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Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification
of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein.
The Glu504Lys single nucleotide polymorphism (SNP) of ALDH2 gene, which is found in approximately 40% of the East Asian
populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehydemetabolism and alcohol-induced
“flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of
chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between
ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP
and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

1. Introduction

Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial
enzyme that catalyzes the oxidation of acetaldehyde, an
intermediate of ethanol metabolism [1]. It is also important
in metabolizing other toxic aldehydes such as 4-hydroxy-
2-nonenal (4-HNE) and acrolein [2]. The Glu504Lys single
nucleotide polymorphism (SNP) of ALDH2 gene, which
occurs with an incidence of 35–57% in different East Asian
subpopulations, causes defect in the enzyme activity of
ALDH2, leading to alterations in acetaldehyde metabolism
and markedly reduced alcohol tolerance [3, 4]. Epidemi-
ological studies have linked ALDH2 Glu504Lys SNP with
increased risk for human diseases including cardiovascular
disease (CVD), cancer, and late-onset Alzheimer’s disease
(AD) [5–8]. The association between ALDH2 Glu504Lys
SNP and the development of these diseases is also related
to the effect of the SNP on lifestyle factors such as alco-
hol consumption and its interaction with other genetic
variations.

2. ALDH2 in Ethanol Metabolism and Beyond

ALDH2 is a member of NAD(P)+-dependent ALDH super-
gene family that catalyzes the oxidation of endogenous and
exogenous aldehydes to their corresponding carboxylic acids
(reviewed in [9]). The enzyme activities of ALDHs mediate
the formation of molecules with important biophysiologi-
cal functions such as retinoic acid, betaine, and gamma-
aminobutyric acid [10–12]. On the other hand, aldehydes are
highly reactive compounds, which can form adducts with
proteins, DNA, and lipids, affecting the function of these
biomolecules and leading to cell toxicity. Endogenous alde-
hydes are generated during the metabolism of amino acids,
carbohydrates, lipids, and vitamins as well as the biotransfor-
mation of many drugs and environmental chemicals [10, 13–
15]. Meanwhile, aldehydes are present in the environment
and in our foods. Indeed, aldehydes can be produced in
high concentrations by heating fats and sugars (reviewed in
[16]).Thus, the detoxification of harmful aldehydes generated
endogenously or ingested from environment and foods is an
important role of ALDHs.
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ALDH2 is best known for its ability to oxidize acetalde-
hyde, an intermediate of ethanol metabolism. Animal studies
have shown that ALDH2 is a major enzyme for acetaldehyde
metabolism [1]. In addition, ALDH2 is important for the
detoxification of reactive aldehydes such as 4-HNE and
acrolein [2]. 4-HNE is an 𝛼,𝛽-unsaturated aldehyde formed
during lipid peroxidation in vivo [17]. Acrolein is found in
small amounts in many foods such as cheese, fish, bread,
and alcoholic beverages, while high levels of acrolein can be
detected in cigarette smoke and overheated oils (reviewed in
[18]). ALDH2may be one of the essential mechanisms for the
removal of these reactive aldehydes and protecting cells and
organs from these toxic aldehydes. Furthermore, it has been
suggested that ALDH2 may have more than one catalytic
function. For example, ALDH2 can act as nitrate reductase,
which catalyses the formation of 1,2-glyceryl dinitrate and
nitrite fromnitroglycerin, leading to the production of cGMP
and vasorelaxation [19].

3. SNP in ALDH2 Gene

Human ALDH2 gene is found on chromosome 12 (12q24.2)
and encodes a protein localized in mitochondria matrix.
The enzyme is expressed abundantly in liver and is also
present in heart, kidney, muscle, and brain [20]. Analyses
of the protein structure of ALDH2 have revealed that the
enzyme is a tetramer of four identical subunits, each of
which is composed of three main domains: the catalytic
domain, the NAD+-binding coenzyme domain, and the
oligomerization domain. A dominant-negative ALDH2 SNP,
which occurs with an incidence of 35–57% in different East
Asian subpopulations, results in markedly reduced alcohol
tolerance [3, 4]. People carrying the mutant ALDH2 allele
display characteristic acetaldehyde-mediated acute effects of
alcohol drinking such as facial flushing and increased pulse
rate [21]. The mutation is caused by a single nucleotide
substitution ofG forA in exon 12, resulting in the replacement
of glutamate to lysine at position 504 of the protein [3].
Glu504 is located within the oligomerization domain at the
dimer interface of the tetrameric enzyme which is critical
for the formation of both dimer and tetramer [22]. In wild-
type ALDH2 (ALDH2∗1), Glu504 forms hydrogen bonds
with Arg281 of the same subunit and with Arg492 of the
adjacent dimer partner. The disruption of these interactions
by the presence of Lys504 in themutant (ALDH2∗2) perturbs
the structure of the subunit with the mutation as well as
its dimer partner [23]. Binding of the coenzyme NAD+
to ALDH2∗2 is impaired, and the mutant enzyme has an
increased𝐾

𝑚
for NAD+ and a decreased 𝑘cat, which leads to a

very low enzymatic activity in vivo [24].Therefore, ALDH2∗2
acts in a dominant-negative manner. The phenotypic loss of
ALDH2 activity is found in both heterozygous (ALDH2∗1/∗2)
and homozygous (ALDH∗2/∗2) individuals, whose blood
acetaldehyde concentrations are approximately 6 and 19 times
higher than those with active ALDH2, respectively, following
a low to moderate intake of alcohol [25].

4. Glu504Lys SNP of ALDH2 Gene and the
Risk of Human Diseases

The high blood acetaldehyde levels in individuals with
ALDH2∗2 allele aftermoderate alcohol consumptionmediate
the enhanced alcohol sensitivity in this population [26]. In
comparison to ALDH2∗1/∗1 homozygotes, individuals with
ALDH2∗1/∗2 genotype experience significantly higher pulse
rate and greater facial flushing as early as 30min following
alcohol consumption and have higher risk of developing
hangover symptoms [21, 27]. Electroencephalographs (ECG)
show that the increases in P300 latency and decreases in
P300 amplitude following alcohol consumption are greater in
individuals with ALDH2∗1/∗2 genotype than in individuals
with ALDH2∗1/∗1 genotype, suggesting that their cognitive
functioning may be more impaired by alcohol exposure [28,
29]. Individuals with ALDH2∗1/∗2 genotype also show more
impaired psychomotor performance including reaction time
to complex visual information, visuomotor coordination, and
exact motor ability than those with ALDH2∗1/∗1 at 30 and
60min aftermoderate alcohol consumption [29, 30]. Because
of these acute effects after alcohol ingestion, Glu504Lys SNP
of ALDH2 gene is protective against the development of
alcoholism and perhaps may decrease the risk of chronic
diseases caused by alcohol overconsumption. On the other
hand, individuals carrying Glu504Lys SNP who do drink
alcohol may have an increased incidence of alcohol-mediated
diseases. Furthermore, for susceptible individuals that drink
limited amount of alcohol, defective ALDH2 may cause the
accumulation of toxic aldehydes, which can be generated
endogenously frommetabolism other than ethanol oxidation
or directly enter the body from foods and the environment,
leading to enhanced oxidative stress [31] and impaired cell
function and subsequently affecting the risk of a variety of
human chronic diseases.

4.1. CVD and Associated Diseases. Although liver is con-
sidered as the primary site for ethanol oxidation, other
organs such as heart also participate in ethanol metabolism.
Elevated acetaldehyde can lead to cardiac toxicity and plays
a significant role in the pathogenesis of alcoholic cardiomy-
opathy (reviewed in [32]). Overexpression of the ALDH2
gene alleviates oxidative stress and apoptosis induced by
ethanol and acetaldehyde in human cardiac myocytes [33]
and mitigates mechanical anomalies induced by alcohol in
myocardium of ALDH2 transgenic mice [34], suggesting
that the detoxification of acetaldehyde by ALDH2 protects
against alcohol-induced cardiac toxicity. In addition, accu-
mulation of cytotoxic aldehydes other than acetaldehyde,
which are either generated during reactive oxygen species
(ROS)-induced stress or ingested from foods or polluted
environment, such as 4-HNE and acrolein, contributes to
the oxidative stress and impairs cardiac functions [35–37]. 4-
HNE can be endogenously produced from lipid peroxidation
of polyunsaturated fatty acids in conditions like ischemia and
reperfusion of heart. In fact, accumulation of 4-HNE-protein
adducts and protein carbonyls has been detected in the failing
hearts [38] and has been shown to depress contractility of
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isolated cardiac myocytes, inhibit mitochondrial function,
and cause tissue damage after cardiac ischemia [39, 40].
Another toxic aldehyde acrolein is present in a variety of
foods and is detected in high levels in cigarette smoke and
overheated oils (reviewed in [18]). In a mouse model of acute
myocardial infarction, dietary treatmentwith acrolein at con-
centration (5mg/kg) comparable to human diet, 24 h prior
to a 30min coronary artery occlusion and 24 h reperfusion,
significantly increases myocardial infarct size, exacerbating
cardiac injury caused by ischemia and reperfusion [41].
Acrolein also blocks cardioprotective effects induced by the
pretreatment of NOdonor diethylenetriamine/NO viamech-
anisms that disrupt protein kinase C𝜀 signal transduction
[41]. Thus, detoxification of toxic acetaldehydes such as
those mentioned above by ALDH2 could be beneficial for
prevention and intervention of CVD. In a rat model where
heart failure is induced by a 6-week treatment of myocardial
infarction, treatment of a selective ALDH2 activator Alda-
1, starting 4 weeks after myocardial infarction, significantly
decreases the accumulation of 4-HNE and its associated cell
toxicity in failing hearts and improves cardiomyocyte short-
ening, left ventricular compliance, and diastolic function
[38]. Consistently, overexpression of ALDH2 gene in mice
decreases 4-HNE levels elevated by ischemia and reperfusion
and significantly alleviates ischemia/reperfusion injury and
hypoxia/reoxygenation-induced cardiomyocyte contractile
dysfunction. In contrast, the accumulation of cardiac 4-HNE
and the cardiac injury in response to ischemia-reperfusion
are exacerbated in ALDH2 knockout mice [42].

These findings suggest that disruption of ALDH2 activity
may increase the susceptibility of an individual to CVD.
Recently, twometa-analyses have shown that Glu504Lys SNP
of ALDH2 gene in Asian populations is associated with
increased risk of coronary artery disease (odds ratio (OR) =
1.36 and 1.28, 95% confidence interval (CI) = 1.06–1.75 and
1.10–1.48, and 𝑝 = 0.017 and 0.001, resp.) and myocardial
infarction (OR = 1.64 and 1.58, 95% CI = 1.22–2.20 and 1.15–
2.19, and𝑝= 0.001 and 0.005, resp.) [6, 7]. It has been reported
that ALDH2∗2 allele is associated with low serum HDL
cholesterol levels in Asian populations [43]. In addition, as
ALDH2 also functions in the formation of nitric oxide from
nitroglycerin, Glu504Lys SNP of ALDH2 gene eliminates the
activity of the enzyme to catalyze the reaction.Therefore, it is
not surprising that ALDH2∗2 allele is associated with a lack
of an efficacious clinical response to nitroglycerin treatment
for coronary heart disease [44].

Surprisingly,ALDH2∗2 carriers with chronic cyanosis are
shown to have unexpectedly greater tolerance to ischaemia
and reperfusion injury in comparison to ALDH2∗1 homozy-
gotes.ALDH2∗2 carriers have lower postoperative troponin I
levels and inotropic scores as well as shorter length of inten-
sive care unit (ICU) and hospital stay after open-heart surgery
[45]. It has been found that aldehyde accumulation caused by
cyanosis in ALDH2∗2 carriers results in larger myocardium
glutathione (GSH) pools [45]. The increased intracellular
GSH levels are also seen in the hearts ofALDH2∗2 transgenic
mice when compared with those of wild-type controls [46].
This compensatory myocardium GSH pool may contribute

to the unexpectedly better cardioprotection seen in the
ALDH2∗2 patients [45].

4.2. Hypertension. Hypertension is a major risk factor for
CVD. It is known that excessive alcohol consumption
promotes the development of hypertension. The effects of
Glu504Lys SNP of ALDH2 gene on blood pressure are com-
plicated by alcohol consumption and the presence of other
genetic polymorphisms. It has been found that the prevalence
of hypertension is higher in ALDH2∗1 homozygotes (OR =
1.67, 95% CI = 1.37–2.08, and 𝑝 < 0.0001) in comparison to
ALDH2∗2 carriers among males in a Japanese population.
Further investigation on ALDH2 genotypes and the level of
alcohol consumption suggests that theALDH2∗1/∗1 genotype
correlates with increased risk for hypertension among males
primarily through its association with the level of alcohol
consumption [47]. Similar results have been reported by
Amamoto et al. The authors have found that ALDH2∗2
carriers have lower incidence of hypertension thanALDH2∗2
noncarriers (OR = 0.67, 95% CI = 0.47–0.96, 𝑝 = 0.030),
while this correlation is not observed in individuals whose
alcohol consumption is below median level or in the group
not taking antihypertensive agents [48]. A case-control study
later has shown thatALDH2∗1/∗1 genotype is an independent
risk factor for essential hypertension among males. The OR
for the presence of hypertension for ALDH2∗1/∗1 genotype
compared with other genotypes is 1.93 (95% CI = 1.12–
3.31, 𝑝 = 0.018) [49]. In Japanese male regular drinkers
(≥22 g ethanol/d), Tsuchihashi-Makaya et al. have reported
that ALDH2∗1/∗1 genotype is an independent predictor for
increased systolic (𝛽-coefficient = 2.96, 𝑝 = 0.03) and
diastolic (𝛽-coefficient = 2.26, 𝑝 = 0.01) blood pressure
after adjusting for alcohol consumption [50]. More recently,
it has also been observed in a Chinese Han population that
ALDH2∗2 carriers who drink alcohol have lower risk of
essential hypertension (OR = 0.55, 95% CI = 0.36–0.85),
while this association is not found in nondrinkers [51]. It is
proposed that the vasodilating effect of acetaldehyde [52]may
be one of the mechanisms for the lower blood pressure seen
in the ALDH2∗2 carriers who drink alcohol [50].

Conversely, Chang et al. have reported that ALDH2∗2
allele is significantly associated with increases of blood
pressure (systolic blood pressure: 0.865mmHg/yr, diastolic
blood pressure: 0.537mmHg/yr) in a prospective Chinese
cohort followed on an average of 5.7 yrs [53]. The authors
suggest that carriers with ALDH2∗2 allele may be more
susceptible to progress to hypertension compared with
noncarriers [53]. The size and characteristics (age, gender
distribution, eating habits, average amount of alcohol con-
sumption,medications, etc.) of the population examinedmay
cause the inconsistent results seen in different studies. A
total of 753 individuals from 276 families are included in
the follow-up study mentioned above [53]; it is possible that
other genetic polymorphisms may exist in this population
and act together with ALDH2 genotype in combination
with dietary/environmental factors to promote hypertension.
Indeed, the benefit of ALDH2∗2 allele on blood pressure
has been shown to disappear when the effect is evaluated in
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combinationwith SOD2 polymorphism. Individuals carrying
both ALDH2∗2 allele and SOD2 Val/Val genotype have a
significantly higher risk of hypertension among drinkers
than in nondrinkers (adjusted OR = 6.22, 95% CI = 2.26–
17.1, and 𝑝 < 0.001) [54]. Therefore, both lifestyle factors
such as alcohol drinking and other genetic variations may
have impacts on the susceptibility of ALDH2 genotypes to
hypertension.

4.3. Cancer. Aldehydes are very reactive molecules, which
can modify proteins and nucleic acids, causing dysfunction
of these biomolecules. Binding of acetaldehydewithDNAhas
been demonstrated to promote carcinogenesis in laboratory
animals and alcoholic individuals [55, 56]. Indeed, chronic
alcohol consumption has been shown to be a strong risk
factor for the cancer of many tissues and organs including
the upper aerodigestive tract (oral cavity, pharynx, larynx,
and oesophagus), liver, colorectum, and breast [57, 58].
Acetaldehyde is considered to be one of the important
mechanisms contributing to the development of alcohol-
associated cancers [55, 56].

The effect of the alteration of ALDH2 activity by
Glu504Lys SNP on the risk of cancer has been shown to
interact with lifestyle factors, especially alcohol consump-
tion. Yokoyama et al. have reported that, in male Japanese
alcoholics, the ALDH2∗2 allele significantly increases the
risks (OR) for the oro-pharyngo-laryngeal (11.14), esophageal
(12.50), stomach (3.49), colon (3.35), and lung (8.20) cancer,
but not for liver or other cancers after adjustment for
age, daily alcohol consumption, and amount of cigarette
smoking [8]. Further evaluation of the association of ALDH2
Glu504Lys SNP with esophageal cancer has demonstrated
that OR for the ALDH2∗1/∗2 and ALDH2∗2/∗2 genotypes
in comparison to the ALDH2∗1/∗1 genotype is 3.43 (95%
CI = 1.74–6.75) after adjustment for age, sex, drinking, and
smoking status. A strong gene-environment interaction exists
between ALDH2∗2 allele and excessive alcohol consump-
tion for the risk of esophageal cancer. The OR for heavy
drinkers with ALDH2∗2 relative to nonheavy drinkers with
ALDH2∗1/∗1 genotype is 6.84 (95% CI = 2.39–19.6) [59]. A
case-control study on patients with esophageal squamous cell
carcinoma from Taiwan has shown similar results. In the
study, it has been found that individuals with ALDH2∗1/∗2
and ALDH2∗2/∗2 genotypes have 4.99- (95% CI = 3.11–7.99)
and 4.24-fold (95% CI = 1.52–11.84) risk, respectively, of
developing esophageal cancer, when compared with those
with ALDH2∗1/∗1 genotype, after adjustment for appropriate
covariates. And the heavy drinkers (≥1,200 g/year) with
ALDH2∗1/∗2 genotype have 30.53-fold risk (95% CI = 12.01–
77.64) of developing esophageal cancer in comparison to
nondrinkers with ALDH2∗1/∗1 [60].

ALDH2 Glu504Lys polymorphism has also been shown
to interact with the SNPs of other key enzymes in ethanol
metabolism in the development of alcohol-associated can-
cers [61]. Alcohol dehydrogenase 1B (ADH1B) is one of
the major enzymes belonging to a group of ADHs that
break down ethanol to acetaldehyde. Arg47His SNP of
ADH1B (ADH1B∗2), which exists in more than 90% of

East Asians, encodes a superactive subunit of ADH1B that
promotes the accumulation of acetaldehyde after alcohol
drinking [61]. In Japanese alcoholic patients, blood lev-
els of N(2)-ethylidene-2󸀠-deoxyguanosine (N(2)-ethylidene-
dG), the most abundant acetaldehyde-derived DNA adduct,
are remarkably higher in individuals carrying bothALDH2∗2
and ADH1B∗2 alleles, suggesting that alcoholic individuals
with both SNPs may accumulate more DNA damage and
may have increased susceptibility to cancer development
[62]. Surprisingly, a study on Japanese alcoholic men (age >
40 y) has shown that individuals with ADH1B∗1/∗1 genotype
(OR = 2.03) have increased risk of esophageal cancer after
adjustment for drinking and smoking.ALDH2∗1/∗2 genotype
also had higher risk of esophageal cancer (OR = 12.76). For
individuals with ALDH2∗1/∗2 and ADH1B∗1/∗1 genotypes,
the esophageal cancer risk is enhanced in a multiplicative
fashion (OR = 27.66) [63]. A few mechanisms are proposed
for this unexpected result. First, it has been demonstrated
that the lower systemic elimination of ethanol from the
body by ADH1B∗1/∗1 may lead to increased production of
acetaldehyde by oral microbes, thus prolonging the exposure
to acetaldehyde through saliva [64]. In addition, individ-
uals who carry the highly active ADH1B∗2 allele rapidly
convert ethanol to acetaldehyde following alcohol consump-
tion, leading to the accumulation of acetaldehyde and the
facial flushing syndrome. The unpleasant symptoms prevent
ADH1B∗2 carriers from drinking alcohol, therefore perhaps
exerting a protective effect against alcohol-associated cancer
development [57].

Recently, studies have confirmed that theALDH2∗2 allele
is associated with an increased risk of gastric cancer [65,
66]. It has also been found that there is an interaction
between ALDH2 Glu504Lys SNP and alcohol consumption
in the development of gastric cancer [65]. The studies on the
association of the ALDH2 Glu504Lys SNP with the risk of
colorectal cancer have given inconsistent results. Two recent
meta-analyses indicate that ALDH2 Glu504Lys SNP may be
associated with a decreased risk of colorectal cancer [67, 68].
No significant impact of Glu504Lys SNP of ALDH2 gene on
the risk of hepatocellular carcinoma [69] and breast cancer
has been found in East Asian populations [70, 71].

4.4. Alzheimer’s Disease. AD is the most common neu-
rodegenerative disease that causes dementia in the elderly.
The major pathological characteristics of AD brains are the
presence of senile plaques composed of beta-amyloid peptide
(Abeta), neurofibrillary tangles (NFT) formed by hyper-
phosphorylated tau protein, and neuronal loss (reviewed in
[72, 73]). Accumulating evidence has shown that oxidative
stress is one of the important factors in the pathogenesis
of AD (reviewed in [74]). Products of lipid peroxidation
such as 4-HNE have been reported to be elevated in the
brains of AD patients [75]. It has been found that 4-HNE
can induce neuronal death and synapse dysfunction [76]
and markedly inhibit microtubule formation and neurite
outgrowth [77]. 4-HNE has also been shown to react with
phosphorylated tau and induce conformational changes in
tau proteins that promote the formation of NFT [78, 79].
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In addition, exposure of NT(2) neurons to 4-HNE elicits an
upregulation of the expression of beta-site amyloid precursor
protein cleaving enzyme (BACE), causing significant increase
in intracellular and secreted levels of Abeta peptides [80].
Thus, elevated levels of 4-HNE in central nervous systemmay
contribute to the pathogenesis of AD. In PC12 cells, ALDH2
deficiency produced by introducing ALDH2∗2 gene leads
to marked accumulation of 4-HNE in response to oxidative
stress stimuli and increased vulnerability to 4-HNE-induced
cell death [81]. Similarly, central neurons from transgenic
mice overexpressing ALDH2∗2 gene are more sensitive to
4-HNE-induced toxicity than cells from control animals
[82]. Moreover, these ALDH2 deficient mice exhibit an age-
dependent decrease in spatial cognitive ability starting at the
age of 6 months [82]. The reduced resistance to oxidative
stress has been proposed as one mechanism that leads to
the neurodegeneration andmemory loss in ALDH2 deficient
mice [82]. These results suggest that ALDH2 Glu504Lys
SNP could be a genetic risk factor for AD in susceptible
populations.

A case-control study from Japan has shown that the
number of individuals carrying ALDH2∗2 allele is signifi-
cantly higher in the patients with late-onset AD (LOAD)
than in the controls (48.1% versus 37.4%, 𝑝 = 0.001)
[5]. ALDH2∗2 genotype interacts synergistically with the
presence of the apolipoprotein E allele 4 (APOE-𝜀4), which is a
widely accepted risk factor for LOAD [5]. Logistic regression
analysis shows that ALDH2∗2 allele increases the risk for
LOAD independently of APOE-𝜀4 (𝑝 = 0.002) status, while
the coexistence of the APOE-𝜀4 allele and ALDH2∗2 allele
synergistically increases the frequency of LOAD, which is
31 times higher in individuals being APOE-𝜀4 homozygous
and having at least one ALDH2∗2 allele than in those having
neither allele [5]. Moreover, in LOAD patients homozygous
for APOE-𝜀4, the age at onset of LOAD is significantly
younger in those with ALDH2∗2 allele than in those without
ALDH2∗2 allele, and the dosage of the ALDH2∗2 allele
significantly affects the age at onset of the disease [5].
Interestingly, immunostaining of the brain of AD patients
using anti-4-HNE antibody reveals that the cytoplasm of
pyramidal cell is positive for 4-HNE only in individuals with
APOE-𝜀4 allele [83]. Studies have shown that APOE proteins
interact with 4-HNE and the strength of binding between
APOE isoforms and 4-HNE is different, with the order 𝜀2
> 𝜀3 > 𝜀4. This correlates with the differential protective
effect of APOE isoforms against 4-HNE-induced neuronal
apoptosis [84]. These results suggest that APOE may have an
important role in elimination of 4-HNE. And the possession
of APOE-𝜀4, the APOE with the weakest 4-HNE binding
ability, may lead to the accumulation of toxic 4-HNE in
neurons, which could be further intensified by the reduction
of ALDH2 activity, resulting in increased oxidative stress and
higher risk for developing AD [82].

It has been observed in a Chinese case-control study
that individuals carrying ALDH2∗2 allele have significantly
higher risk of AD (OR = 3.11, 95% CI = 2.06–4.69, and 𝑝 <
0.001) [85]. In contrast, a study on sporadic AD patients from
Mongolic ethnic group in China has not found an association
between ALDH2∗2 allele and the risk of AD [86]. There

may be several reasons underlying the discrepancies found
in these studies. First, the populations analyzed are from
different ethnic backgrounds or different geographic regions;
thus it is not impossible that other genetic polymorphisms
may have an impact on the results. Secondly, environmental
factors such as eating habits or alcohol consumption of the
studied subjects should be considered and may influence the
results. In addition, the sample size as well as the distribu-
tion of male/female subjects in the studies may affect the
significance of the result. Recently, a meta-analysis evaluated
the association of ALDH2 variants with the risk of AD in
East Asian populations has found that ALDH2 ∗1/∗2 and
∗2/∗2 genotypes are associatedwith increasedAD risk only in
subgroup analyses in which male subjects are included (OR
= 1.72, 95% CI = 1.10–2.67, and 𝑝 = 0.02) [87].

5. Conclusions

ALDH2 is the major enzyme for the clearance of ethanol
metabolite acetaldehyde. It is also important for our body to
metabolize other toxic aldehydes, such as lipid peroxidation
product 4-HNE, generated endogenously or ingested from
environment. Dysfunction of ALDH2 in individuals carrying
ALDH2 Glu504Lys SNP leads to increased accumulation of
toxic aldehydes that may result in higher risk of a variety
of human diseases including CVD, cancer, and AD. Here
we discuss the evidence that implicates ALDH2∗2 allele as a
candidate genetic risk factor for these chronic diseases. It has
to be noted that the pathogenesis of these chronic diseases
involves multiple mechanisms; thus the interactions between
ALDH2∗2 allele and other genetic polymorphisms as well
as the gene-environment interactions have to be considered
to give a more thorough picture on how ALDH2 genotype
affects the development of chronic diseases. In particular, the
Glu504Lys SNP of ALDH2 gene is closely related to alcohol
drinking behavior. For alcoholics, ALDH2∗2 allele may sig-
nificantly exacerbate the risk of alcohol-related health prob-
lems. On the other hand, the unpleasant flushing syndromes
caused by the accumulation of acetaldehyde result in less
alcohol consumption and reduced incidence of alcoholism in
individuals carrying ALDH2∗2 allele. As a consequence, for
pathogenesis directly associated with ethanol consumption,
Glu504Lys SNP of ALDH2 gene can be a protective factor
for ALDH2∗2 allele carriers who limit their exposure to
ethanol. In addition, the effect of Glu504Lys SNP of ALDH2
gene on the development of chronic diseases, which are
often multifactorial, can be complicated by other genetic
variations [54]. In summary, defective ALDH2 activity may
compromise the elimination of reactive aldehydes, leading to
increased cytotoxicity and oxidative stress. Other genetic or
environmental/life style factors, which promote (or inhibit)
the stress caused by defective ALDH2, may increase (or
reduce) the susceptibility of individuals carrying ALDH2∗2
allele to relevant chronic diseases (Figure 1).

More effort should be spent in the future to understand
the biochemical and molecular mechanisms underlying the
association of ALDH2Glu504Lys SNP with chronic diseases.
Studies using animal and cell models with defective ALDH2
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Development of 
chronic diseases 

Alcohol 
consumption Glu504Lys SNP 

Other genetic 
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Other environmental 
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Glu504Lys SNP
↑ acetaldehyde

↑ toxic aldehydes

of ALDH2

(e.g., 4-HNE,
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Figure 1: The association of Glu504Lys SNP of ALDH2 gene with human diseases is complicated by other genetic variations and
environmental/lifestyle factors in addition to alcohol drinking.

activity will further our knowledge on the molecular basis of
human phenotype of ALDH2 variant and provide informa-
tion for discovery of potential interventions and therapeutics
targeting ALDH2.

Finally, for those diseases that are prompted synergisti-
cally by ALDH2 Glu504Lys SNP and alcohol consumption,
individuals carrying ALDH2∗2 allele should be targeted for
reducing alcohol exposure as part of the preventive strategy.
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ease, heme oxygenase is coincident with Alz50, an epitope of
𝜏 induced by 4-hydroxy-2-nonenal modification,” Journal of
Neurochemistry, vol. 75, no. 3, pp. 1234–1241, 2000.
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