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Ethanol production 
from N‑acetyl‑d‑glucosamine by  
Scheffersomyces stipitis strains
Kentaro Inokuma1, Tomohisa Hasunuma1 and Akihiko Kondo1,2*

Abstract 

N-acetyl-d-glucosamine (GlcNAc) is the building block of chitin, which is one of the most abundant renewable 
resources in nature after cellulose. Therefore, a microorganism that can utilize GlcNAc is necessary for chitin-based 
biorefinery. In this study, we report on the screening and characterization of yeast strains for bioethanol production 
from GlcNAc. We demonstrate that Scheffersomyces (Pichia) stipitis strains can use GlcNAc as the sole carbon source 
and produce ethanol. S. stipitis NBRC1687, 10007, and 10063 strains consumed most of the 50 g/L GlcNAc provided, 
and produced 14.5 ± 0.6, 15.0 ± 0.3, and 16.4 ± 0.3 g/L of ethanol after anaerobic fermentation at 30 °C for 96 h. The 
ethanol yields of these strains were approximately 81, 75, and 82 % (mol ethanol/mol GlcNAc consumed), respec-
tively. Moreover, S. stipitis NBRC10063 maintained high GlcNAc-utilizing capacity at 35 °C, and produced 12.6 ± 0.7 g/L 
of ethanol after 96 h. This strain also achieved the highest ethanol titer (23.3 ± 1.0 g/L) from 100 g/L GlcNAc. To our 
knowledge, this is the first report on ethanol production via fermentation of GlcNAc by naturally occurring yeast 
strains.
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Introduction
The search for practical petroleum substitutes from 
renewable resources has become a global priority to 
combat the rapid rise in atmospheric carbon dioxide lev-
els. Chitin, which is the principal structural component 
of cell walls of fungi, yeasts, and algae, exoskeletons of 
insects, shells of crustaceans, and microfilarial sheathes 
of nematodes (Flach et al. 1992), is one of the most abun-
dant renewable resources in nature following cellulose 
(Howard et al. 2003). The estimated annual production of 
chitin on the Earth is on the order of 1010 to 1011 tons 
(Gooday 1990). Chitin is currently extracted from crab 
and shrimp shell wastes. In shrimp production, the shells 
of these animals make up as much as 75 % of the waste 
with roughly half being chitin (Bhattacharya et al. 2007). 
At present, however, only a limited fraction of shell waste 

is being utilized for animal feed or for the isolation of 
chitin to be used in medicines, cosmetics, and agricul-
ture. Moreover, the processing of shellfish leads to envi-
ronmental pollution (Synowiecki and Al-Khateeb 2003). 
Therefore, chitin derived from unused chitinous wastes is 
attracting attention as an abundant substrate for poten-
tial applications in biorefinery (Hayes et al. 2008).

Chitin is a polymer of β-(1-4) linked aminosugar 
N-acetyl-d-glucosamine (GlcNAc) residues, and can 
be hydrolyzed by mineral acids or enzymes into Glc-
NAc (Cosio et  al. 1982). Therefore, a microorganism 
that can utilize GlcNAc is necessary to establish chitin-
based biorefinery. It has been reported that some native 
microorganisms such as Escherichia coli (Alvarez-Anorve 
et al. 2005), Clostridium paraputrificum (Evvyernie et al. 
2001), dimorphic pathogenic fungi (Kumar et  al. 2000; 
Inokuma et al. 2013), and some oleaginous microorgan-
isms (Rodriguez and Dominguez 1984; Ruiz-Herrera and 
Sentandreu 2002; Zhang et al. 2011) can use GlcNAc for 
their growth and as a source of energy.
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Recently, ethanol production from GlcNAc by dimor-
phic fungi Mucor species was reported (Inokuma et  al. 
2013). Mucor circinelloides NBRC6746 and Mucor 
ambiguous NBRC8092 produced approximately 18.6 and 
16.9 g/L ethanol from 50 g/L GlcNAc, respectively (Ino-
kuma et al. 2013). On the other hand, to our knowledge, 
the GlcNAc-utilization capacity and ethanol productivity 
of yeasts, which are the most commonly used microor-
ganisms for industrial ethanol production, have not been 
quantitatively evaluated.

The objective of this study was to determine the feasi-
bility of using native yeasts to convert GlcNAc into etha-
nol. First, a screening test was conducted among native 
ethanol-producing yeasts to evaluate their GlcNAc-utili-
zation capacity. We revealed that a native Scheffersomyces 
stipitis (formerly known as Pichia stipitis) strain could 
consume GlcNAc as the sole carbon source. Second, 
growth assays of five native S. stipitis strains were per-
formed in GlcNAc medium. Finally, anaerobic ethanol 
fermentation from 50 and 100  g/L of GlcNAc was per-
formed using the S. stipitis strains. To our knowledge, 
this is the first report of ethanol production via fermenta-
tion of GlcNAc by naturally occurring yeast strains.

Materials and methods
Strains and media
The yeast strains used in this study are listed in Table 1. 
Kluyveromyces lactis NRRL Y-1140 was obtained 
from the US Department of Agriculture-Agricul-
tural Research Service (USDA-ARS) Culture Collec-
tion, and other strains were obtained from the NITE 
Biological Resource Center (NBRC). Yeast cells were 

pre-cultured in 5 mL of yeast extract peptone dextrose 
(YPD) medium [10  g/L yeast extract, 20  g/L Bacto-
peptone (Difco Laboratories, Detroit, MI, USA), and 
20 g/L glucose] in a shaker incubator (180 rpm at 25 °C 
for S. stipitis NBRC1720 and 10006 and 30 °C for other 
strains; BR-43FL; Taitec, Saitama, Japan) for 18  h. The 
yeast cells were harvested by centrifugation at 1000×g 
for 5  min, and then washed twice with distilled water. 
The washed cells were used for screening, growth 
assays, and ethanol fermentation as described below. 
Synthetic GlcNAc (SGN) medium [6.7 g/L yeast nitro-
gen base without amino acids (Difco Laboratories) and 
50  g/L GlcNAc (Wako Pure Chemicals, Osaka, Japan)] 
was used to screen GlcNAc-utilizing strains. YPGN50 
medium containing 10 g/L yeast extract, 20 g/L Bacto-
peptone, and 50  g/L GlcNAc and YPGN100 medium 
containing 10  g/L yeast extract, 20  g/L Bacto-peptone, 
and 100  g/L GlcNAc were used for ethanol fermenta-
tion and growth assays.

Screening of GlcNAc‑utilizing strains
After pre-cultivation and washing, yeast cells were inoc-
ulated in 5  mL SGN medium in test tubes to an initial 
OD600 of 0.1, and then cultivated at 30  °C in a shaker 
incubator (180  rpm; BR-43FL; Taitec). After cultivation 
for 24  h, the GlcNAc consumption of each strain was 
determined using high performance liquid chromatogra-
phy (HPLC) as described below.

Growth assay
Growth assays of yeast strains were performed in 
L-shaped test tubes by using a TVS062CA Bio-pho-
torecorder (Advantec Toyo, Tokyo, Japan). Pre-cultivated 
cells were inoculated in 5 mL of YPGN50 medium to an 
initial OD600 of 0.1. The yeast cells were cultured micro-
aerobically (70  rpm), and OD600 of the cell suspension 
was automatically measured every 30 min. The final cell 
density (OD600) after 72  h of cultivation was measured 
by a UV–VIS spectrophotometer (UVmini-1240, Shi-
madzu, Kyoto, Japan). The μmax values were calculated 
as described previously (Inokuma et al. 2015).

Ethanol fermentation of GlcNAc
Ethanol fermentation of GlcNAc was anaerobically per-
formed in closed 100  mL bottles equipped with a CO2 
outlet. Yeast cells were inoculated in 20 mL of YPGN50 
or 100 medium at an initial OD600 of 0.1. Fermenta-
tion was initiated by the addition of yeast cells into the 
fermentation medium, followed by rotation in a shaker 
incubator (180 rpm; BR-43FL; Taitec). The culture broth 
was sampled every 24  h, and its GlcNAc, ethanol, and 
acetate concentrations were determined using HPLC as 
described below.

Table 1  Yeast strains used in this study

Yeast strains Other culture  
collection no.

Source

Saccharomyces cerevisiae 
S288c

NBRC1136 NBRC

Kluyveromyces marxianus 
NBRC1777

NBRC

Kluyveromyces lactis NRRL 
Y-1140

CBS2359, NBRC1267 USDA-ARS

Pichia pastoris NBRC1013 NBRC

Scheffersomyces stipitis 
NBRC1687

CBS5773, NRRL Y-7124 NBRC

Scheffersomyces stipitis 
NBRC1720

CBS7124 NBRC

Scheffersomyces stipitis 
NBRC10006

CBS7125 NBRC

Scheffersomyces stipitis 
NBRC10007

CBS7126, NRRL Y-17104 NBRC

Scheffersomyces stipitis 
NBRC10063

CBS6054, NRRL Y-11545 NBRC
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Analytical methods
The concentrations of GlcNAc, ethanol, and acetate 
in the culture medium were determined using HPLC 
(Shimadzu). An Aminex HPX-87H column (Bio-Rad, 
Hercules, CA, USA) was used together with a Bio-Rad 
125–0131 guard cartridge (Bio-Rad) and a refractive 
index detector (RID-10A, Shimadzu). The HPLC sys-
tem was operated at 65 °C with 5 mM H2SO4 (flow rate, 
0.6 mL/min) as the mobile phase.

Results
Screening of GlcNAc‑utilizing strains
To screen for yeast strains that could utilize GlcNAc, 
native ethanol-producing yeasts were cultivated aerobi-
cally at 30 °C in the synthetic medium containing 50 g/L 
of GlcNAc as the sole carbon source (SGN medium). 
After 24-h cultivation, the GlcNAc consumption of these 
strains was evaluated using HPLC as described in the 
Materials and Methods. The results are shown in Fig. 1. 
Among the tested strains, only S. stipitis NBRC1687, 
which is the type strain of S. stipitis, could consume 
GlcNAc as the sole carbon source, and no significant 
GlcNAc consumption (<1.0  g/L) and cell growth were 
observed in the other strains. The NBRC1687 strain con-
sumed 10.2 ± 0.5 g/L of GlcNAc and the OD600 reached 
12.8 ± 0.4 after 24-h cultivation.

Growth assay of S. stipitis strains in GlcNAc medium
Microaerobic cultivation of five S. stipitis strains obtained 
from NBRC (Table  1) was performed in YPGN50 
medium. The yeast cells were cultured at different tem-
peratures (23–37  °C for NBRC1720 and 10006 strains, 
and 25–40  °C for NBRC1687, 10007 and 10063 strains) 
for 72 h, and the growth rates and final cell densities of 
these strains were evaluated. The growth profiles of these 

strains are shown in Table  2. Significant cell growth 
was observed in all S. stipitis strains tested in this study. 
NBRC1720 and 10006 strains exhibited cell growth in 
the range of 23–30  °C, while no significant growth was 
observed above 35  °C. On the other hand, NBRC1687, 
10007, and 10063 strains were able to withstand cultiva-
tion temperatures in the range of 25–37 °C, and increas-
ing growth temperature up to 35 °C did not significantly 
affect the growth rates. The highest μmax values of these 
strains were observed at 25  °C (NBRC1720 and 10006) 
and 30 °C (NBRC1687, 10007, and 10063) (Table 2). Con-
sequently, the next ethanol fermentation experiments 
were carried out at 25  °C (NBRC1720 and 10006) and 
30 °C (NBRC1687, 10007, and 10063).

Ethanol fermentation from 50 g/L of GlcNAc
Ethanol fermentation from 50  g/L of GlcNAc using S. 
stipitis strains was performed under anaerobic conditions 
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Fig. 1  GlcNAc-utilizing capacity of native ethanol-producing yeasts 
in synthetic GlcNAc medium. Error bars indicate standard deviations 
of three independent experiments

Table 2  Growth profiles of  S. stipitis strains in  YPGN50 
medium under aerobic conditions

The averages for three independent experiments are shown with their standard 
deviations

S. stipitis 
strains

Temperatures 
(°C)

Lag  
time (h)

μmax (/h) Final cell 
density
(OD600 
at 72 h)

NBRC1687 25 8.0 0.308 ± 0.012 11.3 ± 0.2

30 6.0 0.407 ± 0.012 11.4 ± 0.1

35 6.0 0.353 ± 0.018 11.9 ± 0.1

37 10.0 0.311 ± 0.033 11.6 ± 0.2

40 25.0 0.390 ± 0.128 2.7 ± 0.3

NBRC1720 23 13.0 0.314 ± 0.029 9.5 ± 0.3

25 12.5 0.317 ± 0.018 9.6 ± 0.1

30 16.5 0.209 ± 0.023 9.0 ± 0.8

35 – – <0.1

37 – – <0.1

NBRC10006 23 13.5 0.239 ± 0.005 9.8 ± 0.3

25 12.0 0.246 ± 0.004 9.7 ± 0.1

30 15.5 0.135 ± 0.033 6.5 ± 2.5

35 – – <0.1

37 – – <0.1

NBRC10007 25 8.0 0.299 ± 0.004 13.6 ± 0.3

30 6.0 0.403 ± 0.012 17.4 ± 0.6

35 6.0 0.369 ± 0.005 17.1 ± 0.1

37 9.0 0.215 ± 0.032 12.2 ± 2.7

40 – – <0.1

NBRC10063 25 7.0 0.333 ± 0.007 13.4 ± 0.1

30 5.0 0.418 ± 0.007 12.1 ± 0.3

35 6.0 0.405 ± 0.015 14.6 ± 0.4

37 7.0 0.341 ± 0.017 13.7 ± 0.9

40 – – <0.1
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because S. stipitis has the characteristics of a Crabtree-
negative yeast and is unable to produce ethanol in the 
presence of fermentable sugars under aerobic conditions 
(Jeffries and Shi 1999; Passoth et al. 1996). The results are 
shown in Fig.  2. All S. stipitis strains tested in this study 
could produce ethanol from GlcNAc, while their ethanol 
productivities varied depending on the strains. Among 
these strains, NBRC1687, 10007, and 10063 consumed 
most of the supplied 50  g/L GlcNAc. These strains pro-
duced 14.5 ± 0.6, 15.0 ± 0.3, and 16.4 ± 0.3 g/L of etha-
nol after 96-h fermentation, and their ethanol yields were 
approximately 0.338, 0.306, and 0.342 (g/g GlcNAc con-
sumed), respectively (Fig.  2a, d, e). Since the theoreti-
cal maximum ethanol yield from GlcNAc by the GlcNAc 
catabolic pathway (Biswas et  al. 2007) and the glycolysis 
pathway via fructose-6-phosphate is 2  mol ethanol/mol 
GlcNAc consumed (0.417 g ethanol/g GlcNAc consumed), 
the ethanol yields of these strains represent approximately 
81, 75, and 82 % of the theoretical yield, respectively.

To evaluate the fermentation ability of these strains at 
elevated temperature, we also performed ethanol fer-
mentation at 35  °C using NBRC1687, 10007, and 10063 
strains (Fig. 3). Although the GlcNAc consumptions, cell 
growth, and the ethanol titers of these strains were lower 
than those at 30 °C, NBRC10063 demonstrated relatively 
high fermentation ability at 35  °C. This strain produced 
12.6 ± 0.7 g/L of ethanol from GlcNAc, and the yield was 
approximately 0.303 g/g after 96 h (Fig. 3c).

Ethanol fermentation from 100 g/L of GlcNAc
Ethanol fermentation from 100 g/L of GlcNAc was per-
formed at 30  °C to investigate the maximum ethanol 
titer of the S. stipitis strains. The results are shown in 
Fig. 4. These strains could use more than 50 g/L of Glc-
NAc, while their GlcNAc consumption and ethanol 
production rates gradually decreased over time and no 
significant ethanol production was observed after 240 h. 
Among these strains, NBRC10063 showed the highest 
GlcNAc consumption (80.2 ± 1.2 g/L) and ethanol titer 
(23.3 ± 1.0 g/L) after 240 h cultivation. In all fermenta-
tion experiments shown in Fig. 4, initial pH was 6.6 and 
the final pH settled at 5.8–5.9 after 288 h.

Discussion
In this study, we performed screening and characteri-
zation of yeast strains for bioethanol production from 
GlcNAc. We found that natural S. stipitis strains can use 
GlcNAc as the carbon source and produce ethanol. S. 
stipitis is able to ferment a wide range of sugars includ-
ing galactose, mannose, xylose, and cellobiose along with 
mannan and xylan oligomers (Du Preez et  al. 1986; Jef-
fries and Van Vleet 2009), and is widely studied for its 
capacity to ferment D-xylose to ethanol. However, there 
have been no studies concerning its capacity to ferment 
GlcNAc to ethanol. To our knowledge, this is the first 
report of ethanol production from GlcNAc by naturally 
occurring yeast strains.
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Fig. 2  Time-course of anaerobic ethanol fermentation from 50 g/L GlcNAc by S. stipitis NBRC1687 (a), 1720 (b), 10006 (c), 10007 (d), and 10063 
(e) strains at 30 °C. Error bars indicate standard deviations of three independent experiments
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Scheffersomyces stipitis NBRC10063 gave the highest 
ethanol titer and yield among the S. stipitis strains used 
in this study (Fig. 2). In anaerobic fermentation at 30 °C, 
this strain produced 16.4  g/L ethanol from 50  g/L Glc-
NAc. This ethanol titer is similar to that reported for 
M. circinelloides (18.6  g/L) and M. ambiguus (16.9  g/L) 
(Inokuma et al. 2013). Moreover, this strain achieved the 
highest GlcNAc consumption (80.2 g/L) and ethanol titer 
(23.3  g/L) from 100  g/L GlcNAc after 240  h cultivation. 
Although Wendland et  al. (2009) reported ethanol pro-
duction from GlcNAc by recombinant S. cerevisiae strains 
transduced with four genes required for the GlcNAc cata-
bolic pathway from Candida albicans, the ethanol titers 
of these recombinant yeasts (around 3 g/L after 11 days) 
were much lower than that of NBRC10063. NBRC10063 
also showed relatively high ethanol production from Glc-
NAc at 35  °C (Fig. 3). Applicability to high fermentation 
temperatures is important for efficient simultaneous sac-
charification and fermentation (SSF) processes, because 
high-temperature fermentation will reduce the cooling 
cost and risk of contamination and enable stable fermen-
tation even in tropical countries (Banat et al. 1998).

In ethanol fermentation from 100  g/L of GlcNAc, 
GlcNAc consumption and ethanol production rates of 
S. stipitis strains gradually decreased over time and no 
significant ethanol production was observed after 240 h 
even though GlcNAc still remained (Fig. 4). One possible 
cause for the reduction of the fermentation efficiency is 
acetate accumulation. Acetate is an inhibitor of ethanol 
fermentation by yeast. Vanzyl et al. (1991) reported that 
the volumetric rate of ethanol production of S. stipitis 
CBS7126 (NBRC10007) from xylose was inhibited 50  % 
by acetate at concentration of 13.8  g/L at pH 6.5 under 
anaerobic condition. In this study, S. stipitis strains pro-
duced more than 20  g/L acetate as a byproduct after 
288  h cultivation (Fig.  4). Similar acetate accumulation 
has been observed in ethanol fermentation from Glc-
NAc using Mucor species (Inokuma et  al. 2013). Singh 
and Datta (1979) have reported the GlcNAc-catabolic 
pathway in C. albicans as follows. GlcNAc transported 
across the cell membrane can be phosphorylated to form 
GlcNAc 6-phosphate (GlcNAc 6P) by kinase. Then Glc-
NAc 6P is deacetylated to glucosamine 6-phosphate 
(GlcN 6P) followed by deamination to produce fructose 
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6-phosphate by GlcN 6P deaminase. Therefore, it can 
be inferred that most of the accumulated acetate is gen-
erated by the deacetylation of GlcNAc 6P to GlcN 6P. 
For further improvement of ethanol production from 
GlcNAc using S. stipitis strains, removal or convert of 
the accumulated acetate is necessary. Recently, several 
reports have demonstrated improvement of ethanol 
yields in S. cerevisiae by anaerobic reduction of acetate 
to ethanol (Henningsen et al. 2015). A similar approach 
would be applicable for the improvement of the ethanol 
yield from GlcNAc by S. stipitis. If S. stipitis strains can 
convert acetate into ethanol, these strains will be able 
to produce a maximum 3 mol of ethanol from 1 mol of 
GlcNAc (0.625  g ethanol/g GlcNAc) theoretically. The 
theoretical yield is much higher than those from glucose 
(0.514 g/g) and xylose (0.511 g/g).

Compared with S. cerevisiae, which is widely used 
in industrial ethanol fermentation, heterologous gene 
expressions and targeted gene deletions of S. stipitis are 
more difficult due to its alternative codon system and 
frequent random (nonhomologous) integration (Jef-
fries and Van Vleet 2009). However, researchers have 
been developing genetic transformation systems based 
on auxotrophic markers (Yang et al. 1994; Lu et al. 1998; 
Piontek et  al. 1998) and drug resistance markers (Lap-
laza et  al. 2006), the loxP/Cre excision system (Laplaza 
et al. 2006), and expression vectors available for S. stipi-
tis (Den Haan and Van Zyl 2001; Klabunde et  al. 2003). 
A summary of strain development and genetic tools use-
ful for S. stipitis has been published (Jeffries 2008). Fur-
thermore, Jeffries et al. (2007) sequenced the genome of 
S. stipitis NBRC10063 (CBS6054, NRRL Y-11545) strain. 
These genetic tools and genome information can aid in 
the genetic engineering of S. stipitis strains such as the 
conversion of acetate into ethanol and the expression of 
heterologous chitinase genes.

In this study, we evaluated yeast strains based on their 
cell growth and ethanol production in GlcNAc medium. 
On the other hand, it has been reported that enzymatic 
chitin degradation is significantly enhanced by hydro-
chloric acid treatment (Inokuma et  al. 2013). Therefore, 
comparison of tolerance of S. stipitis strains to hydro-
chloric acid and other compounds present in the acid-
treated chitin hydrolysate would be necessary for further 
evaluation of their availabilities. If strains are both tol-
erant to these compounds and can utilize GlcNAc well, 
they will be more promising for utilization of chitinous 
wastes.

In this study, we demonstrated that native S. stipi-
tis strains could use GlcNAc as the sole carbon source 
and produce ethanol efficiently. S. stipitis NBRC10063 
showed the highest growth rate, GlcNAc-utilizing capac-
ity, ethanol productivity, and thermal stability in YPGN 

medium among the yeast strains tested in this study. Our 
results suggest that the NBRC10063 strain should be 
regarded as a promising candidate for use in bioethanol 
production from chitinous waste in the future. However, 
further analysis of the GlcNAc metabolic pathway of this 
yeast is necessary to identify the reasons for its high Glc-
NAc-utilization capacity.
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