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Abstract
Aortic stiffness increases with age and is a robust predictor 
of cerebrovascular events and cognitive decline including 
Alzheimer’s disease and other forms of dementia. Recent 
clinical studies have investigated the association between 
proximal aortic stiffness and pulsatile energy transmission 
that has deleterious effects on the cerebrovascular network 
in order to identify potential therapeutic targets. Aging 
causes disproportionate stiffening of the aorta compared 
with the carotid arteries, reducing protective impedance 
mismatches at their interface, increasing the transmission of 
destructive pulsatile pressure and energy to the cerebral cir-
culation, and leading to cerebral small vessel disease. Thus, 
aortic stiffening and high-flow pulsatility are associated with 
alterations in the microvasculature of the brain, vascular en-
dothelial dysfunction, and white matter damage, which con-
tribute to impaired memory function with advancing age. 
Previous studies have also shown that silent lacunar infarcts 

and white matter hyperintensities are strongly associated 
with arterial stiffness. More and more evidence suggests that 
vascular etiologies, including aortic stiffness, impedance 
match, and microvascular damage, are associated with cog-
nitive impairment and the pathogenesis of dementia. The 
measurement of arterial flow and pressure can help under-
stand pulsatile hemodynamics and its impact on vital or-
gans. Interventions that reduce aortic stiffness, such as im-
provement of the living environment, management of risk 
factors, and innovation and development of novel drugs, 
may reduce the risk for dementia. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

The number of subjects with dementia is growing as 
the population ages [1]. Cardiovascular (CV) risk factors, 
including arterial stiffness, are associated with various 
types of dementia and represent potentially modifiable 
intervention targets [1]. Vascular dysfunction has been 
demonstrated to manifest together with other disease 
markers, such as accumulation of β-amyloid plaques and 

This is an Open Access article licensed under the Creative Commons 
Attribution-NonCommercial-4.0 International License (CC BY-NC) 
(http://www.karger.com/Services/OpenAccessLicense), applicable to 
the online version of the article only. Usage and distribution for com-
mercial purposes requires written permission.



Wang/Chang/ChengPulse 2022;10:19–2520
DOI: 10.1159/000528147

tau protein tangles common to Alzheimer’s disease [2]. 
Evidence also showed that pressure and flow pulsatility in 
the macrocirculation and microcirculation are associated 
with microvascular damage in the high-flow brain and 
kidneys [3]. Small vessel disease and white matter damage 
associated with advanced aortic stiffness contribute to 
impaired memory with age.

To slow down aging-associated target organ damage 
and CV complications, early vascular aging (EVA) [4] 
and supernormal vascular aging (SUPERNOVA) [5] 
have been proposed to better understand the process of 
vascular aging and provide the opportunity to discover 
the determinants of arterial stiffness and corresponding 
preventive and treatment targets. In this review, we will 
address the concepts of EVA and SUPERNOVA and the 
consequence of pulsatile hemodynamics and arterial 
stiffening on target organ damage.

What Is EVA and SUPERNOVA?

EVA and SUPERNOVA are vascular aging pheno-
types [5]. By calculating the so-called delta age, which is 
the chronological age subtracted by vascular age, we can 
classify subjects into different phenotypes of vascular ag-
ing. The younger vascular age compared to real chrono-
logical age is more likely to be SUPERNOVA. On the con-
trary, the older vascular age (negative delta age) is more 
likely to be EVA [4]. The top and bottom 10% of delta 
ages have been used to define EVA and SUPERNOVA, 
respectively [5].

How to Define Vascular Age?

One could estimate vascular age [6] with these three 
methods: carotid-femoral pulse wave velocity (cf-PWV) 
alone, cf-PWV together with age and blood pressure (BP) 
(age- and BP-stratified cf-PWV), and cf-PWV plus CV 
risk factors and treatments. The combination of the cf-
PWV and CV risk factors may be more suitable for calcu-
lating vascular age in populations with various CV risk 
factor burdens.

In a study published in hypertension, a regression 
equation was constructed by using cf-PWV and CV risk 
factors. In the equation, cf-PWV, CV risk factors, and 
treatments were independent variables, and age was a de-
pendent variable. Delta age is the chronological age sub-
tracted by vascular age, as mentioned earlier. In the vali-
dation cohort, EVA had a higher risk of CV events, with 

a hazard ratio of 2.61 (95% confident interval [CI]: 1.50–
4.53) compared with SUPERNOVA 0.61 (95% CI: 0.42–
0.87) [7].

Steady and Pulsatile Hemodynamics and Hydraulic 
Energy

In the past, we only used pressure or flow to evaluate the 
influence of circulatory arterial waves on vital organs [8]. 
However, it might be the energy that provides the real and 
more important effects on systemic circulation. The power 
is the product of pressure and flow waveform. By integrat-
ing the power over time, we can derive the energy. Previous 
evidence had supported the concept that pulsatile power is 
a more sensitive and accurate measure for excessive pulsa-
tility transmission to the brain compared to conventional 
pressure or flow pulsatility indices alone [9].

Different aspects of arterial hemodynamics are ob-
served including steady and pulsatile hemodynamics. For 
steady flow, we can use mean BP to describe the arterial 
pressure, which is determined by cardiac output and total 
peripheral resistance. The arterial pulse is generated by 
the left ventricle. During the transmission of the arterial 
pulse in the systolic phase, the large arteries expand to 
store the pulse energy so that the blood flow can sustain 
during the diastolic phase. This property of arterial com-
pliance is analogous to that of a Windkessel chamber. The 
arterial system in human youth is delicately designed for 
the role of receiving jets of blood from the left ventricle 
and allocating this as a steady flow through peripheral 
capillaries. Central to such design is the “accommoda-
tion” of the heart to the arterial tree; this minimizes the 
“tidal wave” effect from aortic pressure fluctuations and 
confines flow pulsations to the larger arteries [10]. With 
aging, repetitive pulsations (around 30 million/year) 
cause exhaustion and fracture of elastin lamellae of cen-
tral arteries, resulting in stiffening and dilatation, so that 
reflections return earlier to the heart; as a consequence, 
aortic systolic pressure rises, diastolic pressure falls, and 
pulsations of flow extend further into smaller vessels of 
vasodilated organs, notably the brain [11] and kidney 
[12]. Stiffening leads to increased left ventricular load 
with hypertrophy, an increased risk of new-onset atrial 
fibrillation [13], increased myocardial oxygen demand 
[14], decreased capacity for myocardial perfusion as pulse 
pressure widens and diastolic BP decreases [15], and in-
creased stresses on small arterial vessels, particularly of 
the brain and kidney. Clinical manifestations are a result 
of left ventricular diastolic dysfunction [16] with dys-



Excessive Pulsatile Energy in Carotid 
Arteries on Cognitive Function

21Pulse 2022;10:19–25
DOI: 10.1159/000528147

pnea, predisposition to angina, heart failure [17, 18], and 
small vessel degeneration in the brain and the kidney with 
resultant intellectual deterioration and renal failure. 
While aortic stiffening is the principal cause of CV disease 
[19] in aged persons who escape atherosclerotic compli-
cations, it is not a therapeutic target currently. The prin-
cipal available treatment target is the smooth muscle in 
distributing arteries, whose relaxation has caused a sub-
stantial reduction in the magnitude of wave reflection. 
Such relaxation can be achieved through regular exercise 
and the use of vasodilating drugs for the management of 
hypertension and cardiac failure.

On the other hand, the arterial pulse wave is reflected 
at sites such as bifurcations, narrowing of arteries, or 
change of impedance. Both arterial compliance and wave 
reflections can influence the shape of the arterial pressure 
waveforms. BP is the pressure exerted by circulating 
blood upon the walls of blood vessels and determined by 
several physical factors, including rate of pumping, blood 
volume, resistance, arterial stiffness, and arterial wave re-
flections. The BP is usually measured at a person’s upper 
arm, i.e., the brachial artery pressure. It has been recog-
nized that BP at the brachial artery is different from the 
pressure at the central aorta, mainly due to the phenom-
enon of pressure amplification. Although current diag-
nosis and management of hypertension are based on the 
measurement of brachial BP, it has been a long debate 
whether central BP or individual components of BP are 
clinically more useful than systolic BP [20, 21].

The Relationship between Vascular Aging and 
Dementia

Dementia and cognitive decline have become major 
health care concerns, especially in aging populations 
around the world [22]. There have been many risk factors 
implicated in the pathophysiology of cognitive decline. 
Among them, vascular aging and arterial stiffness have 
been proposed as important factors contributing to de-
mentia [23–25].

Central hemodynamics plays a key role in understand-
ing brain damage in hypertension because arterial stiffen-
ing is a major determinant of elevated central BP and high 
central pulsatility is a mechanical factor for brain tissue 
damage [26, 27], cognitive impairment [28], and cerebral 
small vessel disease, which included recent small subcor-
tical infarcts, white matter hyperintensity, lacunae, mi-
crobleeds, and perivascular space [29]. It has been shown 
that both increased arterial stiffness and central BP are 

predictive of stroke [30] and the functional outcome in 
patients after ischemic stroke [31]. Previous studies also 
showed that the mechanics and remodeling of an extra-
cranial large artery (common carotid artery) are repre-
sentative of wall damage of an intracranial large artery 
[32]. However, whether antihypertensive treatment tar-
geted to reduce aortic stiffness and central BP could pre-
vent stroke, white matter lesions, and cognitive decline 
remains to be determined.

How Does Arterial Stiffness Associate with 
Microvascular Disease in the Brain?

It has also been suggested that EVA could increase ca-
rotid pressure and flow pulsatility due to decreased wave 
reflection at the aorta-carotid interface, which then causes 
microvascular damage and impairs vasomotor reactivity 
and further microvascular and tissue damage [33]. Pulse 
wave encephalopathy refers to brain tissue damage in re-
sponse to an increased central artery. An increased aortic 
and carotid artery stiffness leads to higher arterial pulsa-
tility and higher transmission of pulsatile energy into ce-
rebral arterioles. Aortic stiffness is also associated with an 
increased risk of ischemic stroke through atherosclerosis 
[34], the risk for plaque rupture [35], reversal diastolic 
flow [36], increased myogenic tone, and limited autoreg-
ulation of cerebral blood flow [37]. A strong body of evi-
dence supports the association between vascular demen-
tia and Alzheimer’s disease with hemodynamic abnor-
malities [1, 38]. It has been shown that people developing 
high BP in the middle of life have a much greater likeli-
hood of developing vascular dementia [39] and cognitive 
impairment [40] in later life. In our previous study [41], 
we have shown that higher BP and lower carotid flow ve-
locity were associated with lower brain volume and a 
higher risk of the cerebral small vessel. Furthermore, in 
prospective design study [8], we have clearly revealed that 
the carotid flow pulsatility index, combined with central 
systolic BP, was positively associated with stroke inci-
dence. In each stratum of central SBP, high carotid flow 
pulsatility was associated with a higher incidence of 
stroke. Moreover, cf-PWV, the biomarker of vascular 
stiffness, instead of augmentation index or pulse pres-
sure, was consistently associated with an earlier micro-
structural injury before white matter hyperintensities and 
regional earlier brain atrophy in younger individuals, 
suggesting that the initial and continuous brain damage 
related to arterial stiffness begins in or precede midlife 
[42].
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Impedance Mismatch

The concept of impedance mismatch has been pro-
posed to illustrate the mechanistic linkage between vas-
cular aging and target organ damage [43–45]. Younger, 
healthy subjects generally have a highly compliant aor-
ta and relatively stiff muscular arteries, which act like a 
gate and create a discontinuity of impedance to pulsa-
tile flow at the transition between the aorta and first-
generation branch arteries. This impedance mismatch 
reflects a portion of the pulsatile energy saved in the 
forward-traveling wave, restricting its transmission 
into the peripheral vasculature. Beyond midlife, the im-
pedance of the aorta increases disproportionately to 
that of the muscular arteries, leading to impedance 
matching and a reduction in wave reflection through 
irreversible fragmentation of elastic fibers, contributing 
to deposition and progressive engagement of much 
stiffer collagen fibers within the wall, ultimately to the 
progressive stiffening of the proximal aorta. The proxi-
mal aorta is susceptible to earlier deterioration than pe-
ripheral arteries since the proximal thoracic aorta bears 
the force of the pulsatile strain directly from cardiac 
ejection and stiffening of the wall of the aorta. The vas-
cular aging process results in higher central pulse pres-
sure, characteristic impedance, cf-PWV, altered timing 

of the reflected wave, and reduced proximal wave re-
flection [46]. Such change diminishes a protective 
mechanism that normally buffers the peripheral micro-
circulation from excessive pulsatility. The loss of the 
natural barrier enables the pulse waves can easily enter 
our brain and cause damage [44]. Moreover, in re-
sponse to excessive pressure and flow pulsatility, the 
microvessels constrict to protect the microcirculation 
but also result in increased microvascular resistance, re-
duced blood flow [47, 48], and reduced microvascular 
reactivity in response to ischemic stress [49] and labile 
BP caused by stiff arteries [50]. Thus, the cumulative 
sequelae of elevated aortic stiffness and impedance 
matching, especially for the brain, characterized by 
high-flow, low microvascular impedance, and vulner-
ability to pressure and flow pulsatility [33], manifests as 
white matter hyperintensities, tissue atrophy, and cog-
nitive impairment and dementia [51]. We summarized 
the process from impedance mismatch to cognitive im-
pairment, mediated by aging and aortic stiffness in Fig-
ure 1.

However, some have contemplated that since the aor-
ta-carotid bifurcation is with a reflection coefficient of 
0–15% and relatively well matched, any effect of local 
wave reflection on transmitted power at the junction is 
insignificant, with 97% and 100% of incident power con-

Fig. 1. The conceptual process from impedance mismatch to cognitive impairment and neurological disease, me-
diated by aging and aortic stiffness.
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veyed [52]. Moreover, transmitted pulsatile pressure in-
creases with bifurcation reflection coefficients, which 
should be deleterious in terms of downstream organ 
function [53]. Others have reported that bifurcations in 
the arterial system are usually impedance matched in the 
forward, instead of the backward direction, optimally 
transmitting forward hydraulic power while causing 
backward-traveling power to be stuck in daughter arteries 
by reflection [54, 55]. Subsequently, Haidar et al. had as-
sessed this controversial issue with aortic flow, carotid 
pressure, flow and hydraulic power, brain magnetic reso-
nance images, and cognitive scores in AGES-Reykjavik 
study [56] by enrolling 668 subjects without history of 
stroke, transient ischemic attack, or dementia. Higher ca-
rotid flow pulsatility was associated with lower white 
matter volume and memory scores. Marked asymmetry 
of characteristic impedances at aorta-branch artery bifur-
cations reduces amplification of pressure and the abso-
lute and relative pulsatility of transmitted flow and hy-
draulic power into branch arteries, which protects the 
downstream local microcirculation from pulsatile dam-
age [57].

Conclusions

The concept of EVA and SUPERNOVA is proposed to 
better understand the process of vascular aging and de-
velop corresponding preventive and treatment targets. 
EVA and SUPERNOVA can be defined by calculating 
vascular age and the corresponding delta age. In EVA 

subjects, with advanced proximal aortic stiffness and re-
sultant eroded aortic impedance mismatch, the excessive 
pulsatile energy is transmitted across the aorta-carotid in-
terface into the carotid artery and associates with in-
creased carotid pulsatile energy and reduced cognitive 
function. The measurement of arterial flow and pressure 
can help better understand pulsatile hemodynamics and 
its impact on vital organs.
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