
Minimum variance beamforming combined 
with covariance matrix‑based adaptive 
weighting for medical ultrasound imaging
Yuanguo Wang1, Yadan Wang1, Mingzhou Liu1, Zhengfeng Lan2, Chichao Zheng2 and Hu Peng2,3* 

Abstract 

Background: The minimum variance (MV) beamformer can significantly improve 
the image resolution in ultrasound imaging, but it has limited performance in noise 
reduction. We recently proposed the covariance matrix-based statistical beamforming 
(CMSB) for medical ultrasound imaging to reduce sidelobes and incoherent clutter.

Methods: In this paper, we aim to improve the imaging performance of the MV 
beamformer by introducing a new pixel-based adaptive weighting approach based on 
CMSB, which is named as covariance matrix-based adaptive weighting (CMSAW). The 
proposed CMSAW estimates the mean-to-standard-deviation ratio (MSR) of a modified 
covariance matrix reconstructed by adaptive spatial smoothing, rotary averaging, and 
diagonal reducing. Moreover, adaptive diagonal reducing based on the aperture coher-
ence is introduced in CMSAW to enhance the performance in speckle preservation.

Results: The proposed CMSAW-weighted MV (CMSAW-MV) was validated through 
simulation, phantom experiments, and in vivo studies. The phantom experimental 
results show that CMSAW-MV obtains resolution improvement of 21.3% and simulta-
neously achieves average improvements of 96.4% and 71.8% in average contrast and 
generalized contrast-to-noise ratio (gCNR) for anechoic cyst, respectively, compared 
with MV. in vivo studies indicate that CMSAW-MV improves the noise reduction perfor-
mance of MV beamformer.

Conclusion: Simulation, experimental, and in vivo results all show that CMSAW-MV 
can improve resolution and suppress sidelobes and incoherent clutter and noise. These 
results demonstrate the effectiveness of CMSAW in improving the imaging perfor-
mance of MV beamformer. Moreover, the proposed CMSAW with a computational 
complexity of O(N2) has the potential to be implemented in real time using the graph-
ics processing unit.
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Background
In medical ultrasound imaging, beamforming methods that form ultrasound image 
determine the diagnostic efficiency. The delay-and-sum (DAS) beamformer, which 
is simple and real-time, is widely implemented in most clinical ultrasound system to 
obtain ultrasound images. Nevertheless, it is susceptible to clutter and noise due to it is 
data-independent nature. The minimum variance (MV) beamformer was first studied 
as adaptive beamforming in ultrasound imaging [1, 2], showing a superior image reso-
lution. Subsequently, various adaptive beamforming researches are focused on the MV 
beamformer [3, 4]. As MV can suppress interfering off-axis signals, improved visuali-
zation of heart tissue [5] and enhanced resolution in detecting microbubbles in super-
resolution imaging [6] have been demonstrated. However, one of the main limitations of 
MV is the poor contrast which is similar to that of DAS beamformer.

Over the years, various studies have been attempted to overcome the limitation of 
MV in reducing incoherent noise. Eigenspace-based MV (ESBMV) [7] was developed 
to improve the contrast performance of MV by decomposing the covariance matrix into 
signal and noise subspaces. However, it tends to generate dark-region artifacts beside 
hyperechoic point-like targets. To deal with this issue, the eigenvalue threshold in 
ESBMV determined based on normalized spatial coherence [8] and normalized recip-
rocal of amplitude standard deviation [9] was successfully studied. Moreover, the for-
ward–backward (FB) spatial smoothing technique was implemented in MV to increase 
the robustness [10]. Hasegawa et al. [11] proposed to build a cross-covariance matrix in 
MV using echo signals from different subarrays, which leads to a significant improve-
ment in image contrast. Recently, Wang et al. [12] proposed a high-resolution MV based 
on optimal frequency-domain segmentation. In addition, a user parameter-free MV was 
developed [13] by adaptively determining the subarray length, number of samples for 
temporal averaging, and diagonal loading coefficient in MV.

Pixel-based adaptive weighting techniques have also been widely studied as an 
another solution to improve the imaging performance of MV. The coherence factor 
(CF) was studied to be combined with MV for medical ultrasound imaging, allowing 
improvements in both resolution and contrast with satisfactory robustness to sound 
velocity inhomogeneities [14]. The combination of CF and MV has also been demon-
strated improved detection of residual bubbles [15]. Qi et al. [16] proposed to use the 
submatrix-based CF calculated using the MV beamformed output as a pixel-based adap-
tive weight for MV to improve the contrast without over-suppressing speckle signals. 
Additionally, the combination of CF and MV applied on the beamformed image data at 
different angles obtained a high-resolution image [17]. The generalized CF (GCF) [18] 
was also utilized to adaptively select the subarray length for spatial smoothing in MV to 
improve the speckle statistics without using the temporal smoothing technique [19]. The 
combination of MV and adaptive weighting have demonstrated effectiveness in improv-
ing the imaging performance of MV.

In addition to MV-based ultrasound beamforming, other adaptive beamforming 
methods include short-lag spatial coherence (SLSC) [20] and delay-multiply-and-sum 
(DMAS) [21] have been also widely studied to improve the image quality. SLSC has been 
studied in cardiac ultrasound imaging and demonstrated enhanced clutter reduction and 
endocardial border detection [22]. The transmit synthetic aperture extended the axial 
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depth of field of SLSC imaging [23]. Nair et. al. proposed a robust SLSC (R-SLSC) which 
enables the use of higher lag information, and demonstrated that the R-SLSC provides 
increased contrast, signal-to-noise ratio, and contrast-to-noise ratio over traditional 
SLSC imaging [24]. The double-stage DMAS (DS-DMAS) [25] and regional-lag signed 
DMAS (rsDMAS) [26] were successfully developed to improve the imaging quality of 
DMAS. In addition, the DMAS has been studied to improve active contour segmenta-
tion in ultrafast ultrasound imaging [27] and improve contrast, resolution, and signal-
to-clutter ratio by expanding the two-dimensional summations to four-dimensional 
summations [28]. Though effective in improving the resolution and contrast, the point 
detection of SLSC is high only when the channel signal-to-noise ratio (SNR) is low [29], 
and SLSC and DMAS both tend to generate dark-region artifacts beside hyperechoic 
point-like targets.

Recently, we introduced the covariance matrix-based statistical beamforming (CMSB) 
[30] for medical ultrasound imaging to reduce sidelobes and incoherent clutter and 
noise. The CMSB estimates adaptive weights for coherent summation on a modi-
fied covariance matrix estimated using adaptive spatial smoothing, rotary averaging, 
and diagonal reducing using the mean-to-standard-deviation ratio (MSR). Improved 
resolution and contrast over conventional DAS have been demonstrated. Therefore, 
we hypothesize that an appropriate integration of CMSB and MV has the potential to 
improve the contrast and resolution of MV.

In this paper, we proposed a new adaptive weighting approach for MV beamformer 
based on CMSB to enhance the imaging performance. The proposed method estimates 
the MSR of a modified covariance matrix reconstructed by adaptive spatial smooth-
ing, rotary averaging, and diagonal reducing. Furthermore, we adaptively determine the 
diagonal reducing load based on the aperture coherence with the aim to further preserve 
speckle and enhance detection of anechoic and hypoechoic cysts. Simulation, experi-
mental, in vivo rat mammary tumor, and human heart studies were conducted to vali-
date the performance of the proposed method.

The rest of this paper is organized as follows. The results are given in “Results” section. 
We discuss on the proposed method in “Discussion” section, and draw conclusions in 
“Conclusion” section. In “Methods” section, we briefly introduce the data model of syn-
thetic aperture imaging, DAS, MV, and the proposed method in detail, and present the 
simulation, experimental, and in vivo datasets as well as evaluating metrics.

Results
Simulation results

Figure 1 shows simulated tissue-mimicking phantom images reconstructed using differ-
ent methods. The noise and artifacts inside the cyst target can be clearly seen in DAS and 
MV images. It can be seen that ESBMV image shows improved contrast with reduced 
noise inside the cyst, compared with MV. GCF-MV image shows improved contrast 
compared with MV image, but black-spot artifacts are introduced, leading to decreased 
speckle intensity. CMSF-MV and CMSAW-MV images show improved contrast over 
MV image. Besides, the background speckle pattern in CMSAW-MV image is smoother 
than that in CMSF-MV image, indicating a higher speckle retaining performance.
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Figure 2 plots the lateral variations through the point target at 24 mm depth in simu-
lated images. We can see that MV provides a narrower mainlobe width compared with 
DAS. ESBMV and GCF-MV have nearly the same mainlobe width in comparison with 
MV, indicating no resolution improvement. Moreover, CMSF-MV and CMSAW-MV 
both obtain the narrowest mainlobe width, which indicates the improved resolution 
over MV.

Table 1 lists FWHM, CR, gCNR, and sSNR of simulated images formed using differ-
ent methods. Compared with MV, ESBMV improves the contrast by 37.5%. Although 
GCF-MV provides contrast improvement of 51.6% over MV, it retains the resolution 
and decreases the gCNR and sSNR by 13.1% and 13.0%, respectively. CMSF-MV and 
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Fig. 1 Simulated tissue-mimicking phantom images reconstructed by a DAS, b MV, c ESBMV, d GCF-MV, e 
CMSF-MV, and f CMSAW-MV. All images are shown in a 60-dB dynamic range
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Fig. 2 Lateral variations through the point target at 24 mm depth in simulated images reconstructed by 
different methods
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CMSAW-MV improve the average resolution by 38.7% compared with MV. CMSAW-
MV achieves improvements of 59.4%, 11.4%, and 14.5% in CR, gCNR, and sSNR. This 
indicates that the proposed CMSAW-MV enhances the imaging performance in terms 
of resolution, contrast of anechoic cyst, and speckle statistics over MV.

Experimental results

Figure 3 shows experimental phantom images reconstructed from the dataset geabr_0 
using different methods. We can see that MV image shows improved resolution and 
degraded contrast compared with DAS image. Although ESBMV image shows improved 
contrast over MV image, dark-region artifacts appears visually beside hyperechoic 
targets. GCF-MV image shows improved contrast compared with MV image, but the 
speckle intensity degrades and the variations in speckle regions at all imaging depths 
are larger. As seen from Fig.  3(e)-(f ), CMSF-MV and CMSAW-MV improve the con-
trast over MV while simultaneously enhance the intensity and smoothness of the speckle 
pattern. Compared with CMSF-MV image, CMSAW-MV image shows smoother 
speckle pattern and improved speckle intensity. It should be noted that CMSF-MV and 
CMSAW-MV images show degraded visualization of the hyperechoic cyst in compari-
son with MV image, indicating a degraded contrast performance for hyperechoic cyst.

Figure 4 plots the lateral variations through the point target located at ( x = 1.8 mm, 
z = 75.9 mm) in the experimental images. We can see that MV obtains a narrower 
mainlobe compared with DAS, and ESBMV and GCF-MV obtain nearly the same main-
lobe width in comparison with MV. In addition, CMSF-MV and CMSAW-MV obtain 
the narrowest mainlobe width, and this indicates the improved resolution.

Lateral FWHM, CR, gCNR, and sSNR of experimental images formed using differ-
ent methods are listed in Table 2. The average FWHM was estimated using the three 
point targets at various depths. It can be found that DAS obtains the worst resolution, 
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Fig. 3 Experimental tissue-mimicking phantom images reconstructed from the dataset geabr_0 by a DAS, b 
MV, c ESBMV, d GCF-MV, e CMSF-MV, and f CMSAW-MV. All images are shown in a 60-dB dynamic range
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but its sSNR is higher than that of MV, ESBMV, GCF-MV, and CMSF-MV. In con-
trast, MV significantly improves the resolution, but provides lower contrast, gCNR, 
and sSNR. ESBMV mainly improves the contrast of MV. Moreover, GCF-MV obtains 
the same resolution and improves the average CR by 105.7% and 9.6% for anechoic 
cysts and hyperechoic cyst, respectively, compared with MV, but its gCNR for ane-
choic cysts and sSNR degrade. In comparison with MV, CMSF-MV obtains improve-
ments of 21.3%, 107.6%, and 89.2% in resolution, average CR and gCNR for anechoic 
cysts, respectively, whereas the sSNR is 17.9% lower than that of MV. In addition, 
CMSAW-MV achieves improvements of 21.3%, 115.9%, and 138.2% in resolution, 
average CR and gCNR for anechoic cysts, but the average sSNR degrades by 2.2%. 
Note that the proposed CMSF-MV and CMSAW-MV degrade the contrast for hyper-
echoic cyst compared with MV.

Figure  5 shows the experimental phantom images reconstructed from the dataset 
ats using different methods. We can see that ESBMV and GCF-MV both improve the 
contrast of anechoic cysts. The dark-region artifacts appear beside point targets in 
ESBMV image, and the speckle intensity at the large depth degrades significantly in 
GCF-MV image. In addition, CMSF-MV and CMSAW-MV obtain improved contrast 
for anechoic and hypoechoic targets in comparison with MV, and at the same time 
retain the speckle intensity at the large depth.

Table  3 lists the CR, gCNR, and sSNR of anechoic, hypoechoic, and hyperechoic 
cysts at depths of 22, 114.5, and 39.2 mm in phantom experimental images formed 
from dataset ats using different methods. Compared with MV, GCF-MV improves 
contrast improvements of 62.7%, 100.0%, and 9.6% for anechoic, hypoechoic, and 
hyperechoic cysts, respectively. In comparison with MV, CMSF-MV obtains contrast 
improvements of 69.1% and 89.1% for anechoic and hypoechoic cysts, respectively, 
but degrades the contrast by 12.8% for hyperechoic cyst. CMSAW-MV improves the 
contrast by 76.8% and 113.0% for anechoic and hypoechoic cysts, respectively, over 
MV, and 8.7% and 6.5% for anechoic and hypoechoic cysts, respectively, over GCF-
MV. However, the contrast for hyperechoic cyst obtained by CMSAW-MV degrades 
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Fig. 4 Lateral variations through the point target located at ( x = 1.8 mm, z = 75.9 mm) in phantom 
experimental images reconstructed by different methods
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by 12.7% compared with MV. In addition, CMSAW-MV obtains the highest gCNR for 
anechoic and hypoechoic targets among all methods.

In vivo rat mammary tumor

Figure 6 shows the rat mammary tumor images reconstructed using different methods, 
and Table  4 lists CR, gCNR, and sSNR obtained by different methods. These metrics 
were calculated using the regions indicated by the green and yellow boxes depicted in 
Fig. 6(a).

ESBMV provides improved contrast compared with MV, but damages the tissue tex-
ture. Besides, GCF-MV reduces clutter and noise compared with MV but suppresses the 
background tissue. CMSF-MV and CMSAW-MV both improve the contrast and pre-
serve the tissue compared with GCF-MV. In addition, CMSAW-MV provides a better 
smoothed tissue compared with CMSF-MV, and achieves the best detection of hypo-
echoic masses inside the tumor. ESBMV obtains lower gCNR and sSNR compared 
with MV. GCF-MV improves the CR by 74.0% over MV, but the gCNR and sSNR are 
decreased by 31.9% and 5.4%, respectively. Compared to MV, CMSF-MV improves the 
contrast, gCNR, and sSNR by 69.6%, 7.2%, and 20.3%, respectively. CMSAW-MV pro-
vides improvements of 6.0%, 14.9%, and 31.5% in CR, gCNR, and sSNR over CMSF-MV, 
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Fig. 5 Phantom experimental images reconstructed from the dataset ats by a DAS, b MV, c ESBMV, d 
GCF-MV, e CMSF-MV, and f CMSAW-MV. All images are shown in a 60-dB dynamic range
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respectively, showing enhanced performance in improving contrast and preserving tis-
sue texture.

In vivo human heart

The in  vivo human heart images reconstructed using different methods are shown in 
Fig. 7. The CR, gCNR, and sSNR were calculated to evaluate noise suppression and tis-
sue preservation performances of the proposed method and are listed in Table 5. These 
metrics were calculated using the regions indicated by the green and yellow boxes 
depicted in Fig.  7a. As seen in Fig.  7b, MV image shows higher noise level compared 
with DAS image. ESBMV image also shows the background noise, and the tissue is 
removed to some extent. Compared with MV image, GCF-MV image shows obviously 
reduced background noise. Additionally, CMSF-MV and CMSAW-MV images show 
significantly reduced noise compared with MV, and enhanced tissue preservation over 
GCF-MV image.

As illustrated in Table 5, MV provides a degradation of 3.2 dB in contrast compared 
with DAS. ESBMV provides degraded contrast, gCNR, and sSNR compared with MV. 
It should be noted that this is not consistent with the results in simulation, phan-
tom experimental, and rat mammary tumor studies. Compared with MV, GCF-MV 
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Fig. 6 Images of the rat mammary tumor reconstructed by a DAS, b MV, c ESBMV, d GCF-MV, e CMSF-MV, 
and f CMSAW-MV. All images are shown in a 50-dB dynamic range
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improves the contrast by 33.0% but obtains degradation of 32.1% and 30.1% in gCNR 
and sSNR, respectively. In addition, CMSF-MV improves the contrast and gCNR by 
27.9% and 4.8%, respectively, over MV, whereas the obtained sSNR is 2.7% lower than 
that obtained by MV. Compared to CMSF-MV, CMSAW-MV obtains improvements 
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Fig. 7 Images of the human heart reconstructed by a DAS, b MV, c ESBMV, d GCF-MV, e CMSF-MV, and f 
CMSAW-MV. All images are shown in a dynamic range from -60 dB to -15 dB
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of 7.2%, 9.1%, and 20.2% in contrast, gCNR, and sSNR, respectively. This indicates 
that CMSAW-MV significantly improves the contrast, gCNR, and sSNR compared to 
MV. The human heart results show that the proposed methods are well suitable for 
tissue imaging.

Discussion
The novelty of this work is that we introduce an adaptive weighting approach based on 
CMSB to address the contrast issues of the MV beamformer, and improve resolution as 
well. From this, aperture coherence based adaptive diagonal reducing is introduced with 
the aim to improve the speckle preservation. We applied the proposed method on the 
simulated, experimental, in  vivo rat mammary tumor, and human heart datasets. The 
results all confirm the effectiveness of the proposed CMSF-MV and CMSAW-MV in 
enhancing ultrasound image quality. We discuss the results in the following in detail.

The simulation and phantom experimental results indicate that the proposed CMSF-
MV and CMSAW-MV both obviously enhance the resolution and contrast perfor-
mances of MV, leading to a higher contrast of MV over that of ESBMV as illustrated 
in Tables  1, 2. It is noted that CMSF-MV obtains almost retained gCNR and slightly 
lower sSNR compared with MV in simulation, whereas it obtains improved gCNR and 
degraded sSNR in phantom experiments. In contrast to MV, the proposed CMSAW-MV 
achieves improvements in resolution, contrast, gCNR, and sSNR in both simulation and 
experiment, showing comprehensive improvement in imaging performance.

The in  vivo rat mammary tumor and human heart studies also demonstrate the 
effectiveness of the proposed methods on improving the imaging performance of MV. 
According to Table 4, CMSF-MV and CMSAW-MV both improve the contrast, gCNR, 
and sSNR over MV, showing enhanced lesion detectability and detection of hypoechoic 
mass in the tumor region at the depth of 45 mm. Besides, the proposed CMSF-MV and 
CMSAW-MV enhance the visualization of heart tissue as illustrated in Table  5. This 
indicates that the proposed methods are suitable for tissue imaging focused at detecting 
lesion (e.g., breast imaging).

It is worth noticing that MV introduces background noise in the human heart study as 
seen in Fig. 7b, and ESBMV cannot reduce the noise effectively (Fig. 7c). This illustrates 
that MV has a poor ability to reduce noise in in vivo heart imaging.

Compared to CMSF-MV, CMSAW-MV provides higher imaging performance in 
terms of image contrast and speckle smoothness. This is owing to the adaptive selection 
of the diagonal reducing factor δ based on the aperture coherence. It is worth mention-
ing that the resolution, contrast, lesion detection, and speckle statistics of the MV beam-
forming are all significantly enhanced through the CMSAW weighting.

Although CMSAW-MV obtains a significant improvement in sSNR over MV in simu-
lation, in vivo rat mammary tumor, and human heart studies, it provides a lower sSNR 
at the depth of 88 mm in phantom experiment. This is likely because the amplitude 
standard deviation used for the selection of subarray length is susceptible to the echo 
signals with low SNR from a large imaging depth, which causes degradation in retain-
ing speckle signals. However, the combination of the proposed CMSAW and the modi-
fied MV with adaptive spatial smoothing [19], which significantly improves the speckle 
statistics, has the potential to overcome this problem. Another limitation of CMSF-MV 
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and CMSAW-MV is the degradation of imaging on hyperechoic targets. As seen from 
Fig.  3, the contrast for hyperechoic cyst in CMSF-MV and CMSAW-MV degrades, 
which is 19.5% and 32.0% lower than that of MV. This is likely because the dynamic 
subarray lengths for hyperechoic region tend to be small due to the off-axis scattering. 
Hence, a part of small weight values are generated for hyperechoic signals, which leads 
to degraded contrast for hyperechoic targets.

As the proposed CMSAW for MV takes into account the speckle preservation per-
formance, it is suitable for tissue imaging. Furthermore, the CMSAW can be extended 
using modified MV methods to further improve the image quality, and this will be stud-
ied in the future. It should be noted that the proposed CMSAW has the potential to be 
combined with conventional DAS beamforming and other advanced ultrasound beam-
forming methods, for example, DMAS and multi-covariate imaging of sub-resolution 
targets (MIST) [31], to improve the resolution.

Consider a linear transducer with N elements, the computational complexity of the 
standard MV beamforming is quite high because of the inversion of the covariance 
matrix, which is O(L3) . There are several ways to address this issue. On one hand, low 
complexity MV beamformers [32, 33] can be implemented to reduce the computational 
complexity. On the other hand, the implementation of MV on graphics processing unit 
(GPU) [34, 35] can be utilized to handle the large computational load and achieved real-
time calculation. Furthermore, the neural network MobileNetV2 can be used to speed 
up MV beamforming by reducing the number of parameters and computational com-
plexity [36]. The spatial smoothing for estimation of covariance matrix in CMSF and 
CMSAW requires a computational complexity of O(L

′2
) . The dynamic selections of 

dynamic subarray length L′ and diagonal reducing factor δac require a computational 
complexity of O(N), and rotary averaging, diagonal reducing, and estimation of MSR on 
the modified covariance matrix require a computational complexity of O(L

′2
) . Since L′ is 

typically less than or equal to N/2, the computational complexity of CMSF and CMSAW 
is about O(N 2) . Therefore, the proposed CMSF-MV and CMSAW have the potential to 
be implemented in real time since MV with higher computational complexity has been 
successfully implemented in real time with GPU .

Conclusion
We have proposed a novel adaptive weighting approach for MV beamformer based on 
CMSB to improve the imaging performance in STA ultrasound imaging. The proposed 
method was implemented and validated using simulated, experimental, and in vivo data. 
These results demonstrate the effectiveness of the proposed method in improving reso-
lution, contrast, and lesion detection of the MV beamformer. To conclude, the proposed 
approaches can provide significantly improved image quality with acceptable increased 
computational load. Besides, the proposed approaches have the potential to be imple-
mented in real time.

Methods
Data model of synthetic aperture imaging

The synthetic transmit aperture (STA) ultrasound imaging as an ultrasound imaging 
modality, can achieve two-way focusing, and thus obtains a high resolution [37]. We 
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used the STA imaging as the imaging mode for evaluating the imaging performance of 
ultrasound beamformers in this study. In STA imaging, channel signals are acquired by 
insonifying a phantom using an un-focused spherical wave using only one element. Con-
sider a linear transducer array with N elements used to transmit and receive. After the 
channel signals at imaging point p are delay-compensated, a two-dimensional full SA 
data matrix is given by

Through focusing in receive and transmit apertures using conventional DAS beamform-
ing, we obtain the final high-resolution output as

where p is the index of imaging point, and xij(p) represents the signal sample received 
by the jth element in the receiving array on ith emission at the imaging point p after 
delay compensation. x(p) = [x1(p), x2(p), ..., xN (p)]

T is the receive aperture synthesized 
output. wj and wi represent the predefined weight for jth reception and ith transmission, 
respectively.

In this study, the delay-compensated channel signals are first beamformed in the 
receive aperture using the DAS beamforming, and the receive-synthesized data are 
obtained. Then, adaptive beamforming methods are applied on the receive-synthesized 
data to generate the beamformed output.

It should be noted that the f-number and apodization window are important for DAS 
beamforming to generate an optimum image quality in resolution and contrast [38]. 
Therefore, the f-number and apodization should be appropriately chosen to obtain an 
optimum DAS image.

Minimum variance beamforming

The MV beamformer can significantly improve the resolution of ultrasound image by 
updating a set of apodization weights for each imaging point in the image. The weight 
vector is obtained by minimizing the power of the beamformer output under the con-
straint that the desired signal scattered from the imaging point is passed without 
distortion.

In practical applications, the covariance matrix is unavailable and usually estimated 
with the aperture data. To get a good estimate of covariance matrix, spatial smoothing 
and temporal smoothing techniques are suggested to be applied [2]. Then, the covari-
ance matrix RMV(p) can be estimated as follows:

(1)X(p) =




x1,1(p) x1,2(p) · · · x1,N (p)

x2,1(p) x2,2(p) · · · x2,N (p)
...

...
. . .

...

xN ,1(p) xN ,2(p) · · · xN ,N (p).




(2)YDAS(p) =

N∑

i=1

wi

N∑

j=1

wjxij(p) =

N∑

i=1

wixi(p),

(3)RMV(p) =

∑K
k=−K

∑N−L+1
l=1 xl(p+ k)xHl (p+ k)

(2K + 1)(N − L+ 1)
,
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where L is the subarray length, and 2K + 1 is the number of axial imaging points 
used for temporal smoothing. (·)H stands for the conjugate transpose, and 
xl = [xl , xl+1, ...xl+L−1]

T represents the lth subarray with a length of L. Note that, 
the index of imaging point p has been removed for simplicity in notation, such that 
RMV = RMV(p) and xl = xl(p).

To ensure the estimation robustness, the diagonal loading (DL) is applied on RMV , 
in which a constant is added into the diagonal elements of the covariance before 
estimating [1]. The diagonal-loaded covariance matrix is calculated as

where I is an L× L identity matrix and ε is the diagonal loading factor. The ε is set to △ 
times the power ratio of added spatial noise to received signal, that is ε = △× trace{R} , 
where △ is typically less than 1/L to ensure a well-conditioned covariance matrix [2].

The optimum weight vector of MV is obtained as

where a represents the directional vector, and (·)H donates the conjugate transpose. 
Since the data have been focused and delayed, a is a column vector of ones [1].

The beamformed output of MV is finally given as

Eigenspace‑based MV

For eigenspace-based MV (ESBMV) beamformer, the covariance matrix R̂MV from 
MV solution is first decomposed to the signal subspace and noise subspace as

where �s = diag(�1, ..., �j) , �n = diag(�j+1, ..., �L) , and �j is the eigen value of the matrix 
R̂MV . �1 ≥ �2 ≥ . . . ≥ �L are the eigenvalues in descending order. The signal subspace 
Es = [e1, ..., ej] , and the noise subspace En = [ej+1, ..., eL].

The eigen vector corresponding to �j is used to construct the signal subspace Es , if 
�j ≥ γ �max , where γ  is the threshold of eigenvalues and �max is the largest eigenvalue. 
The weight vector of ESBMV is then obtained by projecting the MV weight vector 
into the signal subspace

The beamformed output of ESBMV can be obtained according to (6) and (8).

(4)R̂MV = RMV + εI,

(5)wMV =
R̂
−1
MVa

aH R̂
−1
MVa

,

(6)YMV =
1

N − L+ 1

N−L+1∑

l=1

w
H
MVxl .

(7)R̂MV =

L∑

j=1

�ieje
H
j = Es�sE

H
s + En�nE

H
n ,

(8)wESBMV = EsE
H
s wMV.
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Generalized coherence factor

The generalized coherence factor (GCF) [18] is defined as the ratio of the spectral energy 
in a pre-specified low-frequency region (LFR) to the total energy. The GCF over the 
aperture at a given range is expressed as

where s(k) is the Fourier transform of x , M0 is the cut-off frequency, and 
k ∈ [−N

2 ,−
N
2 + 1, ..., N2 − 1] is the spatial frequency index.

Proposed method

We first form the CMSB to an adaptive weighting approach for MV, and then introduce 
adaptive diagonal reducing to the formulated weighting approach to further improve the 
imaging performance.

Covariance matrix‑based statistical factor for MV

In CMSB, the reciprocals of the amplitude standard deviations (ASD) of the aperture 
data from all imaging points are normalized and square rooted to dynamically determine 
the subarray length for covariance estimation. The ASD of the aperture data is given as

where x̄ = 1
N

∑N
n=1 xn . The normalized reciprocals of the ASD from all imaging points 

are

where ∐(·) is the normalization operation. The dynamic subarray length L′ for imaging 
point p is selected as

where ⌊·⌋ represents rounding down to the nearest integer, and Lmax represents the maxi-
mum subarray length. L′ is set to 2 when L′

≤ 2 to guarantee a matrix form.
The covariance matrix R estimated using the dynamic subarray length L′ is then given 

as

where x̂l = [xl , xl+1, ..., xl+L
′
−1]

T.
The estimated R is first rotary averaged and then diagonal reduced to reconstruct a 

modified covariance matrix. The rotary averaging on R is given as

(9)WGCF =

∑
k∈[−M0,M0]

|s(k)|2

∑N
2 −1

k=−N
2

|s(k)|2
,

(10)σ =

√√√√ 1

N

N∑

n=1

(xn − x̄)2,

(11)σ
′ = ∐(σ− 1

3 ),

(12)L
′

= ⌊σ ′ · Lmax⌋,

(13)R =
1

N − L
′
+ 1

N−L
′
+1∑

l=1

x̂l x̂
H
l ,
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The diagonal reducing is then performed on the rotary-averaged covariance matrix as

where δ is the diagonal reducing factor.
We here introduce an adaptive weighting approach for MV beamformer to improve 

the imaging performance. The pixel-based adaptive weighting named as covariance 
matrix-based statistical factor (CMSF) is defined as the mean-to-standard-deviation 
ratio (MSR) of the modified covariance matrix,

where E[R̂] and Std[R̂] are the mean and standard deviation of the coavariance matrix R̂ , 
respectively, wihich are calculated as

The output of the proposed CMSF-weighted MV (CMSF-MV) is obtained according to 
(6) and (16) as

In CMSF, the subarray lengths for strong off-axis clutter and incoherent noise are usually 
small and large, respectively; whereas, the subarray length for speckle signals is slightly 
smaller than that for coherent signals. Therefore, the estimated CMSF value for strong 
clutter is much lower than that of speckle signals and coherent signals, and this contrib-
utes to clutter suppression. Moreover, the CMSF value for incoherent noise is always 
very low, which contributes to reduce incoherent noise. Fig.  8 shows the weight vec-
tor with and without the proposed CMSF weighting in MV beamformer for mainlobe, 
speckle signals, strong off-axis clutter, and incoherent noise. It is seen that the CMSF-
weighted MV weight vector for mainlobe and speckle retains to some extent compared 
with the MV weight vector, while that for strong off-axis clutter and incoherent noise is 
degraded dramatically. Thus, CMSF has the potential to reduce strong off-axis clutter 
and incoherent noise, thus resulting in improved resolution and contrast.

Covariance matrix‑based statistical adaptive weighting for MV

For CMSF weighting, the resolution and speckle preservation will enhance as the 
diagonal reducing factor δ increases, whereas the contrast degrades. We hypothesize 
that selecting the pixel-based δ adaptively has the potential to overcome the trade-
off between contrast and speckle preservation. To this end, we introduce an adaptive 

(14)R̂ =
1

4
(R + JRT + JRJ + RT J ).

(15)R̂ = R̂ − δR̂ · I ,

(16)WCMSF =
E[R̂]

Std[R̂]
,

(17)

E[R̂] =
1

L
′2

L
′

∑

k=1

L
′

∑

n=1

R̂k ,n,

Std[R̂] =

√√√√√ 1

L
′2

L
′∑

k=1

L
′∑

n=1

(R̂k ,n − E[R̂])2.

(18)YCMSF−MV = WCMSF × YMV.
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diagonal reducing approach based on the aperture coherence to improve the imaging 
performance.

The CF weight is calculated by estimating the coherence of echo signals as

The value of CF equals 1 when signals are perfectly coherent, whereas it falls to 0 in the 
case of incoherent noise when signals are completely misaligned with each other. CF can 
effectively suppress off-axis signals but it tends to oversuppress incoherent speckle sig-
nals. Nevertheless, the intensity and smoothness of speckle texture generated by CF can 
be improved by using the normalized reciprocal of ASD (i.e., σ ′ ) to adjust the value of 
CF.

We propose to adaptively select the diagonal reducing factor using WCF and σ ′ for each 
imaging point as

where δmax is the maximum diagonal reducing factor, and σ ′ is the normalized reciprocal 
of the amplitude standard deviation from (11). Then the value of δac is in the range of [0, 
δmax ] according to (20).

(19)WCF =
|
∑N

n=1 xn|
2

N
∑N

n=1 |xn|
2
.

(20)δac = W σ ′

CF × δmax,

(a)

MV weight vector
CMSF-weighted MV weight vector

(b)

MV weight vector
CMSF-weighted MV weight vector

(c)

MV weight vector
CMSF-weighted MV weight vector

(d)

MV weight vector
CMSF-weighted MV weight vector

Fig. 8 The weight vector with and without CMSF weighting in MV beamformer for a mainlobe, b speckle 
signals, c strong off-axis clutter, and d incoherent noise
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Fig. 9 Workflow for the proposed CMSF-MV and CMSAW-MV

Table 1 Average FWHM, CR, gCNR, and sSNR of simulated images formed using different methods

Methods FWHM (mm) CR (dB)   gCNR   sSNR

DAS 0.86 − 29.4         0.88      1.87

MV 0.31 − 32.0         0.84      1.77

ESBMV 0.30 − 44.6         0.85      1.82

GCF-MV 0.30 − 48.5         0.73      1.54

CMSF-MV 0.19 − 51.0         0.82      1.62

CMSAW-MV 0.20 − 51.0         0.93      2.03

Table 2 Lateral FWHM, CR, gCNR, and sSNR of three anechoic cyst targets and one hyperechoic 
target at depths of 48, 68, 88, and 48 mm, respectively, of experimental images formed from dataset 
geabr_0 using different methods

Methods FWHM (mm) CR (dB)                  gCNR                        sSNR

DAS 2.38 − 19.4/− 21.7/− 17.0/11.5   0.42/0.75/0.50/0.80      1.95/2.09/2.05/1.84

MV 0.47 − 17.3/− 18.6/ - 14.7/9.42   0.19/0.49/0.34/0.40      1.70/1.80/1.99/1.77

ESBMV 0.49 − 28.5/− 32.2/− 23.5/8.61   0.17/0.48/0.35/0.37      1.73/1.79/1.92/1.80

GCF-MV 0.47 − 32.0/− 38.8/− 33.2/11.4   0.10/0.31/0.10/0.55      1.32/1.41/1.19/1.40

CMSF-MV 0.37 − 31.8/− 38.5/− 34.8/7.58   0.55/0.79/0.59/0.39      1.48/1.64/1.39/1.57

CMSAW-MV 0.37 −33.9/− 39.5/− 35.9/6.41   0.77/0.94/0.72/0.41      1.82/2.07/1.47/1.84
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The adaptively diagonal reduced covariance matrix using the pixel-based δac is then 
given as

The pixel-based weight value of the proposed CMSAW is obtained by averaging the 
MSR of the R̃ as

where E[R̃] and Std[R̃] are calculated according to (17) using R̃.
For mainlobe and incoherent noise, the estimated CF values are large and low, 

respectively, whereas the estimated normalized reciprocal of ASDs are low and large, 
respectively. As a result, the selected diagonal reducing factor δac for mainlobe and 

(21)R̃ = R̂ − δacR̂ · I.

(22)WCMSAW =
E[R̃]

Std[R̃]
,

Table 3 CR, gCNR, and sSNR of anechoic, hypoechoic, and hyperechoic cysts at depths of 22, 114.5, 
and 39.2 mm, respectively, in phantom experimental images formed from dataset ats using different 
methods

Methods    CR (dB)             gCNR                   sSNR

DAS − 23.9/− 6.6/10.9 0.81/0.24/0.75 2.16/1.88/2.06

MV − 22.0/− 4.6/9.4 0.93/0.37/0.66 2.06/1.95/2.01

ESBMV − 31.6/− 3.5/8.9 0.93/0.24/0.59 1.99/1.51/1.89

GCF-MV − 35.8/− 9.2/10.3 0.85/0.25/0.62 1.75/1.54/1.60

CMSF-MV − 37.2/− 8.7/8.2 0.95/0.43/0.60 1.97/1.36/1.74

CMSAW-MV − 38.9/− 9.8/8.0 0.98/0.46/0.63 2.36/1.36/1.96

Table 4 CR, gCNR, and sSNR of rat mammary tumor images formed using different methods

Methods CR (dB)       gCNR    sSNR

DAS − 25.6         0.80      0.69

MV − 22.7         0.69      0.74

ESBMV − 24.3         0.42      0.74

GCF-MV − 39.5         0.47      0.70

CMSF-MV − 38.5         0.74      0.89

CMSAW-MV − 40.8         0.85      1.17

Table 5 CR, gCNR, and sSNR of human heart images formed using different methods

Methods CR (dB)   gCNR   sSNR

DAS − 34.7         0.76      1.62

MV − 31.5         0.84      1.83

ESBMV − 29.6         0.65      1.36

GCF-MV − 41.9         0.57      1.28

CMSF-MV − 40.3         0.88      1.78

CMSAW-MV − 43.2         0.96      2.14
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incoherent noise are large and small. The estimated MSR value for incoherent noise 
is very small with a large subarray length and a low δ , which leads to reduction of 
incoherent noise. Besides, the selected δ for speckle using Equation (23) is larger and 
lower than that for incoherent noise and mainlobe, respectively. According to the 
MSR for various targets as a function of δ in [30], the estimated MSR for speckle is 
close to or much larger than that for mainlobe, which can be seen in Fig. 9. This will 
lead to further preservation of speckle signals. In addition, the reduction of strong 
off-axis clutter remains because the smallest subarray length and a large δ generates a 
much lower MSR value compared to that for mainlobe. Therefore, the adaptive diago-
nal reducing based on aperture coherence has the potential for speckle preservation 
and noise reduction.

The output of CMSAW-weighted MV (CMSAW-MV) is finally obtained according to 
(6) and (22) as

The diagram of the proposed methods to form an image is displayed in Fig.  9, and 
the brief implementation summary of the procedures for the proposed methods is as 
follows: 

1. Calculate and compensate time delays to channel signals for each imaging point;
2. Synthesize the delayed channel data in receive aperture by directly summing, and get 

the receive-synthesized data;
3. Normalize the reciprocals of amplitude standard deviations from all imaging points 

using (11);
4. Estimate the covariance matrix with adaptive subarray length using (12)-(13), and 

then perform rotary averaging using (14);
5. Calculate the dynamic diagonal reducing factor δac using (20);
6. Perform diagonal reducing with a constant δ using (15) and a dynamic δac using (21), 

respectively, and get R̂ and R̃;
7. Calculate the CMSF and CMSAW weight values using (16) and (22);
8. Use the CMSF value and CMSAW value to weight the MV beamformed output, 

respectively, using (18) and (23), and obtain the final CMSF-MV and CMSAW-MV 
beamformed outputs.

Simulation and experimental setups

We evaluated the imaging performance of the proposed methods through simulation 
and experimental studies. The datasets were acquired using the synthetic aperture ultra-
sound imaging mode.

Simulation study

Simulation was performed using the Field II program [39, 40] to evaluate the imag-
ing performance of the proposed methods. In the simulation study, a tissue-
mimicking phantom with three point targets and a 5 mm diameter cyst target in a 
speckle-generating background was designed. The phantom with a volume size of 

(23)YCMSAW−MV = WCMSAW × YMV.
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22 mm × 0.5 mm × 15 mm was simulated by randomly distributing random ampli-
tude scatters with a zero-mean Gaussian distribution, and the density of the phantom 
is 40 scatters per resolution cell. The SA dataset was acquired with a 15.44 mm linear 
array probe with 64 elements, 0.24 mm spacing with center frequency of 3.33 MHz. 
The sampling frequency was 40 MHz, and the speed of sound (SOS) was 1540 m/s. 
After the echo data were obtained, a Gaussian distributed noise with an SNR of 10 dB 
was added to the channel data prior to beamforming.

Phantom study

To validate the results from the simulation, we applied the proposed methods to 
experimental dataset. The complete dataset geabr_0 was originally provided by Bio-
medical Ultrasound Laboratory (BUL) at the University of Michigan, available at 
https://www.k-space.org/temp/Ultrasound/. The SA dataset geabr_0 were acquired 
using an experimental system with a 64-element, 0.24-mm pitch transducer array. The 
center frequency and sampling frequency were 3.33 MHz and 17.76 MHz, respec-
tively, and the SOS was 1500 m/s. A finite impulse response bandpass filter was used 
to filter the channel data to reduce noise prior to beamforming.

Additionally, a tissue-mimicking phantom dataset ats was used to evaluate the 
imaging performance of the proposed methods on hypoechoic and hyperechoic cysts. 
The dataset ats was acquired from a region with different imaging targets in an ATS 
Model 539 tissue-mimicking phantom [36]. The complete dataset rat_tumor was 
provided by the Bioacoustics Research Lab (BRL) at the University of Illinois, avail-
able at www. brl. uiuc. edu/ Proje cts/ phase_ aberr ation. php. The dataset was acquired 
with a 64-element and 0.315-mm pitch linear array excited at a 2.6-MHz center fre-
quency, and the sampling rate was 25 MHz. The SOS was assumed to be 1450 m/s. 
The channel data were bandpass filtered in time and dip filtered in space–time prior 
to beamforming.

In vivo studies

In addition, we evaluated the imaging performance of the proposed methods on the 
rat mammary tumor study to show its effectiveness. The complete dataset rat_tumor 
was also provided by the BRL, available at www. brl. uiuc. edu/ Proje cts/ phase_ aberr 
ation. php. The SA data were acquired from a rat mammary tumor with a 64-element 
and 0.315-mm pitch linear array excited at a 2.6 MHz center frequency. The sampling 
rate was 25 MHz, and the SOS was assumed to be 1500 m/s. The channel data were 
bandpass filtered in time and dip filtered in space–time prior to beamforming.

We also used a human heart dataset [5] to preliminary test and verify the feasibility of 
the proposed methods for heart imaging. The dataset was acquired using the Verasonics 
Vantage 256 system (Verasonics, Kirkland, WA, USA) with the Verasonics P4-2v 64-ele-
ment, 0.3-mm pitch, phased array probe transmitting with a center frequency at 3 MHz 
and sampled at 11.904 MHz. With the help of the recovery technique [41], we recovered 
the complete SA dataset from the focused transmit beams. The heart data in the par-
asternal view contain 50 frames, and the data in frame 15 were used in this study.

http://www.brl.uiuc.edu/Projects/phase_aberration.php
http://www.brl.uiuc.edu/Projects/phase_aberration.php
http://www.brl.uiuc.edu/Projects/phase_aberration.php
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Parameter settings in beamformers

In this study, the proposed CMSF-MV and CMSAW-MV were compared with DAS, 
MV, ESBMV, and GCF-weighted MV (GCF-MV). For DAS beamformer, the f-number 
was set to 0 in all studies and a rectangular window was applied to obtain a better reso-
lution in simulation and experimental phantom study using the dataset geabr_0, and a 
hamming window was applied to obtain a better contrast in other studies. The subar-
ray length L was set to N/2, △ was set to 0.1/L, and the number of axial imaging points 
2K + 1 was set to 9 in MV and ESBMV beamformers in all studies. The eigenvalue 
threshold γ in ESBMV was set to 0.5 in simulation and experimental studies, and it was 
set to 0.3 in rat mammary tumor study and 0.1 in the human heart study. The cut-off 
frequency M0 in GCF was set to 1 in all studies to achieve better speckle preservation as 
well as noise reduction. The δ in CMSF-MV and δmax in CMSAW-MV were both set to 
1 in simulation, experimental phantom study with dataset geabr_0, rat mammary tumor 
study, and human heart study, and were set to 0.5 in experimental phantom study with 
dataset ats.

Evaluation metrics

The resolution was measured by the lateral full-width at half-maximum (FWHM, −6 dB 
beam width) of a point target in the lateral distance. For cyst images, contrast ratio (CR) 
[20] was measured using

where µcyst and µbck are the mean values (before log-compression) in the cyst and 
speckle region, respectively.

The generalized contrast-to-noise ratio (gCNR) [42], which is robust against dynamic 
range transformations, was assessed to evaluate the lesion detectability in this study. The 
gCNR is defined as

where pcyst(x) and pbck(x) are the probability density functions (PDFs) of pixel intensity 
inside the cyst and speckle regions, respectively.

The speckle signal-to-noise ratio (sSNR) [20] was measured to evaluate the speckle 
quality. It is calculated as

where σbck is the standard deviation in the speckle region.
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