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Abstract

Background The study of the geographical distribution of

disease has expanded greatly with GIS technology and its

application to increasingly available public health data.

The emergence of this technology has increased the chal-

lenges for public health practitioners to provide meaningful

interpretations for county-based state cancer maps.

Methods One of these challenges—spurious inferences

about the significance of differences between county and

overall state cancer rates—can be addressed through a non-

parametric statistical method. The Wilcoxon’s signed rank

test (WSRT) has a practical application for determining the

significance of county cancer rates compared to the statewide

rate. This extension of the WSRT, developed by John Tukey,

forms the basis for constructing a single confidence interval

for all differences in county and state directly age-adjusted

cancer rates. Empirical evaluation of this WSRT application

was conducted using Minnesota cancer incidence data.

Results The WSRT procedure reduced the impact of

statistical artifacts that are frequently encountered with

standard normal significance testing of the difference

between directly age-adjusted county and the overall state

cancer rates.

Conclusion Although further assessment of its perfor-

mance is required, the WSRT procedure appears to be a

useful complement for mapping directly age-adjusted state

cancer rates by county.

Keywords Cancer � Counties � Significance �
Surveillance

Introduction

The county as a geographic basis for describing state

cancer incidence

For many years, investigators have evaluated geographic

patterns of cancer occurrence by county to generate etiologic

hypotheses [1–3]. For example, observations of higher lung

cancer and mesothelioma rates in the shipbuilding areas on the

eastern seaboard of the United States contributed to an

understanding of the carcinogenic potential of asbestos [4].

Cancer rates in counties with nuclear power plants have been

compared to similar counties without plants to address public

concerns [5]. In Minnesota, the observation of a large and

persistent increase in mesothelioma incidence in the north-

eastern region of the state led to the discovery that taconite

miners were at high risk of the disease [6].

Evaluation of cancer rates by county for etiologic

hypothesis development and testing has limitations [7, 8].

These evaluations are ecologic analyses [9] that are based

on aggregated exposure and demographic data for larger

areas and frequently diverse populations. The emergence of

the analytic capabilities of geographic information systems

(GIS) has led many investigators to study geographical

variations of cancer occurrence for geographic units

smaller than the county [10].

Displaying cancer incidence by county remains a valu-

able tool for describing the occurrence of cancer to the

general public. County cancer rates are also important to

community health assessments and allocation of public

health resources [11]. County administrators and local

public health officials are keenly interested in knowing

how their county’s cancer rates compare to the state and

whether any differences are significant. A wide range of

audiences identify with county-based cancer rates, and for
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the purpose of communicating with these audiences, the

county is often the geographic unit of choice [12, 13].

Challenges of disease mapping

In 1976, the eminent statistician Tukey [14] described the

future challenge for disease mapping as the requirement to

inform and not mislead through the creation of what he

called a ‘‘propaganda device.’’ Today, the development of

GIS has expanded the capacity to map large databases of

health outcomes at a high level of spatial specificity. These

data can now be linked to other environmental information

and population risk factors [15]. The challenges articulated

by Tukey 35 years ago continue to apply to the spatial

measurements and statistics of GIS analysis today [16].

The appropriate methodology to ensure that maps of

health statistics inform and not mislead is the subject of

much discussion and research [17, 18]. Statistical inaccu-

racies often arise from mapping differences between

county and the overall state directly age-adjusted cancer

rates. Inaccurate specification of significance when multi-

ple counties and the state are compared, and inaccuracy of

estimates used in calculating standard normal tests of sig-

nificance can lead to spurious inferences about the number

of statistically significant differences between county and

overall state cancer rates.

Multiple comparisons

Developing a map representing differences between county

rates and the overall state rate involves many different

geographic comparisons (eighty-seven in Minnesota). A

table of eighty-seven differences provides the opportunity

for simultaneously evaluating eighty-seven separate

hypotheses. If there is a 5% chance that each of the indi-

vidual confidence intervals does not contain the true dif-

ference in rates, the probability that all eighty-seven

confidence intervals contain the true difference is consid-

erably less than 95%. The distinction between a single

statistical test of hypothesis that the county rate and state

rate are not different and a test of all differences is referred

to as the multiple inference or multiple comparison prob-

lem [19].

When the number of comparisons is large, the potential

for error in the inferences increases. In Minnesota, the

probability that at least one of the differences will be found

to be statistically significant (at the 0.05 level) is 1 -

(0.95)87 = 0.99 [20]. Comparing many county rates creates

a markedly greater probability of generating positive

findings due to chance than does the stated 0.05 level.

The problem of multiple comparisons applies to cancer

mapping as well. The graphical representation is based on

the tabular values of differences between county and

overall state rates. If the comparisons are mapped based on

a single comparison test of statistical significance, then

eighty-seven different comparisons are implied but not

distinctly stated by the map itself. The high likelihood that

one or more of the ‘‘statistically’’ different county rates is

due to chance is integrated into the global representation of

the map.

Errors in estimation

The standard normal statistical test for the difference

between two directly age-standardized cancer rates can be

approximated by a formula that assumes that the covari-

ance of the two rates is zero, that is, the two rates are

independent. The estimate for the variance of the differ-

ence between two directly age-adjusted cancer rates is the

sum of each cancer rate’s variance estimate [21]. If the

independence assumption is violated, a more accurate

representation for the variance of the difference in rates is

the sum of the two variances minus twice their covariance

[22]. As the number of tests of significance increases, the

possibility of major violations of the underlying assump-

tion of independence also increases.

The assumption of independence is frequently violated

when one of the rates is for a populous county. Cancer rates

for populous counties are often positively correlated with

the overall state rate since the county has a relatively large

impact on the state rate. Assuming that the covariance is

zero, when it is numerically positive, creates a loss of

statistical power (the confidence intervals are spuriously

large). Removing the county before calculating the overall

state rate would mitigate this dependence to some degree

but would result in a different overall state rate for each

county—an undesirable outcome.

A negative covariance can occur for sparsely populated

rural counties. For example, if populous urban counties had

a higher smoking prevalence (compared to some non-urban

counties) as in Minnesota, then the overall state rate for

smoking-related cancers would tend to be higher and the

cancer rates for counties with lower smoking prevalence

would be relatively lower for these cancers. The result of

assuming that the numerically negative covariance is zero

would be an over specification of significance (spuriously

narrow confidence intervals).

This paper describes a method to evaluate the signifi-

cance of county cancer incidence rates compared to the

overall state rate that is more resistant to the artifacts

created by these statistical inaccuracies than are the fre-

quently used standard normal tests of significance. This

method is complementary to the graphical presentation of

county cancer rates employed by states and larger gov-

ernmental units when specification of significance is also

desired.
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Methods

Tukey’s modification of the Wilcoxon’s signed rank test

(WSRT) is a nonparametric procedure. A detailed

description of the theoretical basis of the large sample

approximation for the distribution-free confidence interval

employed here is given in the text [23]. This text is still

considered by many statisticians as a standard for applied

nonparametric statistics [24].

The WSRT procedure as applied here uses a measure of

the average of all possible boundaries of the m (number of

counties) 95% standard normal confidence intervals. Six

steps based on Tukey’s extension of the WSRT procedure

are proposed to calculate a joint confidence interval for all

differences between directly age-adjusted county cancer

rates and the overall state rate.

1. Form m 95% standard normal confidence intervals

using the Keyfitz formula [25] for the standard errors

of the directly age–adjusted rates creating the m lower

and upper confidence limits: (CILi, CIUi); i = 1, m.

Let diffi = c ratei - s rate; i = 1, m (c is the county, s

is the state), and sei = standard error of c ratei, is

calculated as follows, for a given sex and 18 age

groups, se2
i ¼

P18
j¼1 Nj=P2

j

� �
ðWjÞ2; where Nj is the

number of specific cancers (e.g., lung) in the ith

county, Pj is the population of the jth age group for the

given sex of the ith county, Wj is the US 2000 standard

population weight for the jth age group, se = standard

error of s rate, (calculated with total state data for Nj

and Pj) and, the standard error of the difference

between the county and state rate, se ðdiffiÞ ¼

se2
j þ se2

� �1=2

, with the 95% standard normal confi-

dence interval = diffi ± 1.96 se(diffi) = (CILi, CIUi)

[21].

2. Form the M ¼ mðmþ1Þ
2

averages of the lower and upper

bounds of the m 95% standard normal confidence

intervals [23]. These are called Walsh (W) averages.

For m = 87 (Minnesota), M ¼ mðmþ1Þ
2
¼ 3; 828;

Wk
L ¼ ðCILi þ CILjÞ=2;

Wk
U ¼ ðCIUi þ CIUjÞ=2; i� j; k ¼ 1; 2; . . .; 3; 828:

3. Rank (sort) both lower and upper sets of Walsh

averages, so that:

W1
L �W2

L � � � � �WM
L ;

W1
U �W2

U � � � � �WM
U :

4. The 1 - a confidence interval for the lower limit is

WCa
L ;W

ðMþ1�CaÞ
L

� �
, and the 1 - a interval for the

upper limit is WCa
U ;W

ðMþ1�CaÞ
U

� �
; where Ca ¼

mðmþ1Þ
4
� Zða=2Þ

mðmþ1Þð2mþ1Þ
24

h i1=2

:

(Ca rounded to the nearest integer determines the two

elements of the ordered arrays of Walsh averages that

serve as end points of the joint confidence interval, a is

usually 0.05).

5. For i = 1, m use WCa
L ; W

ðMþ1�CaÞ
U

� �
as the joint

confidence interval for all the diffi.

6a. If the (CILi, CIUi) does not contain zero, the

significance of the diffi is then determined by the

joint confidence interval derived in 5).

6b. If the diffi lies outside the joint confidence interval, it

is concluded that the county rate is different than the

state rate. For m = 87 counties and Z(a/2) = 1.96,

Ca = 1,451, M ? 1 - Ca = 2,378; and 5) becomes

W1451
L ; W2378

U

� �
.

A detailed example of the calculations required for the

application of this nonparametric procedure described by

steps (1)–(6b) is given in ‘‘Appendix 1.’’ This algorithm

produces a joint (single) confidence interval for all differences

between the county and state rates, for a given sex and cancer.

The 95% standard normal confidence intervals, (CILi, CIUi),

are specific to each county for the null hypothesis H0: diffi

(county ratei—state rate; for a given sex and cancer) = 0.

The purpose of the analysis is to identify differences in

cancer rates that lie outside (CILi, CIUi) whose statistical

significance is less likely due to multiple comparisons and

possible lack of the independence of the two rates.

Therefore, the application of step 6b) requires that step 6a)

first be satisfied. Any difference where zero lies inside the

standard normal 95% confidence interval is judged as

nonsignificant and is not compared to the joint interval

WCa
L ; W

ðMþ1�CaÞ
U

� �
.

The number of years, age groups, number, and types of

cancer were varied, and the performance of the WSRT

procedure was evaluated for 300 separate analyses of dif-

ferent combinations of these variables for Minnesota and

its eighty-seven counties. The performance was evaluated

by the empirical method of comparing inferences derived

from the WSRT procedure to those derived from the 95 and

99% standard normal tests and the 90% Bonferroni test of

significance (the Bonferroni test is based on the standard

normal test of significance with the significance level

adjusted to reduce the number of false positives) [26].

Specificity of the WSRT procedure was assessed by

determining if an elevated number of significant differ-

ences were reduced. Sensitivity was evaluated by deter-

mining which of the discrepant inferences derived from the
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three tests and the WSRT procedure were valid, based on a

detailed examination of additional data.

The data used for these comparisons were from the Min-

nesota Cancer Surveillance System [27]. The MCSS is a

population-based statewide cancer registry that has been in

operation since 1988. Several examples of these analyses are

provided to illustrate the performance of the WSRT procedure

to this application. Results of the WSRT procedure are labeled

in the parlance suggested by Tukey as, ‘‘unusually low,’’ ‘‘not

unusual,’’ and ‘‘unusually high’’ [14].

Results

Figure 1 is a map of the 95% standard normal significance

tests of the difference between the directly age-standardized,

county-specific female lung cancer incidence rates for

1988–2007 and the corresponding overall Minnesota rate [21,

25]. The number of counties with significantly low lung

cancer rates is the dominant feature of this map.

Figure 2 contains the WSRT procedure alternative to the

map provided by Fig. 1. The difference between Figs. 1

and 2 is the method used to determine which of the county

rates were different than the overall state rate. The WSRT

procedure determination of significance generated a map

(Fig. 2) in which the number of counties with significantly

different rates was substantially reduced.

The National Cancer Institute’s SEER*Stat software

provides additional parametric methods, based on rate

ratios, for determining statistical significance of county

age-adjusted cancer rates compared to the overall state rate

[28]. The results of the SEER*Stat determinations of

significantly low

non significant

significantly high

Fig. 1 Age-adjusted female lung cancer incidence compared to overall state female age-adjusted rate by county (1988–2007). Significance

determined by 95% standard normal confidence interval for difference in the two rates
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significance, and the standard normal methods evaluated in

this report, for the data depicted in Figs. 1 and 2 are given

in Table 1. Results of the standard normal tests and the

SEER*Stat rate ratio tests of significance produced similar

results. For relatively large counts, this similarity is

expected [29, 30] and these methods would result in a map

similar to Fig. 1.

Table 2 contains a summary for all MCSS data, 32

cancer types (‘‘Appendix 2’’), 20 years (1988–2007), and

all age groups that represented 429,794 cancers. Biologi-

cally, inconsistent cancer and gender combinations were

excluded. There were five of these. The number of total

comparisons for the 1988–2007 aggregated data was 5,133

(27 9 87 9 2 ? 5 9 87).

The 95% standard normal test resulted in 882 (17.2% of

5,133) differences between county and overall state rates

being classified as significantly lower than zero and 170

(3.3%) as significantly larger than zero. In other words,

there were 882 county rates significantly lower than the

overall state rate and 170 significantly higher. This large

proportion of significantly low rates is a measure of the

spuriously significant differences that can result when

comparing many county rates to the overall state rate and

when the independence of the county rates and the overall

state rate are an issue. Another indication of this artifact is

provided by the 170 comparisons that were significantly

high. Only 128 (2.5%) of the rates were expected to be

significantly high.

Results of the 99% standard normal test demonstrated

the expected overall reduced numbers of statistically sig-

nificant results. However, there was still evidence of spu-

riously significant differences, most notably for low rates

unusually low

not unusual

unusually high

Fig. 2 Age-adjusted female lung cancer incidence compared to overall state female age-adjusted rate by county (1988–2007). Significance

determined by Wilcoxon’s signed rank test (WSRT) procedure described in text
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(12% significant). The 90% Bonferroni test, designed to

reduce the number of false positives, was more conserva-

tive, in that, it severely reduced the number of significantly

elevated rates to 0.7%. The Bonferroni test was not as

effective in mitigating the impact of low rates; 488 (9.5%)

remained significant.

Results from the WSRT procedure provided a different

perspective. Only 2.5% of the county rates were signifi-

cantly low and 1.5% were high. The number of signifi-

cantly low rates was reduced, and the sensitivity for

detecting elevated county rates did not appear to be greatly

impaired. The 1.5% of the rates considered significantly

high exceeded that estimate for both the 99% standard

normal and the 90% Bonferroni tests. The only result that

was larger (3.3%) was for the 95% standard normal test and

that number was likely skewed too large by the multiple

comparisons (5,133) that were made. For these data, the

WSRT procedure greatly reduced the number of apparently

spurious results generated by the three standard normal

tests of significance.

Figures 3 and 4 represent the comparison of the female

age-adjusted all-cancer incidence rate to the state rate for

the years 1988–2007 by county. Determination of signifi-

cance in Fig. 3 was by the 95% standard normal test and in

Fig. 4 by the WSRT procedure. The difference in impres-

sions of significance created by eliminating statistical

artifact afforded by the WSRT procedure compared to the

standard normal tests is seen again in these two figures.

Throughout this evaluation, reduction in the number of

counties with cancer rates statistically different than the

overall state rate was a prominent feature of the WSRT

procedure.

Large numbers

Precision of the estimates for age-adjusted rates mapped in

Figs. 3 and 4 was relatively high. These rates included all

female cancers, for all years, which incorporated the largest

numbers available. The problem of estimating rates from a

small number of occurrences, or small populations, is well

documented [31]. Large numbers represent another prob-

lem [32] that frequently results in specification of statistical

significance for very small differences in rates.

Figures 5 and 6 represent comparisons of the incidence

of a common male cancer (colon/rectum) to the overall

state rate for the years 1988–2007 by county. Results of the

95% standard normal significance determinations yielded 6

(6.9%) counties with low rates and 14 (16.1%) with sig-

nificantly higher age-adjusted rates than the overall Min-

nesota rate. The WSRT analysis yielded 2 (2.3%) and 5

(5.7%) of the counties with unusually lower and higher

rates, respectively, than the cancer rate for the state as a

whole. For this example, the WSRT procedure reduced the

number of significant outcomes by nearly two-thirds. The

WSRT procedure consistently reduced the number of sig-

nificant inferences for differences between county and

overall state rates when the comparisons involved rela-

tively common cancers (large numbers).

Small numbers

For less common cancers, there were many zero occur-

rences in a county during the time period (1988–2007). Of

the 882 (Table 2) county rates significantly lower than the

corresponding state rate, 358 of these were for zero rates.

Table 1 Comparison of significance assessments of age-adjusted female lung cancer incidence compared to overall state female age-adjusted

rate by county (Minnesota, 1988–2007)

Significantly low Significantly high Nonsignificant

SN95 SN99 B90 T95 F95 WSRT SN95 SN99 B90 T95 F95 WSRT SN95 SN99 B90 T95 F95 WSRT

Summary counts for the 87 counties

40 25 18 35 34 8 10 7 4 10 10 8 37 55 65 42 43 71

Standard Normal 95% CI (SN95), Standard Normal 99% CI (SN99), Bonferroni 90% CI (B90), Tiwari 95% CI (T95) [30], Fay 95% CI (F95)

[29], and WSRT 95% CI (WSRT) [Wilcoxon’s signed rank test—see text]

Table 2 Number (%) of statistically significant county rates for four tests of significance—32 cancers, 87 counties, and 2 sexes

Standard normal (95%) Standard normal (99%) Bonferroni (90%) WSRTa (95%)

Low High Low High Low High Low High

882 (17.2) 170 (3.3) 616 (12.0) 69 (1.3) 488 (9.5) 34 (0.7) 130 (2.5) 76 (1.5)

Total comparisons = 5,133. Biologically inconsistent cancer and gender combinations excluded

MCSS 1988–2007 [All ages (n = 429,794 total cancers)]
a Wilcoxon’s signed rank test—see text
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Of these 358, 339 were considered nonsignificant devia-

tions from the overall state rate by the WSRT procedure;

only 19 of 130 low rates were derived from zero county

rates. The relative insensitivity to the impact of zero

occurrences (and very small cell size in general) is a known

behavior of the WSRT procedure [23] that is important to

reducing small number artifact that complicates compari-

son of individual county cancer rates to the overall state

rate.

Table 3 contains similar data as Table 2 except the

years included were 2003–2007. The total number of

cancers was reduced from 429,794 to 121,908 and the

number of zero occurrences in the counties increased. The

effect of this increase was to sharply elevate the number of

significantly low rates derived from the standard normal

tests. The number of significantly low rates identified by

the WSRT procedure decreased from 130 (2.5%) to 82

(1.6%). This decrease was a desirable outcome. As the

precision of the estimates decreased (with less nonzero

data), the number of occurrences considered significantly

low should also decrease. As seen with the more numerous

data from Table 2, the sensitivity of the WSRT procedure

for elevated rates, determined by the percentage of com-

parisons that were significantly high, was between that of

the 95% standard normal test and the other two methods.

Table 4 contains data for childhood (ages 0–14 years)

cancers for all years combined (1988–2007). This analysis

was based on a substantially smaller number of cancers

(3,188) than Table 3. Since all 32 cancer types were ana-

lyzed separately, there were a very large number of zero

significantly low

non significant

significantly high

Fig. 3 Age-adjusted female all-cancer incidence compared to overall state female age-adjusted rate by county (1988–2007). Significance

determined by 95% standard normal confidence interval for difference in the two rates
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occurrences even for larger counties. This created an

extreme situation for data populated with zero or a very

small number of occurrences. The performance of the

WSRT procedure in reducing the number of spuriously low

rates was even more evident in this extreme situation.

Example: bone cancer

For the period 2003–2007, there were 168 bone cancers

diagnosed in males and 113 in females of all ages in

Minnesota. The overall state male standard normal 95%

confidence interval (CI) for the incidence rate per 100,000

per year was (1.1, 1.6) and the female 95% CI was (0.7,

1.0). By this measure, any county with a zero occurrence

had a statistically significant low bone cancer incidence.

A zero occurrence resulted in a zero estimate for the county

standard error that reduced the 95% CI for the difference

between the county and the overall state rate to that of the

95% CI for just the state rate.

There were 31 counties with zero occurrences for males

and 50 counties with zero occurrences for females. Thus,

81 (46.6%) of the 174 comparisons were considered as

significantly low by the 95% standard normal test of sig-

nificance. None of the counties had significantly elevated

rates. (Another 59 counties had one or two occurrences, all

of them not statistically different than the overall state

rate). The results for the 99% standard normal and the 90%

Bonferroni significance tests were identical to the 95%

standard normal test; 81 (46.6%) were significantly low,

and none were significantly elevated.

unusually low

not unusual

unusually high

Fig. 4 Age-adjusted female all-cancer incidence compared to overall state female age-adjusted rate by county (1988–2007). Significance

determined by Wilcoxon’s signed rank test (WSRT) procedure described in text
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These evaluations could be used in two ways to create a

cancer map. Maps (for males and females separately)

portraying almost half of the state’s counties as having

significantly low rates of bone cancer could be created.

Alternatively, a decision could be made that, except for a

small number of larger counties, the rates were too unstable

to warrant mapping cancer rates by county.

Both of these approaches would be problematic. The

first set of maps would create a misrepresentation of sig-

nificance. The second approach would not take advantage

of the county-specific data on cancer incidence and the

composite information available from these observations.

The WSRT procedure identified none of the county bone

cancer incidence rates as unusually low or unusually high.

Utilizing all the data on bone cancer incidence, there was

no evidence of an unusual rate of this cancer for the period

2003–2007 in any of the counties. Two maps could be

created that would provide the impression that there were

no unusual occurrences of male or female bone cancer

incidence for the period 2003–2007 in any of the counties.

This would be the most appropriate representation of

the MCSS data and the one supported by the WSRT

procedure.

Sensitivity

Sensitivity for detecting unusual occurrences of cancer,

especially for childhood cancers, is important. In Table 4,

there are three occurrences that were statistically elevated

based on the 95% standard normal significance test, but

significantly low

non significant

significantly high

Fig. 5 Age-adjusted male colon/rectum cancer incidence compared to overall state male age-adjusted rate by county (1988–2007). Significance

determined by 95% standard normal confidence interval for difference in the two rates
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were nonsignificant based on the WSRT procedure. These

occurred in Stearns County (a large county located just

northwest of the Minneapolis—St. Paul area). The three

occurrences were due to the high childhood female acute

lymphoblastic leukemia (ALL) rates. The high rate of

childhood female ALL increased both the categories of ‘‘all

leukemia’’ and ‘‘all cancer’’ rates for females to bring the

total elevated to 3.

The ALL data for Stearns County were examined by age

groups (0–4, 5–9, and 10–14) to evaluate the consistency of

this elevated rate. None of the rates for males were sta-

tistically significant based on the 95% standard normal test.

unusually low

not unusual

unusually high

Fig. 6 Age-adjusted male colon/rectum cancer incidence compared to overall state male age-adjusted rate by county (1988–2007). Significance

determined by Wilcoxon’s signed rank test (WSRT) procedure described in text

Table 3 Number (%) of statistically significant county rates for four tests of significance—32 cancers, 87 counties, and 2 sexes

Standard normal (95%) Standard normal (99%) Bonferroni (90%) WSRTa (95%)

Low High Low High Low High Low High

1,256 (24.5) 85 (1.7) 1,094 (21.3) 27 (0.5) 943 (18.4) 7 (0.1) 82 (1.6) 38 (0.7)

Total comparisons = 5,133. Biologically inconsistent cancer and gender combinations excluded

MCSS 2003–2007 [All ages (n = 121,908 total cancers)]
a Wilcoxon’s signed rank test—see text
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ALL rates for females were consistently higher than the

state rate. For the period 1998–2002, the difference reached

statistical significance: 12.2 per 100,000 per year vs. 2.8

per 100,000 for the entire state. The importance of an

observation of elevated ALL in young females in Stearns

County without a corresponding elevation in young males

is hard to interpret. Nonetheless, from a public health

surveillance perspective of identifying unusual occurrences

of cancer through disease mapping, the Stearns County

observation was an example of decreased sensitivity for the

WSRT procedure. This was the only such example iden-

tified during the evaluation of the WSRT procedure.

Discussion

There have been several methods developed to account for

the loss of specificity due to multiple statistical compari-

sons [33]. Conventional approaches, such as the Bonferroni

test of significance, are generally viewed as inappropriate

in epidemiology as they diminish the ability to identify

meaningful differences [26, 34, 35]. In the case of cancer

mapping, there needs to be a middle ground due to the

influence that it can have on public policy. Mapping of

state cancer rates by county involves a large number of

implied comparisons, and one of the goals of mapping

these rates is the identification of unusual cancer occur-

rences that, when found, may have important public policy

implications [15, 16, 36–38]. A recently established federal

program, Environmental Public Health Tracking [39], is

attempting to advance disease mapping and environmental

correlations. A stated goal of this program is to recognize

disease clusters in order to ‘‘understand the possible asso-

ciations between the environment and the adverse health

effects.’’

This application of the WSRT procedure is another

approach for assessing the significance of the difference

between directly age-adjusted county cancer rates and the

overall state age-adjusted rate. Traditional presentation of

the pattern of county cancer rates occurs in several ways.

Two of the most common are to portray the county rates as

above or below the state average and to distribute the

county rates by quartiles. These approaches have become a

standard of practice [40]. The WSRT procedure does not

replace these methods. The WSRT procedure is comple-

mentary to them, serving the objective of identifying

meaningful significant differences between county and

overall state rates without a major loss of sensitivity.

The large amount of random variation associated with

the analyses of rates based on a small number of cancers

raises concern over the precision of the estimates [41].

Several strategies are employed to address this problem.

Indirect standardization as an age-adjustment method has

been recommended for small counties where the age-spe-

cific rates are often quite variable and unreliable [42].

While this approach is useful in comparing a single county

to the overall statewide rate, the results of indirect stan-

dardization may not be as useful when comparing multiple

counties if there are large differences in the age structures

of the populations. The indirectly standardized rate is

weighted to the specific age distribution of the population

of interest [43]. Since mapping county cancer rates results

in comparisons among the counties, indirectly age-adjust-

ing cancer rates are not recommended as a method for

creating state cancer (and other rate) maps [44].

The most common strategy to address the small number

problem is to suppress analyses that are based on a number

of occurrences judged to be too low to yield valid results.

This number is not consistently defined. The Kentucky

Cancer Registry uses 15 [45] and the National Center for

Health Statistics recommends 25 as the minimum [46]. The

National Program of Cancer Registries does not provide

rates if the cell size is smaller than 16 or the population

smaller than 50,000 people [47]. Important results from

identifying and studying populations with low cancer

incidence are well documented [48, 49]. Suppressing

analyses of low cancer rates solely on the basis that they

represent numbers that are considered too low to publish

may result in missing useful insights [31]. Mapping

important differences between low county cancer rates

compared to the overall state rate can be facilitated by the

WSRT procedure due to its decreased sensitivity to low

rate instability.

The evaluation of the performance of the WSRT pro-

cedure was empirical and based on cancer incidence data

from Minnesota. Population-based cancer incidence data in

the United States are collected under similar protocols [50],

and it is likely that the WSRT procedure would perform

Table 4 Number (%) of statistically significant county rates for four tests of significance—32 cancers, 87 counties, and 2 sexes

Standard normal (95%) Standard normal (99%) Bonferroni (90%) WSRTa (95%)

Low High Low High Low High Low High

1,990 (38.8) 3 (0.01) 1,813 (35.3) 0 (0.0) 1,728 (33.7) 0 (0.0) 9 (0.2) 0 (0.0)

Total comparisons = 5,133. Biologically inconsistent cancer and gender combinations excluded

MCSS 1988–2007 [Ages 0–14 (n = 3,188 total cancers)]
a Wilcoxon’s signed rank test—see text
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similarly in other states. However, determination of whe-

ther the performance of the WSRT procedure found in this

evaluation can be generalized for other applications and for

use in all states requires further investigation.

The computational algorithm for the WSRT procedure

used in this evaluation was coded in FORTRAN—a

mathematically based programing language. The transla-

tion of this extension of the Wilcoxon’s signed rank test

into an executable algorithm was straightforward and can

be incorporated as a FORTRAN (available from the first

author upon request) or C subroutine, or it can be created

within a SAS program. The simplicity of coding required

for calculating the WSRT significance is an appealing

attribute of this procedure.

As the number of observations increase, the precision of the

estimates increase, often resulting in small differences

becoming statistically significant. The WSRT procedure was

not as greatly impacted by the large number effect but it is not

immune to it. Identification and interpretation of important

differences in cancer rates will always require skill and

judgment. The WSRT procedure is an ally in this process as it

reduces the number of cancer rates that need to be evaluated.

As illustrated throughout the evaluation of the WSRT pro-

cedure, the level of significance for differences in directly age-

standardized rates, such as 0.05 or 0.01 is theoretical; each

application will likely yield a computed significance that is

different than the desired theoretical level of significance. For

the purposes of cancer mapping, it is not the level of signifi-

cance that is important, but the fact that the significantly dif-

ferent rates represent truly unusual occurrences. John Tukey

recommended that for disease mapping, significant differences

be described as ‘‘unusual occurrences.’’ The WSRT procedure

provides a useful method to portray the differences in directly

age-adjusted cancer rates occurring at the county level com-

pared to the overall state rate as ‘‘unusually low,’’ ‘‘not unu-

sual,’’ or ‘‘unusually high.’’
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Appendix 1

Example calculations for the nonparametric procedure

(WSRT)

Consider the data in Table 5 which contains age-stan-

dardized male cancer rates for all cancers combined for

twenty counties and the entire state (per 100,000 per year).

These data are from the MCSS for the period 1988–2007.

The standard error for each of the counties (sei) and the

state (se) is also provided in Table 5. The twenty counties

were a sample (small, medium, and large) of all 87 Min-

nesota counties used to illustrate the WSRT procedure. The

steps are identical to those described in the text.

Step 1 Create the 20, 95% standard normal confidence

intervals (CILi, CIUi) for the difference between the county

rate and the state rate (diffi) from the formula: diffi ± 1.96

ðse2
i þ se2Þ1=2

. For example, Aitkin County: diff1 =

546.56 - 555.62 = -9.06; ðse2
1 þ se2Þ1=2 ¼ ð259:21þ

1:3924Þ1=2 ¼ 16:14:

The (CIL1, CIU1) is -9.06 ± 31.64 = (-40.70, 22.58).

The diffi and their corresponding (CILi, CIUi) for all

twenty counties are given in Table 6. Note that there are 11

occurrences that fall outside their respective 95% standard

normal confidence intervals, that is, the confidence interval

for the difference does not contain zero.

Step 2 For twenty counties, m = 20 and M =

m(m ? 1)/2 = 210. From the 210 Walsh averages for the

upper and lower confidence limits. For example, for i = 1

and j = 2, Wk
L ¼ ðCILi þ CILjÞ=2 ¼ ð�40:70þ 15:01Þ=

2 ¼ �12:84 (rounded to two decimal places) and

Wk
U ¼ ðCILi þ CILjÞ=2 ¼ ð22:58þ 40:95Þ=2 ¼ 31:76.

Table 5 Age-standardized rates and their standard errors for males,

all cancers combined

County/region Standardized rate Standard error

Entire State 555.62 1.18

Aitkin 546.56 16.10

Anoka 583.60 6.51

Becker 585.57 13.48

Beltrami 569.83 13.55

Big Stone 598.71 27.58

Blue Earth 528.55 11.07

Cass 566.25 13.16

Faribault 534.10 16.23

Fillmore 526.72 14.54

Goodhue 520.73 10.99

Kittson 466.45 25.96

Le Sueur 524.68 14.53

Lincoln 483.79 23.02

McLeod 546.21 13.11

Olmsted 628.29 8.34

Scott 564.36 11.58

St. Louis 554.88 5.21

Washington 541.64 7.27

Wright 553.24 9.72

Yellow medicine 516.53 19.23

MCSS 1988–2007
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These entries can be found in the partial tables of the

Walsh lower limit averages (Table 7) and Walsh upper

limit averages (Table 8).

Step 3 Rank the lower and upper 210 Walsh averages in

numeric order.

Step 4 Calculate Ca ¼ mðmþ1Þ
4
� Zða=2Þ

mðmþ1Þð2mþ1Þ
24

h i1=2

.

For m = 20 and Z(a/2) = 1.96, Ca = 52, rounded to the

nearest integer and M ? 1 - Ca = 159; M = 210.

Step 5 The joint confidence interval is W52
L ; W159

U

� �
.

The 52nd ordered Walsh average is -55.45 and the 159th

ordered Walsh average is 35.27. Thus, (-55.45, 35.27) is

the joint confidence interval for the diffi when zero lies

outside the (CILi, CIUi), i = 1, 20.

Steps 6a and b Compare each (CILi, CIUi) in Table 6 to

zero. If the (CILi, CIUi) contains zero, the difference is

considered nonsignificant. For Aitkin County, this interval

contains zero. No further evaluation is required and com-

parison to the WSRT confidence interval, W52
L ; W159

U

� �
,

is not needed. The WSRT evaluation of the statistical

significance of the difference is also taken as not unusual.

For Anoka County, the difference in age-standardized

rates was 27.98. The corresponding (CILi, CIUi) does not

contain zero, and comparison of the Anoka County/State

difference in rates to the WSRT confidence interval is

appropriate. Since 27.98 is contained in the interval

(-55.45, 35.27), the WSRT evaluation of significance is

that the Anoka County rate was not unusual.

For Olmsted County (Rochester), diffi = 72.67 and the

95% standard normal confidence interval, (56.16, 89.18),

does not contain zero. This difference is also larger than the

upper limit of (-55.45, 35.27) and the WSRT significance

test indicates an elevated (unusually high) rate for Olmsted

County.

Table 9 contains a summary of the 95% standard

normal level of significance and the significance deter-

mined by the WSRT procedure. Eleven (8 low, 3 high)

of the county rates were statistically different than the

state rate as zero lies outside their respective 95%

standard normal confidence intervals (Table 6). Only

three (2 low, 1 high) were statistically unusual based on

the WSRT procedure. This reduction in the number of

significant differences is a salient feature of the WSRT

procedure.

Table 6 Differences between county and state rate (diffi), lower and

upper 95% standard normal confidence limits (CL), and significance

(Sig)

County diffi Lower CL Upper CL Sig

Aitkin -9.06 -40.70 22.58 2

Anoka 27.98 15.01 40.95 3

Becker 29.95 3.43 56.47 3

Beltrami 14.21 -12.45 40.87 2

Big Stone 43.09 -11.02 97.20 2

Blue Earth -27.07 -48.89 -5.25 1

Cass 10.63 -15.27 36.53 2

Faribault -21.52 -53.41 10.37 2

Fillmore -28.90 -57.49 -0.31 1

Goodhue -34.89 -56.55 -13.23 1

Kittson -89.17 -140.10 -38.24 1

Le Sueur -30.94 -59.51 -2.37 1

Lincoln -71.83 -117.01 -26.65 1

McLeod -9.41 -35.21 16.39 2

Olmsted 72.67 56.16 89.18 3

Scott -10.74 -21.21 -0.27 1

St. Louis 8.74 -14.07 31.55 2

Washington -13.98 -28.42 0.46 2

Wright -2.38 -21.57 16.81 2

Yellow medicine -39.09 -76.85 -1.33 1

1 low, 2 not significant, 3 high

Table 7 Walsh lower

confidence limits averages

(M = 210)

First 42 of the 210 Walsh lower

limit averages

-40.70 -12.84 -18.64 -26.57 -25.86 -44.80 -27.98

-47.06 -49.10 -48.63 -90.40 -50.11 -78.85 -37.96

7.73 -27.39 -30.96 -34.56 -31.14 -58.78 15.01

9.22 1.28 2.00 -16.94 -0.13 -19.20 -21.24

-20.77 -62.55 -22.25 -51.00 -10.10 35.59 0.47

-3.10 -6.70 -3.28 -30.92 3.43 -4.51 -3.79

Table 8 Walsh upper

confidence limits averages

(M = 210)

First 42 of the 210 Walsh upper

limit averages

22.58 31.76 39.53 31.72 59.89 8.67 29.55

16.48 11.14 4.68 -7.83 10.11 -2.04 19.49

55.88 27.07 11.16 11.52 19.70 10.63 40.95

48.71 40.91 69.07 17.85 38.74 25.66 20.32

13.86 1.36 19.29 7.15 28.67 65.06 36.25

20.34 20.70 28.88 19.81 56.47 48.67 76.83
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Appendix 2

See Table 10.
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