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Abstract

MicroRNA (miRNA) precursor hairpins have a unique secondary structure, nucleotide length, and nucleotide content that
are in most cases evolutionarily conserved. The aim of this study was to utilize position-specific features of miRNA hairpins
to improve their identification. To this end, we defined the evolutionary and structurally conserved features in each position
of miRNA hairpins with heuristically derived values, which were successfully integrated using a probabilistic framework. Our
method, miRRim2, can not only accurately detect miRNA hairpins, but infer the location of a mature miRNA sequence. To
evaluate the accuracy of miRRim2, we designed a cross validation test in which the whole human genome was used for
evaluation. miRRim2 could more accurately detect miRNA hairpins than the other computational predictions that had been
performed on the human genome, and detect the position of the 59-end of mature miRNAs with sensitivity and positive
predictive value (PPV) above 0.4. To further evaluate miRRim2 on independent data, we applied it to the Ciona intestinalis
genome. Our method detected 47 known miRNA hairpins among top 115 candidates, and pinpointed the 59-end of mature
miRNAs with sensitivity and PPV about 0.4. When our results were compared with deep-sequencing reads of small RNA
libraries from Ciona intestinalis cells, we found several candidates in which the predicted mature miRNAs were in good
accordance with deep-sequencing results.
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Background

MicroRNA (miRNA) is a well characterized non-coding RNA

family that has important roles in various biological processes such

as development [1], cancer [2], and immune response [3].

Therefore, miRNA identification and functional analysis are

necessary for the understanding of many biological phenomena.

An miRNA is initially transcribed as a long RNA molecule called

pri-miRNA which contains one or more hairpin structures that are

processed by the enzyme Drosha [4]. In this study, we refer to the

hairpin structure as an ‘‘miRNA hairpin’’. After an miRNA

hairpin is processed into a shorter hairpin, called pre-miRNA, by

Drosha, it is further processed into a ,22-nucleotide (nt) double-

stranded RNA molecule called an miRNA duplex by the enzyme

Dicer [5]. Although a novel type of miRNA gene that bypasses

Drosha processing has been reported [6], most miRNAs found

until now are subject to Drosha processing. In general, either

strand of the miRNA duplex is loaded into the RISC protein

complex and functions as a mature miRNA [7]. Another strand of

the miRNA duplex, which we refer to as ‘‘passenger strand’’, is

rapidly degraded [7]. Figure 1 illustrates the location of an miRNA

duplex as well as the Drosha and Dicer cleavage sites in a putative

miRNA hairpin.

Previous biochemical and computational studies have revealed

several important features that are specific or necessary for

miRNA hairpins. For example, miRNA duplex regions within

miRNA hairpins generally form stable base pairs [8] and often

have an internal small bulge in the middle [9,10]. The 59-end

position of mature miRNA is predominantly composed of uracil

and tends to be energetically unstable [9,11]. Drosha was shown to

recognize the outermost base pair in miRNA hairpins [10] and

cleave the molecule at ,13 nt and ,11 nt from the Drosha

recognition base pair (DRB; Fig. 1). Therefore, the positions

around the DRB have unique secondary structural [10,12] and

evolutionary features, as shown in Results and Discussion. The

length between the Drosha cleavage sites is ,60 nt with a small

variation (SD = 4.9) for human miRNA hairpins [12], although it

can be longer (,80 nt) in Drosophila [13].

The features described above can be useful for identifying

conserved miRNA hairpins, and several methods have been

proposed that take these features into account. In miRScan

[14,15], evolutionary and structural features in each part of

miRNA hairpins were used for the genome-wide screening of

conserved miRNA hairpins. Berezikov et al. [16] and RNAmicro

[17] considered the degree of evolutionary conservation in a

specific part of an miRNA hairpin. SSCprofiler [18] and miRRim
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[19] used a hidden Markov model (HMM) to model evolutionary

and secondary structural features in each position of miRNA

hairpins. The above methods except miRScan, however, do not

explicitly take into account the location information of mature

miRNAs, and therefore cannot be used to infer mature miRNAs.

More recently, several groups report new methods for detecting

miRNA hairpins based on detailed structural and nucleotide

features. Helvik et al. [20] use position-specific structural and

nucleotide features for predicting the Drosha cleavage sites. They

also showed that prediction of the Drosha cleavage sites improved

the accuracy of detecting miRNA hairpins. MiRPred [21] detects

miRNA hairpins based on ensemble of secondary structural

motifs. Agrawal et al. [22] used context-sensitive HMM to model

sequence and structure of miRNA hairpins. MiPred [23] used the

Random Forest algorithm to integrate local structural character-

istics and global structural stability of miRNA hairpins. Liu et al.

[24] extracted sequence-structure motifs from miRNA hairpins

and used them to distinguish true and non-miRNA hairpins.

These methods, however, do not take evolutionary features into

account. To use these methods for the genome-wide screening of

conserved miRNA hairpins, an additional screening procedure

based on the evolutionary features has to be developed, which is

not a simple task because, as shown later, miRNA hairpins have a

unique and complex pattern of evolutionary conservation.

In this study, we developed a new method, miRRim2, which

can not only detect conserved miRNA hairpins, but also infer their

mature forms. In miRRim2, each position of an miRNA hairpin is

expressed as a multidimensional feature vector to detect position-

specific features; therefore, an miRNA hairpin is expressed as a

sequence of the feature vectors. miRNA hairpins, expressed by

sequences of feature vectors, are modeled using conditional

random fields (CRFs) [25], which optimize feature weights so

that a trained model can most probably discriminate between

miRNA hairpins and background data. The probabilistic model

used in miRRim2 has several sub-components, each of which

corresponds to a specific component of miRNA hairpins, such as

mature miRNA, passenger strand, and terminal loop regions;

therefore, the position-specific features of each component are

appropriately modeled.

Recently, many miRNA hairpins have been identified that are

not evolutionarily conserved. A recent study shows that the

expression level of these non-conserved miRNA hairpins are very

low, and that they are almost free of selective pressure [26].

Another recent study has suggested that non-conserved miRNA

hairpins may disappear quickly during the course of evolution

[27]. Because the biological relevance of non-conserved miRNA

hairpins remains elusive, we focus on the detection of conserved

miRNA hairpins, of which the biological importance is evolution-

arily supported.

Results and Discussion

Evolutionary and Secondary Structural Features of
miRNA Hairpins

Figure 2 shows the evolutionary and structural features of 306

conserved miRNA hairpins in human, which we refer to ‘‘core

miRNA hairpins’’ (see Materials and Methods). In this figure, both

of the PhastCons and PhyloP score represent the degree of

evolutionary conservation in each position, which are calculated

based on multiple alignment between species [28,29]. The base

pair potential represents the likelihood of forming a base pair in

each position, which is calculated from the predicted secondary

structure (see below). The position 0 in the x-axis indicates to 59-

ends of miRNA duplexes in the 59-arm.

Overall, the PhastCons, PhyloP, and base pair potential are

highly correlated, indicating that highly conserved regions tend to

form base pairs in miRNA hairpins. Especially, the miRNA duplex

regions are more strongly conserved and form more stable base

pairs than their surrounding regions. The outside regions of the

miRNA hairpin (position 220 or less, and 80 or more) are

generally less conserved than the internal regions, as has been

already reported [16,19].

The Drosha recognition base pair (DRB; Fig. 1) in the 59-arm of

the miRNA hairpin is located around position -13, where the base

pair potential drops sharply, as previously reported [10,12].

Interestingly, PhastCons and the PhyloP scores also drop at the

same position. The same propensity was observed around the

DRB in the 39-arm (position +11), when we adjusted position 0 to

the 39-ends of the miRNA duplex regions in the 39-arm (Fig. S1).

Next we focused on the difference between the mature miRNA

and passenger strand. Mature miRNAs are more strongly

conserved than passenger strands (Fig. 3A), and the 59-ends of

mature miRNAs are less likely to form a base pair than passenger

strands (Fig. 3B). These differences were only found for mature

Figure 1. Schematic view of a putative miRNA hairpin. Cleavage sites by Drosha and Dicer are indicated by black and gray arrowheads,
respectively. An miRNA duplex is represented by black circles. An arrow at the left side indicates the Drosha recognition base pair (DRB) (see text). The
59-arm and 39-arm indicate the 59- and 39-sides of a stem region in an miRNA hairpin, respectively.
doi:10.1371/journal.pone.0044314.g001
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miRNAs in the 59-arm. For mature miRNAs in the 39-arm, these

propensities were very weak (Fig. S2). Therefore, as shown below,

the detection accuracy of mature miRNAs in the 59-arm is higher

than in the 39-arm.

Features used in Our Method
To utilize the evolutionary and structural features described

above, we expressed each genomic position i as a 7-dimensional

vector oi. Table 1 presents a brief summary of oi. Dimensions 1–4

represent evolutionary conservation, which are calculated from

multiple alignments between species. Dimensions 5 and 6

represent secondary structural features, which are calculated from

the predicted secondary structure. Dimension 7 represents a

nucleotide in each position. Below, we describe the details of each

dimension of oi.

Dimension 1 of oi is the PhastCons score [28] of position i,

which is calculated from multiple alignment between species. In

this study, we used the PhastCons score calculated based on

multiple alignment across 44 vertebrates.

Dimension 2 and 3 is the PhastCons score in position i-20 and

i+20, respectively. As shown in Figure 2, the outside regions of

miRNA hairpins tend to be less conserved than the internal

regions, and the second and third dimensions are useful for

detecting this propensity.

Dimension 4 is the PhyloP score [29] which is another measure

of evolutionary conservation. The important difference between

Figure 2. PhastCons scores, PhyloP scores, and base-pair potential averaged in each position. Position 0 indicates to 59 ends of miRNA
duplexes in the upper strand of miRNA hairpins. Dotted rectangles indicate the approximate location of the miRNA duplex.
doi:10.1371/journal.pone.0044314.g002

Figure 3. Difference between mature miRNA and passenger strand in the 59-arm of miRNA hairpins. Median values of (a) PhyloP scores
and (b) base pair potentials are plotted in each position. Position 0 indicates the 599-ends of mature miRNA or passenger strand.
doi:10.1371/journal.pone.0044314.g003
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the PhyloP and PhastCons scores is that the PhyloP score is

calculated independent of neighboring positions; therefore, the

PhyloP score is more appropriate for evaluating the degree of

evolutionary conservation at each position. In contrast, the

PhastCons score is more sensitive for detecting continuous

conserved regions [30].

Dimension 5 is the base pair potential which represents the

likelihood of forming a base pair in each position. The base pair

potential is calculated as the maximum value of base pair

probabilities assigned to each position (see Methods for complete

details).

Dimension 6 is the base pair distance which represents the

distance between a predicted base pair. For example, if position i is

predicted to form a base pair with position j, the base pair distance

of position i is j – i (see Methods for complete details).

Dimension 7 simply represents the nucleotide (A, U, G, or C) in

each position.

The Probabilistic Model used in this Study
Because each genomic position is expressed by a 7-dimensional

vector, a long genomic region is represented by a sequence of 7-

dimensional vectors, and each miRNA hairpin is a sequence

segment hidden in it. To detect miRNA hairpins from a long

genomic region, we used a probabilistic model called a conditional

random field (CRF) [25], which is recently beginning to be used in

biological sequence analyses and achieves better performance than

existing methods [31–34].

The probabilistic model employed here consists of 12 sub-

models (Fig. 4). The left and right sides of the Flanking sub-model

represent the upstream and downstream regions of the miRNA

duplex, respectively. The Loop sub-models represent the regions

between miRNA duplexes. The Mature and Passenger sub-models

represent the mature miRNA and passenger strand, respectively.

The Non-miRNA sub-model represents regions that are not

miRNA hairpins. As described above, either strand of the miRNA

duplex can become mature miRNA; however, in some cases, both

strands become mature miRNA. Therefore, there are 3 types of

mature miRNA location in miRNA hairpins. Our architecture has

3 paths, each of which corresponds to one of the 3 types of mature

miRNA location. A given sequence segment is considered an

miRNA hairpin if it is derived from 1 of these 3 paths with a high

probability. Similarly, a sequence segment that is expected to be

derived from the Mature sub-model is considered a mature

miRNA sequence.

Scores for Detecting miRNA Hairpins and Mature miRNAs
Using the above CRF model, we calculated the probability that

each genomic position i is an miRNA hairpin, which we denoted

as Pmi
i, using the Forward-Backward algorithm (see Methods for

calculation details). We considered a continuous sequence segment

of 80 base pairs (bp) or more with a Pmi
i.T as a predicted miRNA

hairpin, where T is a probabilistic threshold from 0 to 1.

We also calculated the probability of position i being the 59-end

position of a mature miRNA region, which we denoted as P5end
i.

The position with P5end
i.T is considered to be the 59-end of a

mature miRNA.

Genome-wide Cross Validation
To evaluate the accuracy of miRRim2, we designed a genome-

wide cross-validation, in which the whole human genome was used

for training and test data. Briefly, we selected a particular human

chromosome and scanned it using miRRim2 that was trained

using the core miRNA hairpins on the remaining chromosomes.

To mimic a realistic situation, miRNA hairpins were excluded

from training data if they were homologous to miRNA hairpins on

the selected chromosome. This procedure was repeated for all

chromosomes. So the whole human genome was used for

evaluation. The details were described in Methods.

The accuracy of miRRim2 is shown in Figure 5A. When the

number of predicted miRNA hairpins was 216, miRRim2 could

detect 180 core miRNA hairpins, indicating that miRRim2 was

highly accurate at this threshold. For comparison, we obtained

four publically available prediction results, and evaluated them

using the same core miRNA hairpins (Figure 5A). miRRim2 could

detect more core miRNA hairpins when the number of predicted

miRNA hairpins was adjusted to be the same. The genomic

coordinates of miRNA hairpins predicted by berezikov [16],

miRscan [15], and miRRim [19] were obtained from supplemen-

tal data of these articles. Predicted miRNA hairpins of RNAmicro

were obtained from the ‘‘Predicted miRNA track’’ of our fRNA

database [35].

In order to evaluate the contribution of each type of feature to

the prediction accuracy, we excluded 1 or more dimension(s) from

the feature vector oi and investigated changes of the prediction

accuracy. The result is shown in Figure 5B. The exclusion of

PhastCons scores (dimensions 1–3) caused significant reduction of

the prediction accuracy. The PhyloP score (dimension 4), on the

other hand, had only a small effect on the prediction accuracy,

indicating that only the PhastCons scores are almost sufficient for

capturing the conservation pattern of miRNA hairpins.

Two types of secondary structural features (base pair potential

and distance: dimensions 5 and 6) individually contribute to the

prediction accuracy, although these features were dependent on

each other (see Methods). When the two types of secondary

structural features (dimensions 5 and 6) were simultaneously

excluded, the prediction accuracy was greatly reduced, indicating

that not only conservation but also secondary structural features

were discriminative. The nucleotide (dimension 7) had a slightly

bad effect on the prediction accuracy.

Accuracy for Detecting the 59-end of Mature miRNAs
Figure 6A shows the accuracy for detecting the 59-end of a

mature miRNA based on the cross-validation described above.

Inferring the 59-end of a mature miRNA is important because the

first 8 bp from the 59-end is so called ‘‘seed region’’ and plays a

pivotal role in the recognition of target genes.

The prediction accuracy was measured by sensitivity and

positive predictive value (PPV), which were defined as:

Sensitivity~TP=(TPzFN)

Table 1. Contents of a feature vector.

Dimension Description

1 PhastCons score

2 PhastCons score in 20-nt upstream

3 PhastCons score in 20-nt downstream

4 PhyloP score

5 Base pair potential

6 Base pair distance

7 Nucleotide

doi:10.1371/journal.pone.0044314.t001
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PPV~TP=(TPzFP)

where TP, FP, and FN are the number of true positives, false

positives, and false negatives, respectively. In this evaluation, the

59-ends of true mature miRNAs within the core miRNA hairpins

were defined as positive sites, and the other positions within the

core miRNA hairpins were defined as negative sites. If the

predicted 59-ends were (or were not) positive sites, they were

considered as true (or false) positives. Positive sites that were not

detected were considered as false negatives.

Our method achieved sensitivity and PPV slightly above 0.4,

which is better than our null model. In the null model, all the

uracils are considered as 5¢-end of mature miRNA. Each uracil

has a penalty score, which is designed such that uracils in plausible

positions have low penalty score (for details, see Methods S1).

When we consider the predicted sites that were 1 bp different from

positive sites as true positives, sensitivity and PPV increased to

about 0.55. Similarly, when we allowed a 2 bp difference,

sensitivity and PPV increased to about 0.65.

Mature miRNAs in the 59-arm of miRNA hairpins were more

accurately predicted than those in the 39-arm (Fig. S3) because the

differences between mature miRNA and passenger strand are only

found in the 59-arm (see Fig. 3 and Fig. S2).

There are several methods that can identify mature miRNAs

[20,36–39]. Among them, only one tool MatureBayes [36] is

specifically designed for predicting 59-end of mature miRNA. In

Figure 4. Architecture of the Model. Each sub-model is represented by an oval. The circled ‘‘s’’ and ‘‘e’’ represent a start and end state,
respectively. Dotted rectangles indicate sub-models corresponding to an miRNA duplex.
doi:10.1371/journal.pone.0044314.g004

Figure 5. Accuracy for detecting the core miRNA hairpins. (a) The accuracy of miRRim2 together with four previously performed
computational predictions is shown. (b) The change of the accuracy when one type of features is excluded. BPP: base-pair potential, BPD: base-pair
distance.
doi:10.1371/journal.pone.0044314.g005
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the other tools, the main purpose is to identify miRNA hairpins

[37–39] or the Drosha cleavage sites [20], not the location of

mature miRNAs. Therefore, we compared our results with

MatureBayes. The prediction results of MatureBayes were

obtained using the web server of MatureBayes. We used the

nucleotide sequences of the core miRNA hairpins as input data of

MatureBayes. The sensitivity and PPV of MatureBayes was 0.30

and 0.18, respectively. The main reason for the lower accuracy of

MatureBayes than that of miRRim2 may be the difference of

training data. MatureBayes was trained using both conserved and

non-conserved miRNA hairpins. On the other hand, miRRim2

was trained using only conserved miRNA hairpins which were

probably more uniform in terms of nucleotide contents and

hairpin length than non-conserved ones.

Figure 6B shows the feature contribution to the prediction

accuracy of mature miRNA. The feature that contributed the most

was nucleotide (dimension 7), which may be mainly due to the fact

that the 59-ends of mature miRNAs are predominantly composed

of uracil. The second most important feature was the base pair

distance (dimension 6). The base pair distance was useful for

identifying the approximate positions of the Drosha cleavage sites

(Fig. 1) because the distance between a pair of Drosha cleavage

sites in a miRNA hairpin is ,60 bp on average with a small

variation [20]. Therefore, it may also help to identify the 59-end of

a mature miRNA. The small contribution of the PhyloP score

(dimension 4) may be due to the difference in evolutionary

conservation between mature miRNA and passenger strand

(Fig. 3A).

Prediction of Conserved miRNA Hairpins Other than the
Core miRNA Hairpins

The latest version of miRBase (v.18) contains 142 conserved

miRNA hairpins (mean PhastCons score .0.5) that are not

included in the core miRNA hairpins. About a half of them are not

included because they are newly discovered after the release of

miRBase version 14.0 from which the core miRNA hairpins were

constructed, and another half were excluded because they were

supported by only a single literature (see Methods). We

investigated whether miRRim2 could detect these miRNA

hairpins (Fig. 7). Several of the 142 miRNA hairpins could be

accurately detected. For example, 8 of them were included in the

top 11 candidates predicted by miRRim2. Overall, however,

miRRim2 as well as the other four methods could not detect many

of the 142 miRNA hairpins. We found that the pattern of

evolutionary conservation of the 142 hairpins was considerably

different from that of the core miRNA hairpins (Fig. S4). The

latest version of miRBase contains many miRNA hairpins

discovered by using the deep-sequencing technology. The

innovation of the deep-sequencing technology may have greatly

enhanced the discovery of miRNA hairpins. We, however,

speculate that the deep-sequencing is too sensitive, so that it can

sometimes detect miRNA-like molecules that are accidentally

processed by the Drosha and Dicer. At any rate, miRRim2 seems

superior to, or at lest comparable with, the other computational

predictions in the detection of the 142 miRNA hairpins.

Application to the Ciona Intestines Genome
To assess the effectiveness of miRRim2 on independent data,

we applied it to the Ciona intestinalis genome, which was recently

demonstrated to contain miRNA genes [40,41]. For Ciona

intestinalis, only Ciona savignyi is suitable for a comparative study

because the other sequenced chordates are evolutionarily too

distant (data not shown); therefore, the PhastCons and PhyloP

scores were not available. We propose that alternative conserva-

tion scores can be calculated from pairwise genomic comparisons.

As an alternative to the PhyloP score, we used the following simple

score: we assigned a score = 1 to the positions with a matched

nucleotide in pairwise genomic alignments, and 0 for the other

positions. As an alternative to the PhastCons score, we used the

alignment probability, which is a measure of the correctness of a

given alignment column. Although the meaning of the alignment

probability and PhastCons score is fundamentally different, they

are similar in that both of them take higher values in continuous

conserved segments, even if nucleotides in a certain alignment

column do not coincide. Therefore, we used the alignment

probability instead of the PhastCons score. Indeed, we confirmed

that, even if alternative conservation scores derived from human-

Figure 6. Accuracy for detecting the 59-end of mature RNAs. (a) Sensitivity-PPV plot for mature miRNA prediction. (b) The change of the
accuracy when one type of features is excluded. BPP: base-pair potential, BPD: base-pair distance.
doi:10.1371/journal.pone.0044314.g006
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mouse comparison were used, we could still obtain a comparable

accuracy with existing computational predictions (Fig. S5). These

alternative scores were calculated using the Last program [42],

which can not only perform fast genome-wide pairwise alignments,

but can also calculate the alignment probability for each alignment

column.

We trained miRRim2 using the core miRNA hairpins and used

it to scan the Ciona intestinalis genome. Hendrix et al. [41] identified

380 miRNA hairpins in Ciona intestinalis using deep-sequencing

experiments. In their methods, at least 5 deep-sequencing reads

were needed for a certain hairpin to be considered as an miRNA

hairpin. We compiled miRNA hairpins identified by Hendrix et al.

and those included in miRBase v.18, and obtained 419 miRNA

hairpins in Ciona intesinalis. The detection/prediction performance

is shown in Figure S6A. Briefly, miRRim2 detected 47 and 73

miRNA hairpins when the number of predicted miRNA hairpins

was 115 and 649, respectively. We found that the low sensitivity

(73/419) was derived from the fact that only about 80 of miRNA

hairpins in Ciona intestinalis were conserved in Ciona savignyi (data

not shown). Because our method was designed to detect conserved

miRNA hairpins, it could not detect non-conserved miRNA

hairpins. In the 73 miRNA hairpins detected by miRRim2, it

correctly predict the 59-end of mature miRNA with sensitivity and

PPV about 0.4 (Figure S6B).

Among the predicted miRNA hairpins, we found 10 candidates

in which the locations of predicted mature miRNAs were in good

agreement with deep-sequencing results. Table 2 shows the

genomic coordinates of the 10 candidates. Cand_1–Cand_4 have

the same nucleotide sequence. Cand_5 and Cand_6 also have the

same nucleotide sequence. Therefore, they may have been

generated by very recent genomic duplications, although we

cannot exclude the possibility that some of them are artifacts

generated by the misassembly of the genomic sequence. Figure 8

shows 5¢-end positions of predicted mature miRNAs and those

identified the deep-sequencing experiments by Hendrix et al. [41].

In many cases, predicted 5¢-ends (coloured nucleotides) are

located near the 5¢-ends identified by the deep-sequencing results.

Cand_1–Cand_4 were not reported by Hendrix et al. [41], because

they were located on recently sequenced genomic regions. Cand_8

and Cand_9 also were not reported by Hendrix et al. [41] possibly

due to the small number of sequencing reads.

Comparison of the Prediction Accuracy between Human
and Ciona

miRRim2 performed better on the human genome than on the

Ciona intestinalis genome (Figure S7 and Methods S2). Because

miRRim2 uses evolutionary conservation as a key feature, its

accuracy depends on the quality of evolutionary features. The

higher prediction accuracy on human is due to a richer amount of

comparative genomic resources for human than for Ciona.

Difference between the Previous Version
The most important difference of miRRim2 from the previous

version [19] is that it can infer the location of mature miRNAs. To

our knowledge, there are no tools that can predict the 59-end of

mature miRNAs by integrating evolutionary, structural, and

nucleotide features. Main methodological differences are as

follows. First, a more elaborate probabilistic model was used

(Fig. 4), which is designed to model each position of miRNA

hairpins. In the previous version, the architecture of probabilistic

model was simpler; it used an architecture consisting of linearly

connected states with self-transition parameters, which was not

suitable for modelling position-specific features of miRNA

hairpins. Second, miRRim2 used the conditional random fields

(CRFs) to train model parameters, which is recently beginning to

be used in biological sequence analyses. In the previous version,

hidden Markov model was used to train model parameters.

Finally, in miRRim2, the base-pair distance was newly used as a

feature, which significantly contributed to improve the prediction

accuracy of mature miRNAs (Fig. 6B).

Conclusions
In this study, we developed the miRRim2 method for detecting

miRNA hairpins and their mature forms by integrating evolu-

tionary, secondary structural, and nucleotide features in each

position of miRNA hairpins. Our method achieved better

prediction accuracy than genome-wide computational screenings

previously performed by other groups. By investigating the

contribution of each type of feature to the prediction accuracy,

it was shown that evolutionary and secondary structural features,

but not nucleotide features, are important for detecting miRNA

hairpins. For the prediction accuracy of mature miRNAs, it was

Figure 7. Accuracy for detecting the miRNA hairpins other than
core miRNA hairpins.
doi:10.1371/journal.pone.0044314.g007

Table 2. Promising candidates.

Name Genomic coordinatea) Clustered miRNA

Cand_1 chr13p:43397-43483 cand_2

Cand_2 chr13p:46031-46118 cand_1

Cand_3 scaffold_121:338389-338465 cand_4

Cand_4 scaffold_121:340167-340242 cand_3

Cand_5 scaffold_280:34403-34489 none

Cand_6 chr10q:2147938-2148025 cin-mir-4054

Cand_7 chr10q:2150133-2150203 cin-mir-4091

Cand_8 chr04q:5406744-5406831 none

Cand_9 chr03q:5428973-5429063 cin-mir2235

Cand_10 chr02q:7039737-7039806 none

a)Genomic coordinate of ci2 genome (Mar. 2005 Assembly).
doi:10.1371/journal.pone.0044314.t002
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shown that nucleotide and secondary structural features were

more important than evolutionary features. When miRRim2 was

applied to the Ciona intestinalis genome, several promising

candidates were detected. The prediction results for miRNA

hairpins, miRNA duplexes, and 59-ends of mature miRNAs in

humans and Ciona intestines are available from http://mirrim2.

ncrna.org.

Materials and Methods

Construction of Core miRNA Hairpins
From the 731 human miRNA hairpins in miRBase version 14.0

[43] that could be mapped on the human genome (version hg18),

we selected 398 conserved miRNA hairpins with a mean

PhastCons score .0.5. From these 398 miRNA hairpins, we

selected 307 instances that were validated by at least two

independent experimental evidences. We checked the presence

of experimental evidences for each miRNA hairpin by surveying

the literatures listed in miRBase version 14.0. Finally, we excluded

the mirtron-type miRNA hairpins [6]. The remaining 306 miRNA

were used as training and test data, which we referred to ‘‘core

miRNA hairpins’’. We made the length of core miRNA hairpins to

be 200-bp by extending upstream and downstream regions.

For some of the core miRNA hairpins, the location of the

passenger strand was not annotated. The locations of passenger

strands, however, were needed for training the model parameters

(see below). In such cases, they were deduced from the location of

a mature miRNA assuming the 2-bp 39-overhang illustrated in

Figure 1.

Construction of Non-miRNA Regions
Non-miRNA regions were randomly selected from non-

conserved and conserved genomic regions. We selected 10000

instances from non-conserved sequence segments (mean Phast-

Cons score ,0.4) and another 10000 from conserved segments

(mean PhastCons score .0.6). The length of the non-miRNA

regions was 200-bp.

Definition of a Feature Vector
In our method, each genomic position i was expressed by a 7-

dimensional vector oi. We already described the complete details

of dimensions 1–4 and 7 in the Result and Discussion section.

Here, we described the complete details of dimensions 5 and 6.

Dimension 5 is the base pair potential which represents the

likelihood of forming a base pair in each position. The base pair

potential at position i, BPPi, is calculated as:

BPPi~ max
{120ƒjƒz120

(pij)

where pij is a base pair probability between positions i and j that

can be calculated by McCaskill’s algorithm [44]. We used the

Rfold program (with the option L = 120) [45] for calculating base

pair probabilities in a genome-wide manner.

Dimension 6 is the base pair distance which represents the

distance between a predicted base pair. The base pair distance of

position i, BPDi, is calculated by the following equation:

BPDi~
{? if (BPPiv0:5)

J{i otherwise

�

Where

J~ arg max
{120ƒjƒz120

(pij)

Figure 8. Comparison of 59-ends of mature miRNAs predicted by miRRim2 and those identified by deep-sequencing. The probability
of a predicted 59-end (P5end

i) is indicated by colours; Black, blue, orange, and red means 0#P5end,0.05, 0.05#P5end,0.1, 0.1#P5end,0.4, and
0.4#P5end, respectively. Arrows indicate the 59-ends identified by deep-sequencing experiments by Hendrix et al. The number associated with an
arrow indicates the number of reads.
doi:10.1371/journal.pone.0044314.g008
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Conversion of Continuous Values into Symbols
Dimensions 1–6 of a 7-dimensional vector oi are represented by

continuous values. We converted them into 5 (or 6) distinct

symbols, and this conversion was performed in each dimension.

First, continuous values of a given dimension were obtained from

the core miRNA hairpins. Continuous values belonging to the

20% or lower percentile were converted into symbol ‘‘A.’’

Similarly, the 20–40%, 40–60%, 60–80%, and 80% or higher

percentiles were converted into ‘‘B’’, ‘‘C’’, ‘‘D’’, and ‘‘E’’,

respectively. Dimension 6, which contains negative infinities, was

converted into 6 distinct symbols. We converted negative infinities

into symbol ‘‘F’’, and the other continuous values into ‘‘A’’–‘‘E’’

using the same procedure as for dimensions 1–5. For dimension 7,

we simply assigned ‘‘A’’, ‘‘B’’, ‘‘C’’, and ‘‘D’’ to nucleotides A, U,

G, and C, respectively, in order to limit the number of symbols

used in our method. Therefore, the feature vector oi is converted

to a symbol vector such as (E, B, E, E, B, C, A).

The Architecture of Each Sub-model
The probabilistic model employed here consists of 12 sub-

models (Fig. 4). The architecture of the Mature and Passenger sub-

models consists of 25 connected states (Fig. S8A). Each state has an

emission function, e(oi), that assigns a ‘‘weight’’ to the feature

vector oi. As each state has its own emission function, the sub-

models can capture the features in each position of mature

miRNAs and passenger strands. Each connection between states

has a transition parameter by which the length preference of

mature miRNA regions can be modeled. For example, the

propensity that mature miRNAs are 22 nt is expressed by

assigning a positive large weight to the transition parameter

between state 21 and 25 (the broad line in Fig. S8A). The Loop

sub-model consists of 8 states, each of which is connected to itself

(Fig. S8B). By using this simple architecture, we can roughly model

the length and position-specific features of terminal loop regions

without using a large number of states. For the Flanking sub-

model, we used 20 linearly connected states (Fig. S8C) to capture

the features around the DRB, which is located ,11 or 13 nt from

the Drosha cleavage sites (Fig. 1). The Non-miRNA model consists

of a single state with a self transition (Fig. S8D).

The Emission Function
Each state in our CRF model has an emission function e(oi),

which is defined as follows:

e(oi)~
X

d

wd (od
i )

where oi is a 7-dimensional feature vector, oi
d is a symbol in

dimension d of oi, and wd(oi
d) is a weight assigned to the symbol oi

d

in dimension d. For example, the vector oi = (E, B, E, E, B, C, A)

has a total weight = w1(E)+w2(B)+w3(E)+-
w4(E)+w5(B)+w6(C)+w7(A). The emission parameter, wd, was

optimized from the training data.

Training Emission and Transition Parameters
In CRFs, the conditional probability distribution P(y|x;m) can

be directly trained from training data, where, in our case, x is a

feature vector sequence, y is a sequence of ‘‘labels’’ assigned to x

which reveals the location of certain sequences such as mature

miRNA and the terminal loop, and m is a vector of emission and

transition parameters. Intuitively, the parameters are optimized

such that the predicted labels agree with the true labels as much as

possible. This is achieved by iteratively maximizing the conditional

log-likelihood of observing true labels.

For training the model parameters m, we used feature vectors

corresponding to miRNA hairpins and non-miRNA regions.

According to the annotation of miRBase, we assigned the labels

‘‘M’’, ‘‘L’’, ‘‘P’’, ‘‘F’’, and ‘‘N’’ to each position of the mature

miRNA, terminal loop, passenger strand, flanking, and non-

miRNA region, respectively. All the parameters m = (m1,m2…mJ)

were initially set to be 0 and were iteratively optimized using the

limited-memory quasi-Newton method (L-BFGS) [46], which is a

general purpose convex optimization algorithm. To prevent over-

fitting, we penalized the conditional log-likelihood with the

Gaussian prior
P

jCjm
2
j . In this study, we set Cj = c for j = 1, 2,

…, J. The constant c is determined based on the prediction

accuracy for a part of training data (see below).

Determining Penalty Parameter c
In our method, the training data are divided into two groups.

The first group was used to optimize transition and emission

parameters, and the second one was used to determine an

appropriate penalty parameter c. The penalty parameter is chosen

from c = 0.1, 1, 10, 50, 100 based on the prediction accuracy for

the second group. The prediction accuracy is measured based on

F-score, which is a harmonic mean of sensitivity and positive

predictive value (PPV). We calculate F-scores at various probabi-

listic thresholds, Pmi
i, and the maximum F-score is used as a

measure of the prediction accuracy.

Genome-wide Cross Validation
We evaluated the accuracy of miRRim2 based on a genome-

wide cross validation as follows. First, we selected a particular

human chromosome, which we referred to as a ‘‘test chromo-

some’’. Then, we trained miRRim2 using the core miRNA

hairpins and non-miRNA regions on the remaining chromosomes,

and used it to scan the test chromosome. To mimic a realistic

situation, the core miRNA hairpins were excluded from training

data if they were homologous to the core miRNA hairpins in the

test chromosome. The information on homologues was obtained

from the miFam.dat file in miRBase v.14. The training data are

divided into two groups. The first group consists of randomly

selected 80% of miRNA hairpins, and the same number of non-

miRNA data. The second group consists of the remaining miRNA

hairpins and non-miRNA data. The first group was used to

optimize transition and emission parameters, and the second one

was used to determine an appropriate penalty parameter c. This

procedure was repeated for all the 24 human chromosomes. So the

whole human genome was used for evaluation.

In the genome-wide cross validation, the penalty parameter c

was determined for each of the 24 human chromosomes. For 16 of

the 24 chromosomes, the prediction accuracy for the training data

was highest when c = 10. Although we can use different c for each

of the 24 chromosomes, we used c = 10 for all the 24

chromosomes.

Definition of the miRNA Hairpin Probability and Mature
miRNA Probability

To detect miRNA hairpins, we defined the probability that each

genomic position i is an miRNA hairpin, Pmi
i, as:

Pmi
i ~

X
k[Smirna

pi,k
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where Smirna is a set of states belonging to the Flanking, Mature,

Passenger, and Loop sub-models, and pi,k is a posterior probability

that position i is derived from state k, which can be calculated by

the Forward-Backward algorithm [47]. We considered a contin-

uous sequence segment of 80 base pairs (bp) or more with a Pmi
i .

T as a predicted miRNA hairpin, where T is a probabilistic

threshold from 0 to 1. Predicted miRNA hairpins of 150 bp or

more were discarded.

The probability of position i being the 59-end position of a

mature miRNA region, P5end
i, is defined as:

P5end
i ~

X
k[S5end

pi,k

,
Pmi

i

where S5end is a set of the first states in all the Mature sub-models.

The position with P5end
i . T is considered to be the 59-end of a

mature miRNA.

Training of miRRim2 for the Ciona Intestinalis Genome
We used the core miRNA hairpins to train miRRim2 and used

it to scan the Ciona intestinalis genome. The core 306 miRNA

hairpins were divided into two groups. The first group consists of

randomly selected 80% of miRNA hairpins, and the same number

of non-miRNA data. The second group consists of the remaining

miRNA hairpins and non-miRNA data. The first group was used

to optimize transition and emission parameters, and the second

one was used to determine an appropriate penalty parameter c. In

this case, c = 10 was appropriate.

Supporting Information

Figure S1 PhastCons scores, PhyloP scores, and base-
pair potentialaveraged in each position. Position 0 indicates

the 39 ends of miRNA-duplexes in the 39-armof miRNA hairpins.

The DRB in the 39-arm is located around position+11, where the

base pair potential and PhyloP score sharply decrease.

(PDF)

Figure S2 Difference between mature miRNA and pas-
senger strand in the 39-arm of miRNA hairpins. Median

values of the (a) PhyloP score and (b) base-pair potential are shown

in each position. Position 0 indicates the 59-ends of mature

miRNA or passenger strands.

(PDF)

Figure S3 Prediction accuracy of the 59-end of mature
miRNAs. The detection accuracy of mature miRNAs in the 59-

arm is higher than in the 39-arm strand.

(PDF)

Figure S4 The difference of a conservation pattern
between the core miRNAhairpin and non-core miRNA
hairpin. Position 0 indicates the 59 ends of mature or passenger

miRNAs in the 59-armof miRNA hairpins.

(PDF)

Figure S5 Prediction accuracy of miRNA hairpins based
on conservation scores calculated from Human-Mouse
pair-wise alignment.

(PDF)

Figure S6 The prediction performance for the Cionain-
testinalisgenome. (a) The detection/prediction performance of

miRNA hairpins. (b) Sensitivty-PPV plot for mature miRNA

prediction.

(PDF)

Figure S7 Comparison of the prediction accuracy be-
tween human and Ciona.

(PDF)

Figure S8 Architecture of each sub-model.

(PDF)

Methods S1 The null model for predicting 59-end of
mature miRNAs.

(DOC)

Methods S2 Comparison of the prediction accuracy
between human and Ciona.

(DOC)
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