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Abstract. Glycolytic enzyme enolase 2 (ENO2) is dysregu‑
lated in various cancer types. Nevertheless, the role and 
underlying mechanism of ENO2 in clear cell renal cell carci‑
noma (ccRCC) remain unclear. Therefore, the current study 
investigated the effect and mechanism of ENO2 in ccRCC. 
ENO2 expression in a ccRCC cell line was assessed using 
reverse transcription‑quantitative PCR and western blotting. 
Analysis of glycolysis was performed by estimating the extra‑
cellular acidification rate, lactic acid concentration, glucose 
uptake and the expression of glucose transporter 1, pyruvate 
kinase muscle isozyme M2 and hexokinase 2. Moreover, 
ferroptosis was assessed by detecting the level of total iron, 
lipid peroxide, reactive oxygen species and the expression of 
ferroptosis‑related protein. In addition, mitochondrial function 
was assessed using JC‑1 staining and detection kits. The results 
indicated that ENO2 is expressed at high levels in ccRCC 
cell lines, and interference with ENO2 expression inhibits 
glycolysis, promotes ferroptosis and affects mitochondrial 
function in ccRCC cells. Further investigation demonstrated 
that interference with ENO2 expression affected ferroptosis 
levels in ccRCC cells by inhibiting the glycolysis process. 
Mechanistically, the present results indicated that ENO2 may 
affect ferroptosis, glycolysis and mitochondrial functions by 
regulating Hippo‑yes‑associated protein 1 (YAP1) signaling 
in ccRCC cells. In conclusion, the present study showed that 
ENO2 affects ferroptosis, glycolysis and mitochondrial func‑
tions in ccRCC cells by regulating Hippo‑YAP1 signaling, 
hence demonstrating its potential as a therapeutic target in 
ccRCC.

Introduction

Papillary renal cell carcinoma (PRCC) affects >400,000 
people worldwide each year, mainly affecting people >60 years 
old, with 2/3 of patients being male (1). Among them, clear 
cell (cc) RCC is the most prevalent type of kidney cancer, an 
aggressive cancer that originates from the proximal tubular 
epithelium and its metastatic form is closely associated with 
high mortality (2). Although early detection allows ccRCC 
to be successfully treated with surgical or ablation strategies, 
≤1/3 of patients have or develop metastases (3). Metastatic 
ccRCC is almost always fatal and is biologically different from 
non‑metastatic disease; therefore, exploring its underlying 
mechanisms is crucial to developing anti‑ccRCC therapeutic 
options.

Cancer cells sustain a unique energy metabolism network 
to facilitate cell survival, growth, progression and metastasis 
in adverse environments (4). Glycolysis is the initial process 
in the breakdown of glucose to harness energy for cellular 
metabolism. During glycolysis, cancer cells take up more 
glucose than healthy cells, and lactic acid is produced from 
pyruvate which reduces the pH of the tumor (5). A recent study 
confirmed that glycolysis is closely related to invasion status, 
clinical stage, patient prognosis and tumor drug resistance, 
and affects the occurrence and development of ccRCC (6). 
Moreover, ferroptosis is a form of non‑apoptotic cell death 
driven by iron‑dependent lipid peroxidation, which is associ‑
ated with a variety of metabolic disorders and disruption of 
homeostasis. In addition, ferroptosis has been studied in 
hepatocellular carcinoma, and breast, lung, pancreatic, gastric 
and cervical cancer, and other tumors exhibiting ferroptosis 
suppression (7). Furthermore, ferroptosis is associated with 
numerous physiological processes such as mitochondrial 
function, lipid metabolism and oxidative stress; induction of 
ferroptosis plays a pivotal role in inhibiting tumor progres‑
sion (8). The core mechanism of ferroptosis is lipid peroxidation 
which is dependent on iron and its impact on tumors still exists 
in ccRCC (9,10).

Enolase 2 (ENO2), a crucial member of the enolase family, is 
the rate‑limiting enzyme in glycolysis catalyzing the conversion 
of 2‑phosphoglycerate to phosphoenolpyruvate (11,12). ENO2, 
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which mainly exists in neuroendocrine tissues and neurons, is 
a long‑chain acidic dimer protein with 433 amino acids that 
encompasses two enolate isoenzymes αγ and γγ (13). ENO2 is 
a well‑established tumor biomarker in various cancers, such as 
prostate cancer, pancreatic ductal adenocarcinoma, small‑cell 
lung cancer, metastatic neuroblastoma and the microvascular 
invasion status of liver cancer (12,14). Recent studies demon‑
strated that overexpression of ENO2 is associated with increased 
cell proliferation and glycolysis enrichment in PRCC (15‑17). A 
similar trend was also observed in bone marrow mononuclear 
cells of hematological tumors (18). In addition, ENO2 promotes 
colorectal cancer metastasis by activating yes‑associated 
protein 1 (YAP1)‑induced epithelial‑mesenchymal transition, 
while inhibiting the activation of the Hippo‑YAP1 pathway 
induces ferroptosis in small‑cell lung cancer cells (19,20). 
Tumorigenesis and metastasis of ccRCC can be promoted by 
regulating microRNA‑498/Hippo‑YAP1 axis (21). However, to 
the best of our knowledge, the role of ENO2 in ccRCC has not 
been extensively studied mechanistically.

The present study aimed to evaluate the effect of ENO2 on 
ccRCC by regulating the expression of ENO2 and analyzing 
the mechanism of ENO2 on ccRCC through YAP1 signaling.

Materials and methods

Cell culture and transfection. The HK‑2 normal human renal 
tubular epithelial cell line, and the 786‑O, ACHN, Caki‑1 and 
769‑PRCC cell lines were purchased from the American Type 
Culture Collection. All the cells were cultured in RPMI‑1640 
(Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% 
fetal bovine serum (Biochrom, Ltd.), 100 mg/ml streptomycin 
and 100 µl/ml penicillin in a humidified atmosphere with 5% 
CO2 at 37˚C to adjust the cell concentration to 2x106 cells/ml.

ENO2 small‑interfering (si)RNAs, namely si‑ENO2#1 and 
si‑ENO2#2, were synthesized by Shanghai GenePharma Co., 
Ltd., and the corresponding negative control (si‑NC) was also 
obtained. The YAP‑overexpressing plasmid DNA (OV‑YAP) 
used to overexpress the YAP gene in cells, and an empty vector 
control, were obtained from Addgene, Inc. Cells were seeded 
in 6‑well plates for western blotting and cultured for 24 h 
before treatment. Caki‑1 cells were transfected with 100 nM 
recombinants at 37˚C for 48 h using 6 µl of Lipofectamine® 
2000 (Thermo Fisher Scientific, Inc.) and 2 µg of the vector. 
Reverse transcription‑quantitative (RT‑q)PCR and western 
blotting were used to screen the Caki‑1 cells transfected with 
si‑ENO2#1 and OV‑YAP1 after incubation for 48 h at 37˚C. 
Transfected cells were then used for subsequent experi‑
ments. The sequences of the siRNAs used were as follows: 
si‑ENO2#1, 5'‑CCC ACA GTG GAG GTG GAT CTC TAT A‑3'; 
si‑ENO2#2, 5'‑GGT GGA TCT CTA TAC TGC CAA AGG T‑3'; 
si‑NC, 5'‑CAC TGA AGG TGG AGG TCT TCA CAT C‑3'.

RT‑qPCR. Total RNA was extracted using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.), and 2 µg 
first‑strand cDNA was synthesized using the Maxima 
First‑Strand Complementary DNA Synthesis Kit (Thermo 
Fisher Scientific, Inc.) according to the manufacturer's instruc‑
tions. Maxima SYBR Green qPCR Master Mix (Thermo 
Fisher Scientific, Inc.) was used to perform qPCR with 
β‑actin was used as the internal reference. The thermocycling 

conditions were as follows: Initial denaturation at 95˚C for 
7 min, followed by 40 cycles of 95˚C for 15 sec and 60˚C 
for 30 sec, and then a final extension at 72˚C for 30 sec. The 
2‑ΔΔCq method was used to calculate the relative expression 
of mRNA. The following primer sets were used for qPCR: 
ENO2 forward (F), 5'‑GTG TCT CTG GCC GTG TGT AA‑3', 
reverse (R), 5'‑TCT CCA GGA TAT TGG GGG CA‑3'; GAPDH 
F, 5'‑AAT GGG CAG CCG TTA GGA AA‑3', R, 5'‑GCG CCC 
AAT ACG ACC AAA TC‑3'.

Western blotting. Total protein was extracted from cells using 
RIPA lysis buffer (Beyotime Institute of Biotechnology), and 
protein content was quantified using a BCA kit (Beyotime 
Institute of Biotechnology). After protein samples (30 µg/lane) 
were subjected to protein separation using 10% SDS‑PAGE, 
the bands were transferred onto a PVDF membrane. PVDF 
membranes were blocked with 5% skim milk at room temperature 
for 2 h. Membranes were then incubated with primary antibodies 
against ENO2 (cat. no. A12341; 1:2,000; ABclonal Biotech Co., 
Ltd.), glucose transporter 1 (cat. no. ab115730; GLUT1; 1:2,000; 
Abcam), pyruvate kinase muscle isozyme M2 (cat. no. ab85555; 
PKM2; 1:2,000; Abcam), hexokinase 2 (cat. no. ab209847; HK2; 
1:1,000; Abcam), acyl‑CoA synthetase long‑chain family member 
4 (cat. no. PA5‑27137; ACSL4; 1:1,000; Thermo Fisher Scientific, 
Inc.), GSH peroxidase 4 (cat. no. ab125066; GPX4; 1:1,000; 
Abcam), ferritin heavy chain 1 (cat. no. 3998S; FTH1; 1:1,000; 
Cell Signaling Technology, Inc.), solute carrier family 7 member 
11 (PA1‑16893; SLC7A11; 1:1,000; Thermo Fisher Scientific, 
Inc.), large tumor suppressor kinase 1 (cat. no. PA5‑78278; LATS1; 
1:1,000; Thermo Fisher Scientific, Inc.), YAP1 (cat. no. ab52771; 
1:1,000; Abcam) and GAPDH (cat. no. ab9485; 1:3,000; Abcam) 
for 12 h at 4˚C. The strips were then incubated with the Goat 
Anti‑Rabbit IgG H&L (HRP‑conjugated) secondary antibody 
(cat. no. ab205718; 1:3,000; Abcam) for 2 h at room temperature, 
and the signal was detected using an enhanced chemilumines‑
cence kit (Thermo Fisher Scientific, Inc.). Finally, the expression 
levels were semi‑quantitatively analyzed using Image‑Pro Plus 
(version 6.0; Media Cybernetics, Inc.).

Measurement of extracellular acidification rate (ECAR). ECAR 
was evaluated using the Seahorse XFe 96 Extracellular Flux 
Analyzer (Seahorse Bioscience; Agilent Technologies, Inc.) with 
Seahorse XF Glycolysis Stress Test Kit following the manufac‑
turer's protocols. Treated Caki‑1 cells were evenly spread on a 
24‑well XF cell culture plate at a density of 5x104 cells per well. 
Data of ECAR were assessed using the Seahorse XF‑96 Wave 
software version 2.6 and ECAR is shown in mpH/min.

Ferroptosis analysis. Ferroptosis analysis was carried out using 
the Iron Assay Kit (ScienCell Research Laboratories, Inc.) in a 
96‑well plate following the manufacturer's recommendations. 
To prepare iron standards, cell lysates were homogenized and 
diluted to ensure absorbance readings fell within the standard 
curve range. Finally, cell absorbance was measured at 590 nm. 
PKM2 activator DASA‑58 (HY‑19330) was purchased from 
MedChemExpress. DASA‑58 (30 µM) was dissolved in 
dimethyl sulfoxide for 2 days at room temperature and was 
used for activating PKM2.

The reactive oxygen species (ROS) levels of the cells were 
evaluated using the ROS Assay Kit (Beyotime Institute of 



ONCOLOGY LETTERS  28:  443,  2024 3

Biotechnology). Briefly, cells were collected and incubated 
with 100 µM diacetyl dichlorofluorescein (DCFH‑DA) for 
30 min. Images were captured using a fluorescence micro‑
scope (Bx51; Olympus Corporation). Determination of mean 
fluorescence intensity of dihydroethidium was determined 
using a FACSCalibur (BD Biosciences). The density of rela‑
tive fluorescence intensity was analyzed using ImageJ 1.43b 
software (National Institutes of Health).

Mitochondrial membrane potential assay. Mitochondrial 
membrane potential was evaluated using JC‑1 according 
to the manufacturer's protocol (Beyotime Institute of 
Biotechnology). Briefly, Caki‑1 cells were cultured in 6‑well 
plates with 3x105 cells/well. After 24 h, cells were treated 
with SPIO‑Serum at a concentration of 100 µg Fe/ml for 24 h. 
Cells were stained with JC‑1 for 20 min in the dark at 37˚C 
and analyzed using flow cytometry as aforementioned (BD 
Biosciences), and observed under a fluorescence microscope 
(magnification, x200; Olympus Corporation). The JC‑1 excita‑
tion wavelength was 488 nm and the approximate emission 
wavelengths of the JC‑1 monomeric and aggregate forms were 
529 and 590 nm, respectively.

Detection of biochemical factors. The level of glutathione 
(GSH) in cell lysates was measured using the GSH Assay Kit 
(cat. no. CS0260; Sigma Aldrich; Merck KGaA) according to the 
manufacturer's instructions. The levels of malonaldehyde (MDA) 
and 4‑hydroxynonenal (4‑HNE), and the activities of superoxide 
dismutase (SOD) and GSH‑peroxidase (GSH‑Px) were deter‑
mined using commercial MDA, 4‑HNE, SOD and GSH‑Px 
assay kits (Nanjing Jiancheng Bioengineering Institute), respec‑
tively, following the manufacturer's instructions. Absorbance at 
450 nm was recorded, and the data were used to calculate the 
levels of various cytokines based on the standard curves.

Glucose uptake and lactic acid concentration. Glucose uptake 
level in ccRCC cells was measured using the Glucose Uptake 
Assay Kit (colorimetric; cat. no. ab136955; Abcam). To measure 
lactic acid concentration in culture medium from Caki‑1 cells, 
a lactic acid assay kit (Nanjing Jiancheng Bioengineering 
Institute) was used according to the manufacturer's instructions. 

This kit provided a reliable method to assess lactic acid levels, 
ensuring that the results were consistent and reliable.

Intracellular ATP detection assay. Cells were trypsinized and 
lysed on ice with lysis buffer provided with an ATP Assay Kit 
(cat. no. BC0300; Beijing Solarbio Science & Technology Co., 
Ltd.). The supernatant was then collected and incubated with 
ATP detection reagent following the manufacturer's instruc‑
tions. Luminescence was measured using a spectrophotometer 
(Biotek Synergy H1; BioTek; Agilent Technologies, Inc.) and 
normalized to the protein concentration.

Mitochondrial function evaluation. Mitochondrial respira‑
tion experiment was used to detect mitochondrial oxidative 
phosphorylation ability. The mitochondrial permeability 
transition pore (mPTP) assay kit (cat. no. C2009S; Beyotime 
Institute of Biotechnology) was used to detect the opening of 
mPTP. Then, Caki‑1 cells were seeded into 24‑well plates, 
and 500 µl fluorescence quenching solution was added to each 
well and incubated for 30 min. The incubating solution was 
then replaced with preheated DMEM/F12 and incubated in 
the dark for 30 min. After washing twice with PBS, the cell 
fluorescence was observed under a fluorescence microscope.

Statistical analysis. All data are expressed as the mean ± stan‑
dard deviation. The results were analyzed with GraphPad 
Prism (version 8.0; Dotmatics). One‑way ANOVA followed by 
Tukey's post hoc test was used to compare differences between 
multiple groups. P<0.05 was considered to indicate a statisti‑
cally significant difference.

Results

ENO2 is expressed at high levels in ccRCC cell lines. The 
expression of ENO2 in the ccRCC cell lines 786‑O, ACHN, 
769‑P and Caki‑1 was measured using RT‑qPCR and western 
blotting. The expression of ENO2 was significantly higher in 
ccRCC cell lines compared with that in the HK‑2 normal human 
renal tubular epithelial cell line, with the most pronounced 
increase in the Caki‑1 cells (Fig. 1A and B). Therefore, Caki‑1 
cells were selected for subsequent experimentation.

Figure 1. Expression of ENO2 in ccRCC cell lines. (A) Relative ENO2 mRNA expression in ccRCC cell lines. (B) Relative ENO2 protein expression in ccRCC 
cell lines. *P<0.05, **P<0.01 and ***P<0.001 vs. si‑NC. Statistical significance was determined using one‑way ANOVA followed by Tukey's post hoc test. ENO2, 
enolase 2; si‑NC, small‑interfering RNA negative control; ccRCC, clear cell renal cell carcinoma.

https://www.spandidos-publications.com/10.3892/ol.2024.14576
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Interference with ENO2 inhibits glycolysis levels in ccRCC 
cells. Additionally, to further study the mechanism of ENO2, 
transfection was used to interfere with the expression of 
ENO2 (Fig. 2A and B). Subsequently, the effect of ENO2 
interference on glycolysis in ccRCC cell lines was studied. 
The levels of ECAR, lactic acid and glucose in Caki‑1 cells 
were significantly reduced compared with those in the si‑NC 
group (Fig. 2C‑E). Moreover, western blotting showed that the 
protein expression of GLUT1, HK2 and PKM2 was decreased 
in the si‑ENO2 Caki‑1 cell group (Fig. 2F).

ENO2 interference promotes ferroptosis levels in ccRCC cells. 
The cytotoxicity of ferroptosis is associated with the production of 
ROS (22). To investigate the role of ROS in the si‑ENO2‑induced 
ferroptosis, the DCFH‑DA probe was used to monitor intracellular 
ROS production. After ENO2 interference, total iron levels, intra‑
cellular ROS levels, MDA and 4‑HNE levels were significantly 

increased, while the levels of SOD, GSH‑Px and those of the 
ferroptosis‑related proteins GPX4, FTH1 and SLC7A11 were 
significantly decreased; the protein expression of ACSL4 was 
significantly increased in Caki‑1 cells (Fig. 3A‑G). These results 
suggested that si‑ENO2 induced ferroptosis in Caki‑1 cells.

ENO2 interference affects mitochondrial function in ccRCC 
cells. Excessive ROS production changes the shape of mitochon‑
dria, leading to apoptosis. Moreover, mitochondrial membrane 
potential manifests normal structure and function of mitochon‑
dria, while depolarization of membrane potential indicates 
impaired mitochondrial structure and function (23,24). Hence, 
in the present study, a JC‑1 fluorescence probe was used to 
measure mitochondrial membrane potential in ccRCC cells. 
Compared with the si‑NC group, si‑ENO2 significantly caused 
the depolarization of mitochondrial membrane potential in 
ccRCC cells (Fig. 4A). Furthermore, the mitochondrial ROS 

Figure 2. Effects of ENO2 interference on glycolysis in ccRCC cells. (A) Relative ENO2 mRNA expression after interference. (B) Relative ENO2 protein 
expression after interference. (C) ECAR assessment. (D) Levels of lactic acid. (E) Levels of glucose. (F) Protein levels of GLUT1, PKM2 and HK2 were 
quantified using western blotting. **P<0.01, ***P<0.001 vs. si‑NC. Statistical significance was determined using one‑way ANOVA followed by Tukey's post hoc 
test. ENO2, enolase 2; si‑NC, small‑interfering RNA negative control; ccRCC, clear cell renal cell carcinoma; ECAR, extracellular acidification rate; GLUT1, 
glucose transporter 1; PKM2, pyruvate kinase muscle isozyme M2; HK2, hexokinase 2.
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content and membrane mPTP opening of ccRCC cells were 
increased, while the ATP content and mitochondrial oxidative 
phosphorylation capacity were decreased in ccRCC cells after 
interference with ENO2 (Fig. 4B‑E).

ENO2 interference affects ferroptosis levels in ccRCC by inhib‑
iting the glycolysis process. The aforementioned results showed 
that ENO2 had the highest impact on PKM2, so it was hypoth‑
esized that ENO2 may affect the glycolysis process through 
PKM2. Therefore, the PKM2 activator DASA‑58 was used to 
treat ccRCC cells. To further explore whether ENO2 affects the 
level of ferroptosis in ccRCC cells by inhibiting the glycolytic 

process, the DCFH‑DA probe was used to monitor intracellular 
ROS production. The results showed that adding the glycolysis 
agonist DASA‑58 reversed the effects of interference with ENO2 
on total iron levels and intracellular ROS, MDA and 4‑HNE 
levels, SOD and GSH‑Px activities, as well as expression of the 
ferroptosis‑related proteins GPX4, FTH1, SLC7A11 and ACSL4 
(Fig. 5A‑G). These results indicated that si‑ENO2 affects the level 
of ferroptosis in ccRCC cells by inhibiting the glycolytic process.

ENO2 interference affects ferroptosis and glycolysis by 
regulating Hippo‑YAP1 signaling in ccRCC cells. To explore 
whether ENO2 affects ferroptosis and glycolysis by regulating 

Figure 3. Effects of ENO2 interference on ferroptosis in clear cell renal cell carcinoma cells. (A) Total iron levels. (B) MDA level. (C) 4‑HNE level. (D) SOD 
activity. (E) GSH‑Px activity. (F) Intracellular reactive oxygen species levels. (G) Protein levels of ACSL4, GPX4, FTH1 and SLC7A11 estimated through 
western blotting. **P<0.01 and ***P<0.001 vs. si‑NC. Statistical significance was determined using one‑way ANOVA followed by Tukey's post hoc test. si‑NC, 
small‑interfering RNA negative control; MDA, malonaldehyde; 4‑HNE, 4‑hydroxynonenal; SOD, superoxide dismutase; GSH‑Px, glutathione peroxidase; 
ACSL4, ferroptosis‑related proteins acyl‑CoA synthetase long‑chain family member 4; GPX4, glutathione peroxidase 4; FTH1, ferritin heavy chain 1; 
SLC7A11, solute carrier family 7 member 11; ENO2, enolase 2.

https://www.spandidos-publications.com/10.3892/ol.2024.14576
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Hippo‑YAP1 signaling in ccRCC cells, the expression levels 
of proteins related to the Hippo‑YAP1 signaling pathway 
were investigated using western blotting. The results showed 
that after interference with ENO2, the expression of LATS1 
and YAP1 were significantly downregulated in ccRCC cells 
(Fig. 6A). Subsequently, to further explore the effect of ENO2 
on autophagy in ccRCC cells through the Hippo‑YAP1 
signaling, an overexpression plasmid of YAP1 was constructed, 
and western blotting was used to detect the expression level 
of YAP1 (Fig. 6B). The results indicated that YAP1 overex‑
pression reversed the effects of ENO2 interference on total 
iron levels, intracellular ROS, MDA and 4‑HNE levels, SOD 

and GSH‑Px activities, as well as the expression of ferrop‑
tosis‑related proteins GPX4, FTH1, SLC7A11 and ACSL4 
proteins (Fig. 6C‑F). These results suggest that si‑ENO2 
affects ferroptosis in ccRCC cells by regulating Hippo‑YAP1 
signaling. Subsequently, the effect of si‑ENO2 + OV‑YAP1 
on glycolysis in ccRCC cells was studied. Compared with the 
si‑ENO2 group, the si‑ENO2 + OV‑YAP1 group significantly 
increased ECAR, lactic acid and glucose levels in the culture 
medium by affecting Hippo‑YAP1 signaling in ccRCC cells 
(Fig. 7A‑C). Western blotting results also showed that the 
expression of GLUT1, HK2 and PKM2 were significantly 
increased in the si‑ENO2 + OV‑YAP1 group (Fig. 7D).

Figure 4. Effects of ENO2 interference on mitochondrial function in clear cell renal cell carcinoma cells. (A) Mitochondrial membrane potential was detected 
by using a JC‑1 fluorescence probe. (B) Mitochondrial oxidative phosphorylation activity. (C) mtROS content. (D) ATP content. (E) Opening of mitochondrial 
membrane mPTP. ***P<0.001 vs. si‑NC. Statistical significance was determined using one‑way ANOVA followed by Tukey's post hoc test. si‑NC, small‑inter‑
fering RNA negative control; RCR: respiratory control ratios; mtROS, mitochondrial reactive oxygen species; mPTP, mitochondrial permeability transition 
pore; ENO2, enolase 2.
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Interference with ENO2 affects mitochondrial function 
by regulating Hippo‑YAP1 signaling in ccRCC cells. The 
probe JC‑1 is a sensitive f luorescent dye used to detect 
changes in mitochondrial membrane potential. Moreover, 
a change in JC‑1 fluorescence emission from red to green 
indicates depolarization of the mitochondrial membrane. 
Further experiments in the present study showed that 
compared with interference with ENO2, the depolariza‑
tion of the mitochondrial membrane potential in the 

si‑ENO2+OV‑YAP1 group was significantly improved 
(Fig. 8A). In addition, compared with interference with 
ENO2, the mitochondrial ROS content and membrane 
mPTP opening of ccRCC cells in the si‑ENO2+OV‑YAP1 
group were reduced, while the ATP content and mitochon‑
drial oxidative phosphorylation capacity were increased 
(Fig. 8B‑E). These results demonstrated that interference 
with ENO2 affected mitochondrial function by modulating 
Hippo‑YAP1 signaling in ccRCC cells.

Figure 5. ENO2 interference affects ferroptosis levels in clear cell renal cell carcinoma cells by inhibiting the glycolysis process. (A) Total iron levels; (B) MDS 
level; (C) 4‑HNE levels. (D) SOD activity; (E) GSH‑Px activity. (F) Intracellular reactive oxygen species levels. (G) Protein levels of ACSL4, GPX4, FTH1 and 
SLC7A11 were estimated through western blotting. ***P<0.001 vs. si‑NC, #P<0.05, ##P<0.01, ###P<0.001 vs. si‑ENO2. Statistical significance was determined 
using one‑way ANOVA followed by Tukey's post hoc test. si‑NC, small‑interfering RNA negative control; ENO2, enolase 2; si‑ENO2, small‑interfering RNA 
targeting ENO2; MDA, malonaldehyde; 4‑HNE, 4‑hydroxynonenal; SOD, superoxide dismutase; GSH‑Px, glutathione peroxidase; ACSL4, ferroptosis‑related 
proteins acyl‑CoA synthetase long‑chain family member 4; GPX4, glutathione peroxidase 4; FTH1, ferritin heavy chain 1; SLC7A11, solute carrier family 7 
member 11.

https://www.spandidos-publications.com/10.3892/ol.2024.14576
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Figure 6. Effects of interference with ENO2 on ferroptosis through regulating Hippo‑YAP1 signaling in ccRCC cells. (A) Protein levels of YAP1 and LATS1 
were estimated by western blotting. (B) Protein levels of YAP1 were estimated by western blotting. (C) Total iron levels. (D) MDA, 4‑HNE, SOD and GSH‑Px 
levels. (E) Intracellular ROS levels. (F) Protein levels of ferroptosis‑related proteins ACSL4, GPX4, FTH1 and SLC7A11 were estimated by western blot‑
ting. **P<0.01, ***P<0.001 vs. control, #P<0.05, ##P<0.01, ###P<0.001 vs. si‑ENO2+Ov‑YAP1. Statistical significance was determined using one‑way ANOVA 
followed by Tukey's post hoc test. si‑NC, small‑interfering RNA negative control; ENO2, enolase 2; si‑ENO2, small‑interfering RNA targeting ENO2; ccRCC, 
clear cell renal cell carcinoma; MDA, malonaldehyde; 4‑HNE, 4‑hydroxynonenal; SOD, superoxide dismutase; GSH‑Px, glutathione peroxidase; ACSL4, 
ferroptosis‑related proteins acyl‑CoA synthetase long‑chain family member 4; GPX4, glutathione peroxidase 4; FTH1, ferritin heavy chain 1; SLC7A11, solute 
carrier family 7 member 11; ROS, reactive oxygen species; YAP1, yes‑associated protein 1; LATS1, large tumor suppressor kinase 1; Ov, overexpression.
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Discussion

Tumor cells manifest aberrant metabolism characterized by 
excessive glycolysis even in the presence of sufficient amounts of 
oxygen. This phenomenon, also known as aerobic glycolysis or 
Warburg effect, promotes cancer growth with accelerated glucose 
uptake and lactic acid production (25,26). Glycolysis is quite 
crucial in cancer, and cancer cells exhibit elevated expression of 
key enzymes (including GLUT1, PKM2 and HK2) involved in 
the process of glycolysis to lead to increased amounts of energy. 
Furthermore, cancer cells can produce energy via fermentation 
of lactic acid, a product of glycolysis (27). Glycolytic genes and 
the Warburg effect have been studied in bladder, breast, gastric, 
liver and prostate cancer (28‑31). Previous research demonstrated 
that the Warburg effect is more noticeable in ccRCC than in 
other tumors (32). Metabolic profiling‑based studies showed that 
ccRCC manifests as increased metabolite levels during glycolysis 
and decreased metabolite levels during oxidative phosphoryla‑
tion, indicating that glycolysis is active in ccRCC (33‑35). Hence, 
the present study investigated the expression of glycolysis‑related 
genes in ccRCC cell lines to identify biomarkers that can predict 
disease prognosis.

ENO2 is a critical gene in glycolysis that can stimulate 
cell growth, upregulate glycolysis‑related genes and initiate 
the Akt signaling pathway by phosphorylation of glycogen 
synthase kinase 3β, thereby inducing cell proliferation and 
glycolysis (14). Increased ENO2 expression is found in various 
tumors. High expression of ENO2 in glioma and colorectal 

cancer is linked to glycolysis in tumor cells (36,37). Increased 
ENO2 expression stimulates glycolysis in gastric cancer 
cells, contributing to tumor growth and liver metastasis (38). 
Regarding the Warburg effect in ccRCC, previous research 
proposed that ENO2 expression is notably increased in tissue 
and serum of patients with ccRCC (39,40). Additionally, 
elevated serum ENO2 levels are associated with clinical stage, 
tumor grade and disease recurrence. Thus, ENO2 is a poten‑
tial biomarker for ccRCC prognosis (41,42). The present data 
showed that ENO2 expression was more prominent in ccRCC 
cell lines compared with that in HK‑2 normal human renal 
tubular epithelial cell lines. Furthermore, the levels of ECAR, 
lactic acid and glucose in the Caki‑1 cells culture medium 
were significantly reduced. Moreover, western blotting showed 
that the expression of GLUT1, HK2 and PKM2 was decreased 
in the si‑ENO2 Caki‑1 cells group. Thus, ENO2 served a 
critical function in inhibiting glycolysis of ccRCC cells, which 
is consistent with previous research (37).

Previous studies reported that ferroptosis exerts a crucial 
role in ischemic organ damage, neurodegenerative diseases 
and tumor cell death (43,44). Furthermore, recent research 
suggested that ferroptosis is considered a targeted suscepti‑
bility and exerts tumor suppressor effects by killing tumor 
cells in ccRCC (45,46). Thus, triggering ferroptosis could be 
a novel promising strategy for treating cancers. The present 
study also revealed that total iron levels, intracellular ROS, 
MDA and 4‑HNE levels, and the protein expression of 
ACSL4 were significantly increased, while SOD and GSH‑Px 

Figure 7. Effects of interference with ENO2 on glycolysis through regulating Hippo‑YAP1 signaling in ccRCC cells. (A) ECAR assessment. (B) Levels of lactic 
acid. (C) Levels of glucose. (D) Protein levels of GLUT1, PKM2 and HK2 estimated by western blotting. ***P<0.001 vs. control, #P<0.05, ##P<0.01, ###P<0.001 
vs. si‑ENO2+Ov‑YAP1. Statistical significance was determined using one‑way ANOVA followed by Tukey's post hoc test. si‑NC, small‑interfering RNA 
negative control; ENO2, enolase 2; si‑ENO2, small‑interfering RNA targeting ENO2; YAP1, yes‑associated protein 1; ccRCC, clear cell renal cell carcinoma; 
ECAR, extracellular acidification rate; GLUT1, glucose transporter 1; PKM2, pyruvate kinase muscle isozyme M2; HK2, hexokinase 2; Ov, overexpression.
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activities and the protein expression of GPX4, FTH1 and 
SLC7A11 were significantly decreased after interference with 
ENO2 in ccRCC cells. These results suggested that ENO2 
interference induced ferroptosis in ccRCC cells. Moreover, 
iron overload causes cardiac mitochondrial dysfunction 
as indicated by increased mitochondrial ROS levels and 
mitochondrial membrane potential depolarization (47). 
Additionally, mitochondria are essential organelles in cells 
and closely linked to ferroptosis in recent studies (48,49). 
The present study suggested that the interference of ENO2 
caused the depolarization of mitochondrial membrane poten‑
tial, increased mitochondrial ROS content, decreased ATP 
content and induced ROS accumulation, thereby disrupting 
mitochondrial function in ccRCC cells. Since the current 
study showed that ENO2 has the greatest impact on PKM2, 
it was further explored whether ENO2 affects glycolysis 

through PKM2, thereby affecting the level of ferroptosis in 
ccRCC cells. DASA‑58, a highly specific small‑molecule 
PKM2 activator, leads to a decrease in glycolytic and 
pentose phosphate pathway intermediates by activating the 
enzyme (50). Furthermore, PKM2 is directly involved in the 
metabolic reprogramming (aerobic glycolysis) associated 
with cancer and the inflammatory response (51‑53). The 
present results indicated that ENO2 interference affected the 
level of ferroptosis in ccRCC cells by inhibiting the glycolytic 
process. A recent study demonstrated that ENO2 inhibited 
the activation of the Hippo‑YAP1 pathway, thereby inducing 
ferroptosis in small‑cell lung cancer cells (20). It was shown 
that interference of ENO2 could modulate Hippo‑YAP1 
signaling in ccRCC cells. In addition, interference of ENO2 
affects ferroptosis, glycolysis and mitochondrial function by 
regulating Hippo‑YAP1 signaling in ccRCC cells.

Figure 8. Effects of interference with ENO2 on mitochondrial function through regulating Hippo‑YAP1 signaling in ccRCC cells. (A) Mitochondrial 
membrane potential was detected using a JC‑1 fluorescence probe. (B) Capacity of mitochondrial oxidative phosphorylation. (C) mtROS content. (D) ATP 
content. (E) The opening of mitochondrial membrane mPTP. ***P<0.001 vs. control, ###P<0.001 vs. si‑ENO2+Ov‑YAP1. Statistical significance was determined 
using one‑way ANOVA followed by Tukey's post hoc test. si‑NC, small‑interfering RNA negative control; ENO2, enolase 2; si‑ENO2, small‑interfering RNA 
targeting ENO2; YAP1, yes‑associated protein 1; ccRCC, clear cell renal cell carcinoma; Ov, overexpression; mtROS, mitochondrial reactive oxygen species; 
mPTP, mitochondrial permeability transition pore; RCR, respiratory control ratio.
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The current study has a certain limitation that should be 
acknowledged; it lacks further validation of the use of ferroptosis 
inhibitors when conducting ferroptosis studies. Therefore, it is 
crucial to use ferroptosis to further verify the in‑depth mecha‑
nisms of ENO2 interference affecting ferroptosis levels in ccRCC.

Collectively, the present study demonstrates that ENO2 
is expressed at high levels in ccRCC cells, and interference 
of ENO2 inhibits glycolysis, promotes ferroptosis levels and 
affects mitochondrial function by regulating Hippo‑YAP1 
signaling in ccRCC cells.
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