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ABSTRACT: Artificial intelligence algorithms have been increas-
ingly applied in drug development due to their efficiency and
effectiveness. Deep-learning-based drug repurposing can contribute
to the identification of novel therapeutic applications for drugs
with other indications. The current study used a trained deep-
learning model to screen an FDA-approved drug library for novel
COX-2 inhibitors. Reference COX-2 data sets, composed of active
and decoy compounds, were obtained from the DUD-E database.
To extract molecular features, compounds were subjected to
RDKit, a cheminformatic toolkit. GraphConvMol, a graph
convolutional network model from DeepChem, was applied to
obtain a predictive model from the DUD-E data sets. Then, the COX-2 inhibitory potential of the FDA-approved drugs was
predicted using the trained deep-learning model. Vismodegib, an anticancer agent that inhibits the hedgehog signaling pathway by
binding to smoothened, was predicted to inhibit COX-2. Noticeably, some compounds that exhibit high potential from the
prediction were known to be COX-2 inhibitors, indicating the prediction model’s liability. To confirm the COX-2 inhibition activity
of vismodegib, molecular docking was carried out with the reference compounds of the COX-2 inhibitor, celecoxib, and ibuprofen.
Furthermore, the experimental examination of COX-2 inhibition was also carried out using a cell culture study. Results showed that
vismodegib exhibited a highly comparable COX-2 inhibitory activity compared to celecoxib and ibuprofen. In conclusion, the deep-
learning model can efficiently improve the virtual screening of drugs, and vismodegib can be used as a novel COX-2 inhibitor.

■ INTRODUCTION
Drug repositioning is the process of finding new therapeutic
applications for already approved drugs for other medical
uses.1 It can significantly expedite the drug development
process, increase the value of existing drugs, and lead to new
treatments for diseases that currently have no effective
treatment options.2 Accordingly, drug repositioning is
becoming increasingly an important area of research in drug
development.
Computer-aided drug design (CADD) has emerged as an

increasingly valuable tool in the field of drug discovery and
development.3 Utilizing computational methods and software,
CADD enables efficient screening of large compound libraries,
offering a faster and more cost-effective alternative to
traditional experimental approaches.4 A key advantage of
CADD is its ability to rapidly screen a large number of
compounds, reducing the need for extensive laboratory testing,
as in traditional experimental studies, which can be time-
consuming and costly. By virtually screening a large number of
compounds, CADD helps identify potential candidates for
further synthesis and laboratory evaluation.5

Artificial intelligence is rapidly growing and holds immense
potential to revolutionize the drug development process.6

Deep learning (DL), which falls under the umbrella of artificial
intelligence, allows DL models to learn from data and make
predictions or decisions without the need for explicit
programming.7 DL is employed in drug development to
examine extensive data sets including genetic and clinical
information, enabling the identification of novel drug targets,
accurate prediction of drug efficacy, and optimization of drug
properties.8,9 One of the primary benefits of DL in drug
development is its ability to analyze large and complex data
sets.10 Traditional data analysis methods, such as manual
inspection and statistical approaches, are often time-consuming
and require substantial human effort. DL algorithms, on the
other hand, can quickly and efficiently analyze large amounts of
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data, identify patterns, and make predictions, greatly
accelerating the drug development process.11 Another benefit
of DL in drug development is its ability to predict the
effectiveness and toxicity of compounds.12 Through the
analysis of extensive data sets, DL algorithms can identify
patterns that are indicative of drug efficacy and toxicity,
allowing for the prediction of these properties prior to the
synthesis and laboratory testing of the drug. Therefore, the
application of DL in CADD can further significantly improve
the speed, efficiency, and success of the drug discovery and
development process, making it a valuable tool in modern drug
discovery research.
Cyclooxygenase 2 (COX-2), encoded by the prostaglandin-

endoperoxide synthase 2 (PTGS2) gene, is an enzyme that is

involved in various physiological and pathological processes,
such as inflammation and cancer. COX-2 catalyzes the
conversion of arachidonic acid into prostanoids such as
prostaglandins and thromboxanes. These prostanoids play
important roles in a variety of pathologic conditions.13,14

Diseases associated with aberrant activation of COX-2 include
various inflammatory conditions such as rheumatoid arthritis
and psoriasis. COX-2 has also been implicated in the
development and progression of certain types of cancers,
including colorectal, breast, and prostate cancer.15−17 In
addition, COX-2 has been associated with cardiovascular
disease, Alzheimer’s disease, and other conditions involving
chronic inflammation.18,19 Therefore, the present study focuses

Figure 1.Workflow of combining deep-learning, molecular docking, and experimental evaluation approaches for drug repositioning of novel COX-
2 inhibitors.

Figure 2. (A−C) Representative image of active and decoy compounds (A). Distribution of molecular weight (B) and LogP (C) values in active
and decoy compounds.
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on the development of novel COX-2 inhibitors through the
drug repositioning of FDA-approved drugs.
In the present study, a graph neural network algorithm-

based training with active and decoy COX-2 inhibitor data sets
was conducted, and screening of the FDA-approved drug
library was carried out to provide novel COX-2 inhibitors for
drug repositioning. Candidate compounds were then analyzed
through molecular docking analysis, and biological activity was
confirmed in RBL-2H3 cells to predict novel COX-2
inhibitors.

■ RESULTS AND DISCUSSION
The workflow of combining DL, molecular docking, and
experimental evaluation approaches for drug repositioning of
novel COX-2 inhibitors is predicted in Figure 1. Seven steps
were carried out in the present study, which includes data set
download from DUD-E database and preparation (1), graph
convolutional network model configuration (2), deep-learning
model training and evaluation (3), potential prediction of
FDA-approved drugs (4), molecular docking of highly
predicted drugs (5), and experimental validation of candidates
in cell culture study (6). Finally, result analysis (7) was carried
out to evaluate the potential repositioning of FDA-approved
drugs as novel COX-2 inhibitors.

COX-2 Active and Decoy Data Sets and Its
Preprocessing Using RDKit. The DUD-E (Database of
Useful Decoys: Enhanced) database is a freely available
database of benchmark sets of protein−ligand complexes. It
contains a collection of experimentally verified active
compounds, their affinities against various targets, and the
corresponding decoys, which are known to not bind to the
target. The decoys have similar physicochemical properties to
the active compounds but differ in their two-dimensional
topology.20 The DUD-E database has been widely used in the
development and benchmarking of computational docking
methods.21,22

The COX-2 data set in the DUD-E database (https://dude.
docking.org/targets/pgh2) comprises 444 experimentally
verified active compounds, which were clustered from a total
of 1,707 compounds, along with 23,150 decoy compounds.
Representative images of structures of active and decoy
compounds are depicted in Figure 2A. Compounds were

labeled as active and decoy in their legend. To better compare
the physicochemical properties of active and decoy com-
pounds, molecular features were calculated using RDKit, an
open-source software toolkit for chemoinformatics. No
noticeable difference in the distribution of molecular weight
and LogP values was observed in active and decoy compounds
(Figure 2B,C).

Deep-Learning Model Setup, Training, and Evalua-
tion. Deepchem is a free and open-source Python library for
DL in drug discovery and cheminformatics. It provides a wide
set of tools for handling molecular data and applying a variety
of deep-learning algorithms for tasks such as molecular
property prediction, ligand-based virtual screening, and
compound optimization.23,24 Among its various algorithms,
the present study utilized the GraphConvMol model to extract
key determinants differentiating active and decoy compounds
of the COX-2 data set. GraphConvMol is a molecular
featurization approach implemented in the DeepChem library.
It is a type of graph convolutional neural network that can take
in a molecular graph as input and output a fixed-sized
molecular representation vector. It creates a molecular graph
presentation by representing each atom as a node and each
covalent bond as an edge. It then applies multiple rounds of
message passing, where each atom sends a message containing
the features of the atom to its neighboring atoms. The
messages from the neighbors are aggregated, and the resulting
information is used to update the features of the current atoms.
The final molecule representation is created by summing the
hidden atom representations and applying feedforward neural
networks to this vector. The GraphConvMol approach
provides a way to learn molecular representations end-to-
end, making it a powerful tool for cheminformatics tasks, such
as molecular property prediction and drug discovery.25,26 In
the present study, the COX-2 data set was divided into
training, validation, and test sets at a ratio of 8:1:1, and then
subjected to the GraphConvMol model using cross-validation
with a fold of 5. To evaluate the accuracy of the model,
Matthews correlation coefficients (MCC) was used as a metric
given the nature of the current data set where the number of
decoy is much larger than the number of active compounds,
and that MCC has been reported to be suitable for unbalanced
data sets. The average MCC values of training and validation

Figure 3. (A, B) Matthews correlation coefficients (MCC) of training and validation sets in five cross-validation (A). Prediction of test set with the
trained model (B).
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sets in five cross-validations were 0.95 and 0.88, respectively
(Figure 3A). Given that the MCC value of 1 indicates that all
predictions are correct, the values of 0.95 and 0.88 indicate the
robustness of the prediction model. It is usually acceptable that
the MCC value of the test set is higher than that of the
validation set because the model is trained on the training set
and then validated on new and unseen data, which is a
validation data set. In addition, the MCC value changes in five
cross-validations indicated that the model is not overfitting
over the training (Figure 3A). To evaluate the performance of
the trained model on new and unseen data, a test set was
subjected to the trained model to make predictions. As shown
in Figure 3B, most decoy compounds were correctly predicted
as inactive (less than 0.5 in predicted activity) with only a small
fraction of compounds mispredicted as false positive. For
active compounds in the test set, a majority of active
compounds were correctly predicted as active (greater than
0.5 in predicted activity), with some compounds mispredicted
as false negative (Figure 3B). Although there may not be a
universal acceptance range for misprediction, it is generally
desirable for a prediction model to minimize the number of
false positives and false negatives. The numbers of false
negatives and false positives are considered not significant in
the present model. Compounds that were mispredicted as false
negatives and false positives are summarized in Table 1. The

label in the active column indicates 1 (active) and 0 (decoy) in
the test set, and values in neg and pos columns indicate the
predicted activity of the compounds (Table 1).

Prediction of COX-2 Inhibitory Potential from FDA-
Approved Drugs. The use of FDA-approved drugs for drug
repositioning has several benefits. Since FDA-approved drugs
have already gone through preclinical and clinical testing to
determine their safety, dosing, and pharmacokinetics, the drug
repositioning of FDA-approved drugs can have shorter
timelines, lower development costs, and higher likelihood of
success.
SMILES strings of FDA-approved drugs were subjected to

the trained model with the GraphConvMol algorithm of
DeepChem to predict the potential of the COX-2 inhibitory
activity. The trained model predicted the COX-2 inhibitory
activity of FDA-approved drugs in the range of 0 (no activity)
to 1 (highly active). The majority of the compounds were
predicted as inactive, whereas only small fractions of
compounds were predicted as active (Figure 4A). Representa-
tive structures of compounds, which were predicted as highly
active, were depicted with labels indicating their predicted
values (Figure 4B).
Noticeably, the majority of the top-ranked compounds were

known COX-2 inhibitors (Table 2), strongly indicating that
the present model is highly robust and reliable. Celecoxib,

Table 1. Compounds That Were Mispredicted as False Negative (Active 1) and False Positive (Active 0) and Their Prediction
Values

neg pos active SMILES

0.516292 0.483708 1 Clc4ccc(c3nn(c1cccccl)c2CCCCCc23)cc4
0.617401 0.382599 1 FC(F)(F)S(�O)(�O)Nc1ccncc1Sc2ccccc2
0.99782 0.00218 1 C[C@@]23C[C@H]1OC(�O)C(�C)[C@H]1C[C@H]2C(�C)C(�O)C�C3
0.859431 0.140569 1 OC(�O)c6ccc5OCc1ccccc1\C(�C\Cn3cnc4cc2OCOc2cc34)c5c6
0.996623 0.003377 1 Cc3ccc(CI)c(Nc1ccccc1c2nnc(NC#N)o2)c3CI
0.816444 0.183556 1 OC(�O)c5ccc(OC/C�C/Cn4c(�O)n(Cc1ccccc1)c(�O)n(C(c2ccccc2)c3ccccc3)c4�O)cc5
0.697728 0.302272 1 Cn3c(�O)oc4cc(c1 cm3(C(F)(F)F)nn1c2ccc(CI)cc2)ccc34
0.4373 0.5627 0 c1cc2c(cc1S(�O)(�O)N)[C@H]3C�CC[C@@H]3[C@@H](N2)c4cc(ccc4O)Br
0.499125 0.500876 0 O�C(O)C Oc1ccccc1[C@H]1Nc2ccccc2-c2nnc(SCc3ccc(CI)cc3)nc2O1

Figure 4. (A, B) Distribution of GraphConvMol prediction (A) and structures (B) of highly predicted compounds from FDA-approved drugs.
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etoricoxib, and valdecoxib are selective COX-2 inhibitors and
indomethacin, loxoprofen, ibuprofen, and ketoprofen are
nonselective COX-2 inhibitors. Besides COX-2 inhibitors,
some drugs with other medical indications were predicted as
possible COX-2 inhibitors. One of the compounds with high
potential is vismodegib, which is a medication used to treat
basal cell carcinoma, a common type of skin cancer. It works
by inhibiting a key signaling pathway in cells called the

hedgehog pathway, which is important for cell growth and
division.27,28 No association of COX-2 inhibition has been
found in the literature search for vismodegib.

Structural Analysis of the COX-2 Protein. COX-2
belongs to the prostaglandin G/H synthase family and is
known by several names including prostaglandin G/H synthase
2 (PGH2) and PTGS2.29 It is made up of 311 amino acids
forming a single chain (PDB ID: 5KIR). Loops, α-helices, and

Table 2. Detailed Information on Drugs That Were Predicted with High COX-2 Inhibitory Potential

SMILES neg pos drug name target/action

Cc1ccc(−c2cc(C(F)(F)F)nn2-c2ccc(S(N)(�O)�O)cc2)cc1 0.0001 0.9999 celecoxib selective COX-2 inhibitor
Nc1ccc(S(N)(�O)�O)cc1 0.0001 0.9999 sulfanilamide sulfonamide antibacterial
Cc1ccc(−c2ncc(CI)cc2−c2ccc(S(C)(�O)�O)cc2)cn1 0.0003 0.9997 etoricoxib selective COX-2 inhibitor
CS(�O)(�O)c1ccc(C(�O)Nc2ccc(Ct)c(−c3ccccn3)c2)c(CI)c1 0.0003 0.9997 vismodegib hedgehog pathway inhibitor,

anticancer
Cc1onc(−c2ccccc2)c1−c1ccc(S(N)(�O)�O)cc1 0.0003 0.9997 valdecoxib selective COX-2 inhibitor
NS(�O)(�O)c1ccc(C(�O)O)cc1 0.0008 0.9992 carzenide antispasmodic
NS(�O)(�O)c1ccccc1 0.0008 0.9992 benzenesulfonamide antibacterial
COc1cc(S(�O)(�O)[O−])ccc1O.[K+] 0.0014 0.9986 potassium guaiacolsulfonate expectorant
Cc1ccc(S(�O)(�O)O)cc1.O 0.0025 0.9975 p-toluenesulfonic acid

monohydrate
catalyst

O�S(�O)(O)c1ccc2nc(−c3ccccc3)[nH]c2c1 0.0028 0.9972 ensulizole sunscreen agent
COc1ccc2c(c1)c(CC(�O)O)c(C)n2C(�O)c1ccc(CI)cc1 0.0036 0.9964 indomethacin nonselective COX inhibitor
CC(C(�O)O)c1ccc(CC2CCCC2�O)cc1 0.0041 0.9958 loxoprofen nonselective COX inhibitor
CC(C)Cc1ccc(C(C)C(�O)O)cc1 0.0057 0.9943 ibuprofen nonselective COX inhibitor
CC(C(�O)O)c1cccc(C(�O)c2ccccc2)c1 0.0067 0.9933 ketoprofen nonselective COX inhibitor
CI.NCc1ccc(S(N)(�O)�O)cc1 0.0076 0.9924 mafenide hydrochloride antibacterial agent
CC(C(�O)O)c1ccc2c(c1)Cc1cccnc1O2 0.0078 0.9922 pranoprofen nonselective COX inhibitor
Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 0.0110 0.9890 2,6-di-tert-butyl-4-

methylphenol
antioxidant

CS(�O)(�O)Nc1ccc([N+](�O)[O−])cc1Oc1ccccc1 0.0149 0.9851 nimesulide selective COX-2 inhibitor
CCCCNcIcc(C(�O)O)cc(S(N)(�O)�O)c1Oc1ccccc1 0.0153 0.9847 bumetanide loop diuretic
O�S(�O)([O-])Oc1ccc(C(c2ccc(OS(�O)(�O)[O-])cc2)
c2ccccn2)cc1.[Na+].[Na+]

0.0192 0.9808 sodium picosulfate laxative

Cc1c(C(�O)Nc2ccc(S(C)(=O)�O)cc2)cn(CCO)c1−c1ccccc1C(F)
(F)F

0.0239 0.9761 esaxerenone antihypertensive

O�S(�O)(O)O.[Fe] 0.0261 0.9739 iron dextran IV formulation of iron
O�C(O)C(O)C(O)C(�O)O 0.0262 0.9738 tartaric acid antioxidant
CC(C(�O)O)c1ccc2c(c1)[nH]c1ccc(CI)cc12 0.0290 0.9710 carprofen nonselective COX inhibitor
CC(C(�O)O)c1ccc(C(�O)c2cccs2)cc1 0.0329 0.9671 suprofen nonselective COX inhibitor
Nc1c(CC(�O)[O-])cccc1C(�O)c1ccccc1.O.[Na+] 0.0349 0.9651 amfenac sodium

monohydrate
nonselective COX inhibitor

Cc1ccccc1N1C(�O)c2cc(S(N)(�O)�O)c(CI)cc2NC1C 0.0404 0.9596 metolazone thiazide-related diuretic
[CI−].[NH4+] 0.0441 0.9559 ammonium chloride electrolyte
CCN(CC)CCNC(�O)c1cc(S(C)(�O)�O)ccc1OC.CI 0.0447 0.9553 tiapride hydrochloride neuroleptic and Huntington

disease
Cc1cnc(NC(�O)C2�C(0)c3ccccc3S(�O)(�O)N2C)s1 0.0457 0.9543 meloxicam nonselective COX inhibitor

Figure 5. (A, B) 3D structure (A) of the COX-2 protein and the computed Ramachandran plot (B) of COX-2, calculated by Discovery Studio.
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β-sheets occur in the overall protein structure (Figure 5A).
Furthermore, a VADAR 1.8 structural study revealed that JAK2
is made up of 44% α-helices, 11% β-sheets, 44% coils, and 26%
turns. According to the Ramachandran plots, 92.7% of residues
were in the allowed zone of dihedral angles phi (φ) and psi (ψ)
(Figure 5B).

Binding Pocket Analysis. A binding pocket’s function is
determined by the collection of amino acid residues that
surround it, in addition to its shape and location inside a
protein.30 The binding pocket residues of COX-2 were
retrieved by employing the Discovery Studio ligand interaction
approach and are mentioned as Val344, Tyr385, Trp387,
Ser530, Phe518, Arg513, Glu524, Leu531, His90, Arg120, and
Tyr355. Moreover, the binding pocket residues were verified
from already published data.31 Furthermore, the cocrystallized
ligand was selected to define the binding sphere by the current
selection approach. Therefore, the binding sphere values were
adjusted as X = 22.9571, Y = 1.0560, Z = 34.0032, and the
radius value was fixed as 8.2904 to study the interaction of
selected compounds in the active region of COX-2 (Figure
6A,B).

Molecular Docking Analysis. All of the screened
compounds that were docked against COX-2 were examined
independently and scored based on the minimal docking
energy and interaction energy values (Table 3). The CDocker
module of Discovery Studio predicts to type of energy values
(CDocker energy and CDocker interaction energy). CDocker
energy exhibits the overall docking energy based on the ligand
and protein 3D structural and physiochemical properties and
CDocker interaction energy, which refers to the energy
associated with the specific interactions between the ligand
and the receptor. It quantifies the contribution of intermo-
lecular interactions, such as van der Waals forces, electrostatic
interactions, and hydrogen bonding, to the overall binding
affinity. CDocker interaction energy provides insights into the
strength and nature of the individual interactions between the
ligand and the receptor.32,33 Therefore, celecoxib demonstrates
the lowest docking energy and interaction energy values.
Moreover, ibuprofen and vismodegib came in the top 15
docked compounds. Although they exhibit high CDocker
energy as compared to celecoxib, they exhibit highly negative
interaction energy values (celecoxib, ibuprofen, and vismode-
gib manifest −47.8768, −408083, and −39.646), which
demonstrate that although the overall docking energy was

high, they exhibit good interactions with the active region
amino acids.

Binding Interaction Analysis against COX-2. Celecox-
ib, ibuprofen, and vismodegib docked against the COX-2
protein were further analyzed by Discovery Studio and UCSF

Figure 6. (A, B) Panel (A) manifests the binding pocket of COX-2. The whole protein is colored cornflower blue, while the binding surface area is
colored magenta. Furthermore, the active site residues are mentioned on their position in the active region of the target protein and colored wheat
(B).

Table 3. Docking Energy Values (kcal/mol) of Screened
Docked FDA Compounds against the COX-2 Protein,
Calculated by Discovery Studio

compounds
Cdocker
energy

Cdocker interaction
energy

celecoxib 22.86 47.88
bumetanide 32.06 46.16
etoricoxib 13.13 45.35
loxoprofen 26.27 43.94
ketoprofen 34.48 42.89
sodium picosulfate −1.38 42.38
valdecoxib 13.34 42.26
tiapride hydrochloride 22.24 42.20
indomethacin 0.99 42.09
ibuprofen 36.95 40.81
amfenac sodium monohydrate 29.29 40.27
meloxicam 40.97 40.25
nimesulide 25.47 40.14
vismodegib 2.93 39.65
carprofen 26.34 39.28
pranoprofen 32.68 39.25
2,6-di-tert-butyl-4-methylphenol 24.07 36.92
suprofen 28.21 34.70
metolazone 14.53 33.64
2,3-dihydroxysuccinic Acid 27.11 32.22
carzenide, 4-sulfamoylbenzoic
Acid

32.93 31.25

ensulizole 15.16 28.85
mafenide hydrochloride 28.03 27.22
potassium guaiacolsulfonate 16.60 24.65
esaxerenone −17.71 23.01
sulfanilamide 24.05 22.06
Benzenesulfonamide 21.07 20.42
p-toluenesulfonic acid
monohydrate

12.73 19.96

iron dextran −37.01 8.51
ammonium chloride 2.63 2.64
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Chimera to examine and confirm the binding interaction with
the active amino acid residues of COX-2.

Ibuprofen. The ligand−protein docking analysis of
ibuprofen shows that the ligand binds within the active region
of the target protein as shown in Figure 7A. The ibuprofen-
COX-2 docked complex exhibits one hydrogen and one salt
bridge. The oxygen atom of ibuprofen forms a hydrogen bond
with Arg120 with a bonding distance of 2.05 Å. Additionally,
another oxygen atom of ligand forms a salt bridge with the
same Arg120 with a bond length of 2.07 Å.

Celecoxib. Celecoxib, which exhibits the lowest docking
energy values in molecular docking studies, was confined in the
active binding pocket of the COX-2 protein and formed eight
hydrogen bonds with active region amino acid residues (Figure
7B). The celecoxib-COX-2 docked complex showed that one
hydrogen atom of celecoxib formed two hydrogen bonds with
Arg120 with bonding distance of 2.28 and 2.91 Å.
Furthermore, a nitrogen atom of celecoxib form hydrogen
bond with Arg120 with bond length of 2.84 Å. An oxygen atom
of ligand formed hydrogen bond with Arg513 with bonding
distance of 2.69 Å. Moreover, another oxygen atom of
compound form two hydrogen bonds with His90 and
Gln192 with bond length of 1.85 and 2.07 Å, respectively.
Additionally, two hydrogen atoms of celecoxib formed two
hydrogen bonds with Gln192 and Leu352 with bonding
distance of 2.66 and 2.28 Å, respectively.

Vismodegib. The ligand−protein docking analysis of
vismodegib shows that ligands get docked within the active
region of the target protein as shown in Figure 7C. The
vesmodegib−COX-2 docked complex forms three hydrogen
bonds, which include the residues Arg120 and Leu352. The
oxygen atom of vimodegib forms two hydrogen bonds with
Arg120 with a bond length of 2.36 and 2.03 Å. Furthermore,
the hydrogen atom of the ligand forms one hydrogen bond
with Leu352 with a bonding distance of 2.60 Å.

Those interactions strongly suggest that the predicted drugs
block the active region of COX-2 by hindering the active
region amino acid residues.

Experimental Validation. Prostaglandin E2 (PGE2) is a
major prostaglandin produced by COX-2 in response to
inflammatory stimuli. RBL-2H3 cells, a rat basophilic leukemia
cell line, are commonly used in immunological research
because the cells release histamine and other inflammatory
mediators in response to various allergic stimuli.34 We
previously confirmed that COX-2 expression was significantly
increased with the treatment of PMA and A23187 in RBL-2H3
cells.35 To validate the results from the computational study,
the inhibitory activity of the drugs (celecoxib, ibuprofen, and
vismodegib) was examined by measuring the PGE2 levels in
PMA/A23187-challenged RBL-2H3 cells. The treatment of
PMA/A23187 resulted in the considerable release of PGE2 and
all tested drugs significantly attenuated PGE2 release from the
cells, presumably inhibiting the enzyme activity of upregulated
COX-2 in RBL-2H3 cells (Figure 8). Compared to known

Figure 7. (A−C) Graphical representation of combine celecoxib, ibuprofen, and vismodegib interaction with the active region amino acid residues
of COX-2. The whole structure of COX-2 is represented in the center (blue), while the interactions of ligands are predicted in three dimensions as
A (ibuprofen), B (celecoxib), and C (vismodegib).

Figure 8. Inhibition of PMA/A23187-induced PGE2 release in RBL-
2H3 cells.
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COX-2 inhibitors such as celecoxib and ibuprofen, vismodegib
exhibited quite potent COX-2 inhibitory activity. The result
suggests that the strong COX-2 inhibitory activity of
vismodegib, which is similar to these known inhibitors,
indicates its potential usage as a novel COX-2 inhibitor.
However, vismodegib, which is a hedgehog-signal inhibiting
anticancer agent to treat advanced basal cell carcinoma, a type
of skin cancer, has notable adverse effects including alopecia,
muscle spasms, and dysgeusia.36 Therefore, using vismodegib
as an antiallergic medication that inhibits COX-2 would
require caution.

Structural Evaluation and Similarity Comparison.
Several top-ranked drugs in the COX-2 inhibitory potential
prediction share common structural moieties. Celecoxib and
sulfanilamide contain the sulfonamide group, while rofecoxib,
etoricoxib, and vismodegib share the sulfone group (Figure 9).
The result indicates that these structural motifs might play a
role in the binding of drugs to the active site of COX-2.
However, other structural motifs might also contribute to the
binding of the drugs to COX-2. Ibuprofen, ioxoprofen, and
ketoprofen are classified as propionic acid derivatives, while
indomethacin belongs to the indol acetic acid family. Although
the drugs share some structural moieties, their overall similarity
was not significant when calculated with Tanimoto similarity
(Table 4).

■ CONCLUSIONS
As drug development becomes a longer and more costly
process, it is crucial to explore emerging techniques that can
enhance it. Utilizing artificial intelligence has proven to be a
rapid and highly productive method for identifying potential
novel compounds with the ability to become successful
medications. The methods and research presented in this
paper demonstrate the distinctive advantages of this approach
and its high throughput performance in drug development.
Top searched compounds by a graph neural network algorithm
of the deep-learning module of DeepChem library fit in the
active region of target COX-2 and block the active site
computationally. Many highly predicted drugs are known
COX-2 inhibitors, which confirms the robustness of the
present methodology. Besides known COX-2 inhibitors,
vismodegib, an anticancer medication, has demonstrated the

potential to inhibit COX-2. Furthermore, the experimental
evaluation of COX-2 inhibitory activity of COX-2 in RBL-2H3
cells was in correlation with results from deep-learning and
molecular docking analyses. Therefore, it is concluded that
vismodegib can be considered a novel COX-2 inhibitor and
that deep-learning-based drug repositioning can be a promising
approach for drug repurposing and drug screening in novel
drug development for COX-2 inhibitors and a variety of other
targets.

■ METHODOLOGY
COX-2 Data Sets and FDA-Approved Drug Library.

COX-2 active and decoy data sets were downloaded from the
DUD-E Web site (https://dude.docking.org/). Active and
decoy data sets were composed of 435 and 23,150 compounds,
respectively. All molecules were expressed as canonicalized
SMILES strings with DUD-E and ChEMBL ID numbers.
Compounds were labeled as active and decoy in legend. FDA-
approved drug library was obtained from the Web site of
Selleck Chemicals (https://www.selleckchem.com). Drug
molecules, composed of 3105 compounds, were expressed as
SDF (structure-data file) and converted to SMILES strings
using RDKit.

Molecular Descriptor Generation Using RDKit. To
generate molecular descriptors from compounds, RDKit was
used. RDKit is an open-source, high-performance cheminfor-
matics, and machine-learning toolkit written in Python
(https://www.rdkit.org). The toolkit includes the functionality
for molecular descriptor calculations, chemical feature
generation, and chemical data visualization.

Deep-Learning Architecture. The COX-2 active and
decoy data sets were divided into training, validation, and test
sets at the ratio of 8:1:1. Deep-learning analysis was carried out
using the GraphConvMol model in DeepChem (https://
deepchem.io/models). The GraphConvMol, a graph convolu-
tional neural network, enables the model to learn features from
graph-structured input data such as molecular graphs. Briefly,
the architecture of GraphConvMol is as follows: first, the
model preprocesses molecular structures into graphs, where
atoms and bonds are nodes and edges, respectively. Next, a set
of graph convolutional layers is stacked to extract hierarchical
features from the molecular graphs. These layers consist of
trainable parameters with different weights that adjust and
optimize the learning process for the model to accurately
capture the molecular structures’ characteristics. During the
training phase, the model minimizes the loss function with
respect to the input molecular data sets and, in turn, optimizes
the weights of the convolutional layers using backpropagation.
The model aims to predict the properties of a given molecule,
including solubility, bioactivity, and toxicity, based on the
molecular structures.

Figure 9. Structures of celecoxib, ibuprofen, and vismodegib.

Table 4. Tanimoto Similarity Comparison of Celecoxib,
Ibuprofen, and Vismodegib

similarity celecoxib ibuprofen vismodegib

celecoxib 0.121212 0.258621
ibuprofen 0.121212 0.138614
vismodegib 0.258621 0.138614
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COX-2 Structure Retrieval. The 3D structure of human
COX-2 protein (PDB ID: 5KIR with 2.70 Å resolution) was
obtained from the protein data bank (PDB) (https://www.
rcsb.org), and further its energy minimization was carried out
using UCSF Chimera.37 The COX-2 protein, which is made up
of -helices, -sheets, coils, and turns, was subjected to a
quantitative protein structure analysis using the internet server
VADAR 1.8 (http://vadar.wishartlab.com/). Additionally, the
Ramachandran graphs were computed using the Discovery
Studio Client.38

Prediction of Active Binding Site. The position of a
ligand in the protein’s holo-structure most likely determines
the binding pocket of the protein.39 The complex of COX-2
and inhibitor, Vioxx, was retrieved from PDB (PDB ID: 5KIR).
The interacting amino acids were selected using the ligand
interaction approach of Discovery Studio for the accuracy of
binding site generation. Furthermore, the cocrystallized ligand
was selected and the binding sphere was constructed by the
current selection technique in the defined binding site window
of Discovery Studio. Consequently, the binding sphere was
contracted with restrictions on selected amino acids.

Molecular Docking. Molecular docking is the most widely
used method for evaluating the interactions and conformations
of ligands with target proteins.40 It anticipates the association
strength or binding affinity between two molecules based on
preferred orientation by using scoring algorithms.30 The water
molecules and cocrystallized ligand molecules were removed
from the protein, and the hydrogens were added to the protein
by Discovery Studio’s protein preparation module. The ligand
preparations were also carried out for reference and candidate
compounds in which tautomers were generated, ionization was
subjected to change, and bad valences were fixed by Discovery
Studio’s ligand preparation module. The CDOCKER module
of Discovery Studio was employed to perform molecular
docking of ligands against COX-2 with default orientations and
conformation. The lowest binding interaction energy values
(kcal/mol) were utilized to estimate the best-docked
complexes.

Binding Interaction Analysis. The ligand docked
complexes were analyzed graphically in three dimensions
(3D) using UCSF Chimera 1.10.137 and Discovery Studio
Client to study the interactions with the COX-2 protein.

Experimental Reagents and Cell culture. Celecoxib,
ibuprofen, vismodegib, phorbol 12-myristate 13-acetate
(PMA), and A23187, a calcium ionophore, were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Rat basophilic
leukemia (RBL-2H3) cells were obtained from the Korea cell
line bank (KCLB), KCLB cat #22256. RBL-2H3 cells were
maintained in medium RPMI 1640 (RPMI 1640; Hyclon
Laboratories) containing 10% heat-inactivated fetal bovine
serum and 100 U/mL penicillin-streptomycin (Gibco) at 37
°C, 5% CO2.

PGE2 Assays. RBL-2H3 cells were pretreated with drugs for
24 h and then challenged with or without PMA/A23187 (1
μg/mL) for 24 h. PGE2 released into the culture media of
RBL-2H3 was measured using enzyme-linked immunosorbent
(ELISA) kits (R&D system, USA) according to the
manufacturer’s instructions.

Statistical Analysis. All values shown in the figures are
expressed as the mean ± SD obtained from at least three
independent experiments. Statistical significance was analyzed
by a two-tailed Student’s t test. Data with values of p < 0.05

were considered statistically significant. Double (**) marks
represent the statistical significance in p < 0.01.
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