<0.0001). To 

summarize, the trend was for the rounded cells that formed cohesive and expansive pattern 

melanoma nodules expressed strong nestin that was diffusely present throughout the 

cytoplasm of the majority of tumor cells. The often more fusiform cells that showed 

infiltrative patterns of stromal invasion, tended to contain many cells that expressed nestin in 

a peripheral, sub-membranous pattern, and therefore appeared overall to express less nestin 

by immunohistochemistry. Although TMA melanomas with characteristics of desmoplastic 

variants tended to be at the extreme end of this spectrum of submenbranous low nestin 

expression, other less desmoplastic yet still infiltrative pattern melanomas showed an 

admixture of cells with low submembranous nestin and high cytoplasmic nestin (mixed 

pattern). These in vivo experimental and clinical data are consistent with our in vitro 

findings implicating nestin and related MMP expression in tumorigenic and invasive 

melanoma phenotypes.

Possible mechanisms of nestin regulation of melanoma invasive phenotype: pFAK and 
TGF-β

Cancer cell invasion involves a complex series of highly orchestrated interactions involving 

alterations in cell shape and cytoskeletal structure, locomotion, cell-stromal adhesive 

properties, and protease secretion. Focal adhesion kinase (FAK) plays a central role in 

cancer cell motility, adhesion, and invasion 43. In this regard, recent evidence indicates that 

nestin downregulation in prostate cancer cell lines triggers a switch from characteristic 

intracellular and submembranous clumped expression patterns of phosphorylated FAK 

(pFAK) to exclusive and punctate cell membrane localization that promotes integrin 

clustering and results in pFAK- and integrin-dependent matrix degradation and an invasive 

phenotype 14. In melanoma cells, we found nestin KD to be associated with lower pFAK 

and unaltered total FAK protein in A2058 cells, and increased pFAK and total FAK protein 

levels in A375 cells (Figure 4a). Despite these variations in protein expression, dual labeling 

revealed that nestin KD in both melanoma cell lines produced pFAK relocalization that was 

remarkably similar to the pro-invasive pattern described as a consequence of nestin KD in 

prostate cancer cell lines 14 (Figure 4b). Specifically, the percentages of cells showing an 

exclusively membranous pattern increased as a function of nestin KD from 42.9% to 76.2%, 

and from 18.9% to 59.0% in A2058 and A375 cells, respectively (p<0.001). Moreover, 
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treatment with FAK inhibitor, PF-573228, did not significantly alter mRNA levels of MMP3 

and MMP9 in A2058 and A375 cells (data not shown).

FAK-dependent cancer cell transition to invasive phenotypes is known to involve 

transforming growth factor beta (TGF-β) 44, an established driver of cancer virulence 45 and 

melanoma invasiveness through upregulation of MMPs 46. Of further interest, TGF-β may 

directly influence nestin expression in pancreatic cancer cells 47. Although we did not find 

TGF-β to significantly alter nestin mRNA expression in either A2058 or A375 cells (Figure 

4c), it significantly upregulated MMP9 and 10 in A2058 and A375 cells (Figure 4d). Of 

interest, the effects of TGF-β on upregulation of MMP10 in A2058 cells, and MMP9 and10 

in A375 cells were significantly more robust in the setting of nestin KD (Figure 4e). 

Specifically, among the TGF-β-treated cells, nestin KD A2058 cells had significantly 

upregulated MMP10, and nestin KD A375 cells had significantly upregulated MMP9 and 

10, as compared to control cells (Figure 4e). These data suggest that although TGF-β does 

not directly regulate nestin expression in the melanoma cell lines under study, TGF-β-

mediated upregulation of certain MMPs is enhanced by low nestin expression.

Discussion

Nestin is a type VI intermediate filament characteristically expressed in physiologic neural 

stem cells and muscle progenitor cells 48, 49. Nestin regulates cell death in neural progenitor 

cells and podocytes of kidney 50, 51 and neuromuscular junction development 52 by a CDK5-

dependent mechanism. Although nestin has been associated with poor prognosis in both 

breast cancer and melanoma 53, 54, it is not established that nestin is an authentic stem cell 

marker in cancer, and mechanisms that link degree of nestin expression with known 

behavior of clinical tumors remain largely unexplored. Melanoma has long been considered 

as a paradigm for the study of cancer behavior and progression 55. Primary melanomas may 

grow in either or both nodular and infiltrative patterns 2, 4, the former more consistent with 

tumorigenesis driven by self-renewal, and the latter indicative of the ability of at least some 

cells to invade host tissues beyond the primary site. In this study, we asked whether nestin 

might relate to these two basic patterns of tumor growth. We find that nestin expression 

appears to correlate with these two potentially interchangeable phenotypes and provide 

potential mechanistic insights indicating that nestin regulates MMP production, a known 

mediator of the invasive growth phase of melanoma and other cancers.

Practically, clinical melanomas traditionally have been divided into subtypes based on 

presence and morphology of the radial growth phase and characteristics of vertical growth 

phase. Based on the cytology and architecture of the former, radial growth subtypes such as 

superficial spreading, lentigo maligna, acral lentiginous/mucosal have been designated. 

When radial growth fails to flank the invasive component for a span three or more epidermal 

rete ridges, melanomas are considered to be of the nodular subtype. Moreover, when deeper 

invasion constituting vertical growth phase is composed of more infiltrative patterns of thin 

spindle cells, as opposed of expansive nodules of epithelioid cells, descriptors such as 

desmoplastic and sarcomatoid may be added to describe these features. In our study, the 

majority of human melanoma specimens were from a TMA without annotation as to subtype 

or outcome, such that the correlative morphology presented refers strictly to growth patterns 
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(nodular versus infiltrative), rather than specific melanoma subtypes, their associated 

prognostic attributes, or relationship to patient survival.

The notion that cells forming tumorigenic nodules versus invasive fronts are fundamentally 

different is perhaps intuitive, as rounded cells that diffusely express cytoplasmic nestin and 

grow cohesively to form expansive nodules with little MMP expression are not 

physicodynamically or biochemically well-adapted to also navigate through spatial 

interstices and ECM barriers imposed by human dermis. Nonetheless, there exist conflicting 

studies that suggest that nestin expression mediates both three-dimensional tumorigenesis 

while at the same time driving an invasive phenotype 7, 38. Cell-cell contact is known to 

influence kinetics of cancer cell invasion 56, and in this regard our approach differs from 

previous studies by employing melanoma cell loading doses for Matrigel invasion assays 

that were lower by four-fold 7. In addition, our nestin knockdown strategy employed a 

shRNA construct that did not significantly alter melanoma cell proliferation, an additional 

potential factor in interpretation of such assays. In this regard, it is important to separate 

overall proliferation in bulk cell culture, which in our study was not affected by nestin KD, 

from nestin KD-induced inhibition of sphere formation that has been presumed to be driven 

by a self-renewing stem cell subcompartment. Moreover, our findings of enhanced invasion 

as a function of nestin KD are supported by both demonstration of induction of MMPs 

known to facilitate this process 39, 57, and by the ability to partially block this effect using 

specific 31 and broad-spectrum 32 MMP inhibitors. The concept of reciprocal switching 

between tumorigenic and invasive melanoma phenotypes is fortified further by recent 

studies by Hoek et al 58 who have provided complementary in vitro and in vivo evidence 

based on experimental downregulation of microphthalmia-associated transcription factor 

(MITF) gene expression. Because cancer cells may co-opt pathways integral to 

embryogenesis 59, it also is of interest that our findings in melanoma bear some resemblance 

to the phenomenon where stationary proliferating nestin-expressing neural crest stem cells 

lose nestin 8 as they acquire MMP expression 60 in conjunction with migration and 

differentiation. Finally, we noted no increase in TIMP1-4 expression with nestin KD in 

A2058 cells or in TIMP1-3 in A375 cells, suggesting that the biological effects of increased 

MMP expression by nestin KD may be independent of many of their primary endogenous 

inhibitors.

It is of interest that nestin KD failed to increase cell motility, cell invasion was enhanced. 

While our data does not provide fundamental insight in this regard, it is noteworthy that 

migration on a surface involves coordinated ability to loosen from adhesive interactions with 

adjacent cells mediated by cell adhesion molecules, gain traction with substrate through 

expression of integrins, and contract and expand via regulation of the actin-myosin complex. 

Invasion, on the other hand, requires additional assets, such as production of invasopodia 

that mediate initial proteolysis of extracellular matrix, and more focused proteolysis attained 

primarily via production of matrix metalloproteinases. Clearly the dominance of proteolysis 

over movement could produce situations whereby less motile cells are in fact more invasive. 

The prospect that less motile yet invasive cells might be better equipped to form metastases 

is a fascinating one, as the ability to shift from an invasive to a tumorigenic phenotype could 

be favored by immigrant cells capable of 'planting' themselves in the metastatic niche upon 
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arrival, a behavior conceivably favored by low migratory potential upon reaching their 

destination.

Mechanistically, the interactions between nestin and MMP expression are likely to be 

complex and involve multiple pathways. One insight in the present study into the effects of 

nestin expression on the invasive phenotype was provided by cell labeling for pFAK. Hyder 

et al 14 have recently observed that nestin downregulation in prostate cancer cell lines results 

in repositioning of pFAK from clumped cytoplasmic and submembranous regions to discrete 

punctate domains that exclusively decorate the cell membrane, and our findings in both 

A2058 and A375 nestin KD melanoma lines are remarkably similar. In contrast, 

pharmacological inhibition of FAK did not significantly alter MMP expression in the 

melanoma lines examined. Although this raises the possibility that invasive pathways 

involving FAK/integrin-mediated cell/matrix adhesion, may also be involved in nestin KD 

cells616263, our data is too preliminary to draw definitive conclusions at this juncture. FAK 

also is known to be involved in TGF-β adhesion-dependent signaling and MMP up-

regulation 44, 64. Moreover, melanoma cells and their microenvironment may constitutively 

secrete bioactive TGF-β 65, 66. While the upstream regulatory mechanisms for nestin 

expression remain largely unknown 67, a number of studies suggest that nestin itself may be 

influenced by extracellular stimuli 29, 30, 47, 68 such as TGF-β. Our data suggest that 

although TGF-β does not influence nestin expression, expression of certain MMPs is 

enhanced by TGF-β in association with nestin KD. TGF-β is abundantly expressed in human 

epidermis and dermis 69, and the possibility exists that it may serve as a microenvironmental 

stimulus to drive MMP expression in melanoma cells with low nestin, thus facilitating 

invasion. Nonetheless, our data also indicate that nestin also has TGF-β-independent 

functions. Additional studies are now indicated to better understand the molecular linkages 

between microenvironment, nestin, MMPs, FAK, and stromal invasion.70

In summary, our data support a reciprocal relationship between expression of nestin and 

certain MMPs important in transition to an invasive phenotype, and begin to probe 

molecular mechanisms potentially involved in nestin/MMP interactions. While none of the 

assays used or mechanisms explored permit a definitive conclusion of a "nestin/MMP 

invasive switch", the findings for the first time provide a framework for understanding 

nestin function in melanoma biology. Moreover, the results obtained are internally 

consistent in supporting a role for nestin in the as yet unsolved mystery of how melanomas 

express a complementary duality involving tumorigenic and invasive growth in a manner 

that appears to synergize to drive virulence. Practically, nestin immunohistochemistry of 

patient biopsies has focused to date on correlating the intensity of its expression with 

aggressive behavior 7, 53, 54, as assessed by the formation of durable metastases or their 

clinical consequences. This now must be re-examined in the context of a more complex 

nestin profile where variation in nestin expression may define subpopulations differentially 

capable of the tumorigenic or invasive growth that likely must collaborate to spawn 

clinically significant metastases. Because the nestin-rich tumorigenic growth phase likely 

requires coordinated and bidirectional interaction with the nestin-poor infiltrative phase in 

order to drive tumor dissemination, studies are also indicated to screen for the effects of 

endogenous pathophysiologic mediators that are abundant in the melanoma stromal 

microenvironment 71 and that may be capable of influencing nestin expression. 
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Translationally, nestin transcription is known to be epigenetically regulated by histone 

acetylation that itself may be influenced by retinoic acid 72, an agent known to inhibit 

melanoma virulence-associated gene expression 73. Accordingly biological modifiers of 

nestin expression should now be further examined in the context of melanoma therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Nestin affects melanoma MMP expression
(a) Nestin mRNA levels were significantly down-regulated in nestin KD cells (NesKD, 

black bars) of A2058 (90% decrease) and A375 (91% decrease,), as compared to vector 

control cells (Vec, white bars). (b) Decreased nestin protein levels were confirmed in nestin 

KD A2058 (92.7% decrease) and A375 (97.7% decrease) cells as compared to vector control 

cells by Western blot. (c) Nestin KD did not significantly alter cell proliferation in A2058 

and A375 cells. (d) Compared to A2058 Vector control cells (white bars), A2058 Nestin KD 

cells (black bars) had significantly higher mRNA levels of MMP1, MMP3, MMP9, and 
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MMP10. e) Compared to A375 Vector control cells (white bars), A375 Nestin KD cells 

(black bars) had significantly higher mRNA levels of MMP1, MMP3, MMP9, and MMP10. 

(f) Western blot confirmed that A2058 Nestin KD cells had marked higher protein levels of 

MMP1 (3.2-fold) and MMP3 (31.2-fold) in cell lysate and secreted MMP1 (3.0-fold), 

MMP3 (19.9-fold), and MMP10 (60.7-fold) in supernatant. MMP9 protein in supernatant of 

A2058 cells was below detection limit of immunoblotting. A375 Nestin KD cells had 

marked higher protein levels of MMP1 (7.3-fold) in cell lysate and secreted MMP1 (4.4-

fold) and MMP9 (11.1-fold) in supernatant. MMP3 protein in cell lysate and supernatant of 

A375 cells were below detection limit of immunoblotting. MMP9 and MMP10 proteins in 

cell lysate of A2058 and A375 cells were below detection limits of immunoblotting and thus 

data was not shown.

Lee et al. Page 20

Lab Invest. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Nestin KD enhances melanoma invasion in vitro and decreases sphere formation
(a) Note significant diminished cell migration of nestin KD cells (NesKD, solid lines) as 

compared to the vector control cells (Vec, dash lines) of A2058 (left; p<0.00001 at 6 and 8 

hours, respectively) and A375 (right; p<0.00001 at 6 and 8 hours, respectively). (b) 
Representative fields of migrating A2058 (left) and A375 (right) cells in Matrigel inserts 

(top panel) and control inserts (bottom panel). Scale bars: 50 µm. (c) Nestin KD cells (black 

bars) had significantly higher Matrigel invasion than vector control cells (white bars) of 

A2058 (left, 2.54-fold, p<0.001) and A375 (right, 4.02-fold, p<0.001). (d) Matrigel invasion 

of A2058 and A375 nestin KD cells was characterized in the presence of MMP3-specific 

inhibitor UK356618 or the broad spectrum MMP inhibitor Marimastat. Compared to 

untreated A2058 nestin KD cells (black bar), UK356618 (20 nM, 33% decrease, p<0.05) 

and Marimastat (20 nM, 43% decrease, p<0.01) significantly suppressed Matrigel invasion 

of A2058 nestin KD cells. Combinatorial treatment of UK356618 (20 nM) and Marimastat 

(20 nM) additively suppressed Matrigel invasion of A2058 Nestin KD cells (56% decrease, 

p<0.001). Additionally, Matrigel invasion of A2058 nestin KD cells with combinatorial 

treatment of UK356618 and Marimastat was lower than monotherapy with UK356618 

(65%, p=0.097). Likewise, in A375 nestin KD cells, Matrigel invasion of A375 nestin KD 

cells was not altered by UK356618 (20 nM), but was significantly suppressed by Marimastat 

(20 nM) (45% decrease, p<0.01) or by combinatorial treatment of Marimastat (20 nM) and 

UK356618 (20 nM) (55% decrease, p<0.001), as compared to untreated cells (black bar). 

Additionally, Marimastat monotherapy and combinatorial treatment of Marimastat and 
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UK356618 had comparable suppressive effects on A375 nestin KD Matrigel invasion. 

Results were compared by one-way ANOVA test with Tukey’s multiple comparison test. 

Representative cell migration and invasion results are shown from at least three independent 

assays. (e) Representative images of A2058 and A375 melanospheres in spherogenic 

suspension culture in DMEM supplemented with 10% FBS and 0.5% methyl cellulose for 

21 days. Melanospheres were visualized with p-iodonitrotetrazolium violet staining. Note 

marked decreased of sphere formation in both A2058 (top) and A375 (bottom) nestin KD 

cells as compared to vector control control cells (both p<0.01, respectively). Representative 

results are shown from two independent experiments. (f) H&E and IHC images of spheres 

growing over Matrigel. A2058 vector control spheres grew mainly on the surface of 

Matrigel (top), while nestin KD spheres invaded into the lattice of Matrigel (bottom). Scale 

bars: 50 µm Location of spheres on Matrigel. Majority (83.3%) of A2058 vector control 

spheres grew on the surface of Matrigel (white bar), while 16.7% partially invaded into 

Matrigel (gray bar). In contrast, 28.3% nestin KD spheres grew on the surface of Matrigel 

(white bar), 25% partially invaded into Matrigel (gray bar), and 46.7% completely invaded 

and embedded into Matrigel (black bar). Difference in Matrigel invasion between 

melanospheres derived from A2058 vector control (N=60) and Nestin KD (N=60) cells was 

significant (p<0.0001, Chi-square test). Data is represented from two independent Matrigel 

sphere experiments. Nestin was abundantly expressed in the cytoplasm of vector control 

A2058-derived melanospheres grown in association with Matrigel (top), whereas decreased 

nestin protein levels in nestin KD A2058-derived spheres correlated with a localized 

submembranous pattern (bottom, arrows). Left panels: low magnification; right panels: high 

magnification. Scale bars: 10 µm. Note: * p<0.05, ** p<0.01, *** p<0.001.
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Figure 3. Nestin KD is associated with stromal invasion in vivo
(a) Tumors derived from A2058 nestin KD (NesKD, solid line) and vector control (Vec, 

dash line) cells had comparable growth rate in NOD-SCID mice at 3×106 cells/injection/

mouse (N=5). (b) Representative immunohistochemistry staining of nestin and MMP3 in 

A2058 xenograft tumors at 28 days post xenografting. Nestin KD tumors (bottom) had 

significantly enhanced MMP3 staining in the tumors confirmed with efficient nestin KD 

when compared to vector control tumors (top) where nestin was abundantly expressed 

(Nestin KD, black bar; vector control, white bar; both N=5, p<0.001). Scale bars: 50 µm. (c) 
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Representative H&E and immunohistochemistry staining of vector control (top) and nestin 

KD (bottom) tumors at 7 days post xenografting. In contrast to well-circumscribed 

subcutaneous nodules of vector control tumors (N=4), nestin KD tumors (N=4) had 

significant stromal invasions in multiple areas. Immunoreactivity of SOX2 stained both 

A2058 vector control and nestin KD tumor cells. Efficient nestin knockdown was confirmed 

in the nestin KD tumors. In contrast to dense cytoplasmic nestin staining in vector control 

tumors, submembranous pattern of nestin distribution was observed in localized, spindle 

cells scattered in nestin KD tumor (inset). Nestin KD tumors had enhanced MMP3 staining. 

CD31+ vessels and F4/80+ dendritic cells appeared at peritumoral stroma of vector control 

tumors, whereas these cells diffusely infiltrated nestin KD tumors. Scale bars: 50 µm. (d) 
Examples of patterns of nestin expression that may be detected in tumorigenic (nodular, top) 

and infiltrative (desmoplastic, bottom) regions of certain human primary melanomas. 

Nodular regions by hematoxylin and eosin (H&E) staining are well-circumscribed (broken 

line: border between tumor [right] and adjacent stroma [left]) and composed of coalescent, 

rounded cells that express abundant cytoplasmic nestin by immunohistochemical staining. 

Infiltrative regions, in comparison, show diffuse permeation of stroma by elongated spindle-

shaped cells that express quantitatively less nestin immunoreactivity that is localized to sub-

plasma membrane regions. Scale bars: 50 µm.
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Figure 4. Possible mechanisms of nestin regulation of melanoma invasive phenotype: pFAK and 
TGF-β
(a) pFAK was significantly lower (78% decrease) as a result of nestin KD in A2058 cells, 

while FAK protein levels were not changed (left panel); in contrast, pFAK and FAK were 

significantly higher (3.2-fold and 2.5-fold, respectively) as a result of nestin KD in A375 

cells (right panel). (b) Intracellular expression pattern of phosphorylated FAK (pFAK, red) 

in vector control nestin (green)-expressing cells of both A2058 and A375 lines consisted of 

coarsely-clumped intracellular and peripheral zones of immunoreactivity (upper panels, 

regions enclosed in broken square are shown at higher magnification directly beneath each 

panel; broken yellow lines approximate plasma membrane). In contrast, in nestin KD cells, 

pFAK was expressed only as discrete punctate cell membrane-associated domains (bottom 

panels). (c) Nestin mRNA levels were not significantly altered by TGF-β (black bars) in 

A2058 and A375 cells as compared to untreated cells (white bars). Average fold changes 

from at least two different batches of cells are shown. (d) Compared to untreated A2058 and 

A375 cells (white bars), TGF-β (black bars) upregulated MMP9 and 10 mRNA levels, but 
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did not alter mRNA levels of MMP1 and MMP3. Average fold changes from at least two 

different batches of cells are shown. (e) Compared to TGF-β−treated vector control cells, 

upregulation of MMP10 in A2058 nestin KD cells and MMP9 and 10 in A375 nestin KD 

cells was significantly further amplified in the setting of nestin depletion.
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